AOMedia AV1 Codec
blockd.h
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_BLOCKD_H_
13#define AOM_AV1_COMMON_BLOCKD_H_
14
15#include "config/aom_config.h"
16
17#include "aom_dsp/aom_dsp_common.h"
18#include "aom_ports/mem.h"
19#include "aom_scale/yv12config.h"
20
21#include "av1/common/common_data.h"
22#include "av1/common/quant_common.h"
23#include "av1/common/entropy.h"
24#include "av1/common/entropymode.h"
25#include "av1/common/mv.h"
26#include "av1/common/scale.h"
27#include "av1/common/seg_common.h"
28#include "av1/common/tile_common.h"
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#define USE_B_QUANT_NO_TRELLIS 1
35
36#define MAX_MB_PLANE 3
37
38#define MAX_DIFFWTD_MASK_BITS 1
39
40#define INTERINTRA_WEDGE_SIGN 0
41
42#define DEFAULT_INTER_TX_TYPE DCT_DCT
43
44#define MAX_PALETTE_BLOCK_WIDTH 64
45
46#define MAX_PALETTE_BLOCK_HEIGHT 64
47
50// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51enum {
52 DIFFWTD_38 = 0,
53 DIFFWTD_38_INV,
54 DIFFWTD_MASK_TYPES,
55} UENUM1BYTE(DIFFWTD_MASK_TYPE);
56
57enum {
58 KEY_FRAME = 0,
59 INTER_FRAME = 1,
60 INTRA_ONLY_FRAME = 2, // replaces intra-only
61 S_FRAME = 3,
62 FRAME_TYPES,
63} UENUM1BYTE(FRAME_TYPE);
64
65static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67}
68
69static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70 return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71}
72
73typedef struct {
74 uint8_t *plane[MAX_MB_PLANE];
75 int stride[MAX_MB_PLANE];
76} BUFFER_SET;
77
78static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79 return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80}
81static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82 return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83}
84
85static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86 static const PREDICTION_MODE lut[] = {
87 DC_PRED, // DC_PRED
88 V_PRED, // V_PRED
89 H_PRED, // H_PRED
90 D45_PRED, // D45_PRED
91 D135_PRED, // D135_PRED
92 D113_PRED, // D113_PRED
93 D157_PRED, // D157_PRED
94 D203_PRED, // D203_PRED
95 D67_PRED, // D67_PRED
96 SMOOTH_PRED, // SMOOTH_PRED
97 SMOOTH_V_PRED, // SMOOTH_V_PRED
98 SMOOTH_H_PRED, // SMOOTH_H_PRED
99 PAETH_PRED, // PAETH_PRED
100 NEARESTMV, // NEARESTMV
101 NEARMV, // NEARMV
102 GLOBALMV, // GLOBALMV
103 NEWMV, // NEWMV
104 NEARESTMV, // NEAREST_NEARESTMV
105 NEARMV, // NEAR_NEARMV
106 NEARESTMV, // NEAREST_NEWMV
107 NEWMV, // NEW_NEARESTMV
108 NEARMV, // NEAR_NEWMV
109 NEWMV, // NEW_NEARMV
110 GLOBALMV, // GLOBAL_GLOBALMV
111 NEWMV, // NEW_NEWMV
112 };
113 assert(NELEMENTS(lut) == MB_MODE_COUNT);
114 assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115 return lut[mode];
116}
117
118static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119 static const PREDICTION_MODE lut[] = {
120 MB_MODE_COUNT, // DC_PRED
121 MB_MODE_COUNT, // V_PRED
122 MB_MODE_COUNT, // H_PRED
123 MB_MODE_COUNT, // D45_PRED
124 MB_MODE_COUNT, // D135_PRED
125 MB_MODE_COUNT, // D113_PRED
126 MB_MODE_COUNT, // D157_PRED
127 MB_MODE_COUNT, // D203_PRED
128 MB_MODE_COUNT, // D67_PRED
129 MB_MODE_COUNT, // SMOOTH_PRED
130 MB_MODE_COUNT, // SMOOTH_V_PRED
131 MB_MODE_COUNT, // SMOOTH_H_PRED
132 MB_MODE_COUNT, // PAETH_PRED
133 MB_MODE_COUNT, // NEARESTMV
134 MB_MODE_COUNT, // NEARMV
135 MB_MODE_COUNT, // GLOBALMV
136 MB_MODE_COUNT, // NEWMV
137 NEARESTMV, // NEAREST_NEARESTMV
138 NEARMV, // NEAR_NEARMV
139 NEWMV, // NEAREST_NEWMV
140 NEARESTMV, // NEW_NEARESTMV
141 NEWMV, // NEAR_NEWMV
142 NEARMV, // NEW_NEARMV
143 GLOBALMV, // GLOBAL_GLOBALMV
144 NEWMV, // NEW_NEWMV
145 };
146 assert(NELEMENTS(lut) == MB_MODE_COUNT);
147 assert(is_inter_compound_mode(mode));
148 return lut[mode];
149}
150
151static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152 return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153 mode == NEW_NEARMV);
154}
155
156static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157 return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158 mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159}
160
161static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162 return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163}
164
165/* For keyframes, intra block modes are predicted by the (already decoded)
166 modes for the Y blocks to the left and above us; for interframes, there
167 is a single probability table. */
168
169typedef struct {
170 // Value of base colors for Y, U, and V
171 uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172 // Number of base colors for Y (0) and UV (1)
173 uint8_t palette_size[2];
174} PALETTE_MODE_INFO;
175
176typedef struct {
177 FILTER_INTRA_MODE filter_intra_mode;
178 uint8_t use_filter_intra;
179} FILTER_INTRA_MODE_INFO;
180
181static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182 DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183};
184
185#if CONFIG_RD_DEBUG
186#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187#endif
188
189typedef struct RD_STATS {
190 int rate;
191 int zero_rate;
192 int64_t dist;
193 // Please be careful of using rdcost, it's not guaranteed to be set all the
194 // time.
195 // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196 // these functions, make sure rdcost is always up-to-date according to
197 // rate/dist.
198 int64_t rdcost;
199 int64_t sse;
200 uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
201#if CONFIG_RD_DEBUG
202 int txb_coeff_cost[MAX_MB_PLANE];
203#endif // CONFIG_RD_DEBUG
204} RD_STATS;
205
206// This struct is used to group function args that are commonly
207// sent together in functions related to interinter compound modes
208typedef struct {
209 uint8_t *seg_mask;
210 int8_t wedge_index;
211 int8_t wedge_sign;
212 DIFFWTD_MASK_TYPE mask_type;
213 COMPOUND_TYPE type;
214} INTERINTER_COMPOUND_DATA;
215
216#define INTER_TX_SIZE_BUF_LEN 16
217#define TXK_TYPE_BUF_LEN 64
222typedef struct MB_MODE_INFO {
223
228 BLOCK_SIZE bsize;
230 PARTITION_TYPE partition;
232 PREDICTION_MODE mode;
234 UV_PREDICTION_MODE uv_mode;
239
244 int_mv mv[2];
246 MV_REFERENCE_FRAME ref_frame[2];
248 int_interpfilters interp_filters;
250 MOTION_MODE motion_mode;
257 WarpedMotionParams wm_params;
259 INTERINTRA_MODE interintra_mode;
263 INTERINTER_COMPOUND_DATA interinter_comp;
266
272 int8_t angle_delta[PLANE_TYPES];
274 FILTER_INTRA_MODE_INFO filter_intra_mode_info;
280 PALETTE_MODE_INFO palette_mode_info;
283
288 uint8_t skip_txfm;
290 TX_SIZE tx_size;
292 TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
295
302 int8_t delta_lf[FRAME_LF_COUNT];
305
310 uint8_t segment_id : 3;
312 uint8_t seg_id_predicted : 1;
314 uint8_t ref_mv_idx : 2;
316 uint8_t skip_mode : 1;
318 uint8_t use_intrabc : 1;
320 uint8_t comp_group_idx : 1;
322 uint8_t compound_idx : 1;
326 int8_t cdef_strength : 4;
329#if CONFIG_RD_DEBUG
331 RD_STATS rd_stats;
333 int mi_row;
335 int mi_col;
336#endif
337#if CONFIG_INSPECTION
339 int16_t tx_skip[TXK_TYPE_BUF_LEN];
340#endif
342
345static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346 return mbmi->use_intrabc;
347}
348
349static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350 assert(mode < UV_INTRA_MODES);
351 static const PREDICTION_MODE uv2y[] = {
352 DC_PRED, // UV_DC_PRED
353 V_PRED, // UV_V_PRED
354 H_PRED, // UV_H_PRED
355 D45_PRED, // UV_D45_PRED
356 D135_PRED, // UV_D135_PRED
357 D113_PRED, // UV_D113_PRED
358 D157_PRED, // UV_D157_PRED
359 D203_PRED, // UV_D203_PRED
360 D67_PRED, // UV_D67_PRED
361 SMOOTH_PRED, // UV_SMOOTH_PRED
362 SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
363 SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
364 PAETH_PRED, // UV_PAETH_PRED
365 DC_PRED, // UV_CFL_PRED
366 INTRA_INVALID, // UV_INTRA_MODES
367 INTRA_INVALID, // UV_MODE_INVALID
368 };
369 return uv2y[mode];
370}
371
372static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
373 return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374}
375
376static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
377 return mbmi->ref_frame[1] > INTRA_FRAME;
378}
379
380static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381 return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382 (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383}
384
385static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386 static const MV_REFERENCE_FRAME lut[] = {
387 LAST_FRAME, // LAST_LAST2_FRAMES,
388 LAST_FRAME, // LAST_LAST3_FRAMES,
389 LAST_FRAME, // LAST_GOLDEN_FRAMES,
390 BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
391 LAST2_FRAME, // LAST2_LAST3_FRAMES
392 LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
393 LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
394 BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
395 ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
396 };
397 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398 return lut[ref_idx];
399}
400
401static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402 static const MV_REFERENCE_FRAME lut[] = {
403 LAST2_FRAME, // LAST_LAST2_FRAMES,
404 LAST3_FRAME, // LAST_LAST3_FRAMES,
405 GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
406 ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
407 LAST3_FRAME, // LAST2_LAST3_FRAMES
408 GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
409 GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
410 ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
411 ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
412 };
413 assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414 return lut[ref_idx];
415}
416
417PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418
419PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420
421static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422 TransformationType type) {
423 const PREDICTION_MODE mode = mbmi->mode;
424 const BLOCK_SIZE bsize = mbmi->bsize;
425 const int block_size_allowed =
426 AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427 return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428 block_size_allowed;
429}
430
431#if CONFIG_MISMATCH_DEBUG
432static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433 int mi_row, int tx_blk_col, int tx_blk_row,
434 int subsampling_x, int subsampling_y) {
435 *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436 (tx_blk_col << MI_SIZE_LOG2);
437 *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438 (tx_blk_row << MI_SIZE_LOG2);
439}
440#endif
441
442enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443
444struct buf_2d {
445 uint8_t *buf;
446 uint8_t *buf0;
447 int width;
448 int height;
449 int stride;
450};
451
452typedef struct eob_info {
453 uint16_t eob;
454 uint16_t max_scan_line;
455} eob_info;
456
457typedef struct {
458 DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459 eob_info eob_data[MAX_MB_PLANE]
460 [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461 DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462} CB_BUFFER;
463
464typedef struct macroblockd_plane {
465 PLANE_TYPE plane_type;
466 int subsampling_x;
467 int subsampling_y;
468 struct buf_2d dst;
469 struct buf_2d pre[2];
470 ENTROPY_CONTEXT *above_entropy_context;
471 ENTROPY_CONTEXT *left_entropy_context;
472
473 // The dequantizers below are true dequantizers used only in the
474 // dequantization process. They have the same coefficient
475 // shift/scale as TX.
476 int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477 // Pointer to color index map of:
478 // - Current coding block, on encoder side.
479 // - Current superblock, on decoder side.
480 uint8_t *color_index_map;
481
482 // block size in pixels
483 uint8_t width, height;
484
485 qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486 qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487} MACROBLOCKD_PLANE;
488
489#define BLOCK_OFFSET(i) ((i) << 4)
490
494typedef struct {
498 DECLARE_ALIGNED(16, InterpKernel, vfilter);
499
503 DECLARE_ALIGNED(16, InterpKernel, hfilter);
504} WienerInfo;
505
507typedef struct {
511 int ep;
512
516 int xqd[2];
518
521#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
522#define CFL_BUF_LINE (32)
523#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
524#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
525#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
526typedef struct cfl_ctx {
527 // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
528 // shifts)
529 uint16_t recon_buf_q3[CFL_BUF_SQUARE];
530 // Q3 AC contributions (reconstructed luma pixels - tx block avg)
531 int16_t ac_buf_q3[CFL_BUF_SQUARE];
532
533 // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
534 // for every scaling parameter
535 bool dc_pred_is_cached[CFL_PRED_PLANES];
536 // Whether the DC_PRED cache is enabled. The DC_PRED cache is disabled when
537 // decoding.
538 bool use_dc_pred_cache;
539 // Only cache the first row of the DC_PRED
540 int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
541
542 // Height and width currently used in the CfL prediction buffer.
543 int buf_height, buf_width;
544
545 int are_parameters_computed;
546
547 // Chroma subsampling
548 int subsampling_x, subsampling_y;
549
550 // Whether the reconstructed luma pixels need to be stored
551 int store_y;
552} CFL_CTX;
553
554typedef struct dist_wtd_comp_params {
555 int use_dist_wtd_comp_avg;
556 int fwd_offset;
557 int bck_offset;
558} DIST_WTD_COMP_PARAMS;
559
560struct scale_factors;
561
570typedef struct macroblockd {
575 int mi_row;
576 int mi_col;
583
602
606 struct macroblockd_plane plane[MAX_MB_PLANE];
607
611 TileInfo tile;
612
618
635
660
666 uint8_t *tx_type_map;
672
687 const struct scale_factors *block_ref_scale_factors[2];
688
696
703 ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
710 ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
711
718 PARTITION_CONTEXT *above_partition_context;
725 PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
726
733 TXFM_CONTEXT *above_txfm_context;
740 TXFM_CONTEXT *left_txfm_context;
747 TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
748
757 WienerInfo wiener_info[MAX_MB_PLANE];
758 SgrprojInfo sgrproj_info[MAX_MB_PLANE];
765 uint8_t width;
766 uint8_t height;
776 CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
781 uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
782
793
798 uint8_t neighbors_ref_counts[REF_FRAMES];
799
803 FRAME_CONTEXT *tile_ctx;
804
808 int bd;
809
813 int qindex[MAX_SEGMENTS];
817 int lossless[MAX_SEGMENTS];
829
834
838 struct aom_internal_error_info *error_info;
839
843 const WarpedMotionParams *global_motion;
844
868 int8_t delta_lf[FRAME_LF_COUNT];
885
889 uint8_t *seg_mask;
890
894 CFL_CTX cfl;
895
906
916 CONV_BUF_TYPE *tmp_conv_dst;
927 uint8_t *tmp_obmc_bufs[2];
929
932static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
933#if CONFIG_AV1_HIGHBITDEPTH
934 return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
935#else
936 (void)xd;
937 return 0;
938#endif
939}
940
941static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
942#if CONFIG_AV1_HIGHBITDEPTH
943 return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
944 ? CONVERT_TO_BYTEPTR(buf16)
945 : buf16;
946#else
947 (void)xd;
948 return buf16;
949#endif
950}
951
952typedef struct BitDepthInfo {
953 int bit_depth;
959 int use_highbitdepth_buf;
960} BitDepthInfo;
961
962static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
963 BitDepthInfo bit_depth_info;
964 bit_depth_info.bit_depth = xd->bd;
965 bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
966 assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
967 bit_depth_info.bit_depth == 8));
968 return bit_depth_info;
969}
970
971static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
972 switch (bsize) {
973 case BLOCK_4X4: return 0;
974 case BLOCK_8X8: return 1;
975 case BLOCK_16X16: return 2;
976 case BLOCK_32X32: return 3;
977 case BLOCK_64X64: return 4;
978 case BLOCK_128X128: return 5;
979 default: return SQR_BLOCK_SIZES;
980 }
981}
982
983// For a square block size 'bsize', returns the size of the sub-blocks used by
984// the given partition type. If the partition produces sub-blocks of different
985// sizes, then the function returns the largest sub-block size.
986// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
987// Conversion tables).
988// Note: the input block size should be square.
989// Otherwise it's considered invalid.
990static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
991 PARTITION_TYPE partition) {
992 if (partition == PARTITION_INVALID) {
993 return BLOCK_INVALID;
994 } else {
995 const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
996 return sqr_bsize_idx >= SQR_BLOCK_SIZES
997 ? BLOCK_INVALID
998 : subsize_lookup[partition][sqr_bsize_idx];
999 }
1000}
1001
1002static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1003 PLANE_TYPE plane_type) {
1004 static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1005 DCT_DCT, // DC_PRED
1006 ADST_DCT, // V_PRED
1007 DCT_ADST, // H_PRED
1008 DCT_DCT, // D45_PRED
1009 ADST_ADST, // D135_PRED
1010 ADST_DCT, // D113_PRED
1011 DCT_ADST, // D157_PRED
1012 DCT_ADST, // D203_PRED
1013 ADST_DCT, // D67_PRED
1014 ADST_ADST, // SMOOTH_PRED
1015 ADST_DCT, // SMOOTH_V_PRED
1016 DCT_ADST, // SMOOTH_H_PRED
1017 ADST_ADST, // PAETH_PRED
1018 };
1019 const PREDICTION_MODE mode =
1020 (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1021 assert(mode < INTRA_MODES);
1022 return _intra_mode_to_tx_type[mode];
1023}
1024
1025static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1026
1027static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1028 return bsize > BLOCK_4X4;
1029}
1030
1031// Number of transform types in each set type
1032static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1033 1, 2, 5, 7, 12, 16,
1034};
1035
1036static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1037 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1038 { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1039 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1040 { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1041 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1042 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1043};
1044
1045// The bitmask corresponds to the transform types as defined in
1046// enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1047// the use of the corresponding transform type in that table.
1048// The av1_derived_intra_tx_used_flag table is used when
1049// use_reduced_intra_txset is set to 2, where one only searches
1050// the transform types derived from residual statistics.
1051static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1052 0x0209, // DC_PRED: 0000 0010 0000 1001
1053 0x0403, // V_PRED: 0000 0100 0000 0011
1054 0x0805, // H_PRED: 0000 1000 0000 0101
1055 0x020F, // D45_PRED: 0000 0010 0000 1111
1056 0x0009, // D135_PRED: 0000 0000 0000 1001
1057 0x0009, // D113_PRED: 0000 0000 0000 1001
1058 0x0009, // D157_PRED: 0000 0000 0000 1001
1059 0x0805, // D203_PRED: 0000 1000 0000 0101
1060 0x0403, // D67_PRED: 0000 0100 0000 0011
1061 0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1062 0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1063 0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1064 0x0209, // PAETH_PRED: 0000 0010 0000 1001
1065};
1066
1067static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1068 0x080F, // DC_PRED: 0000 1000 0000 1111
1069 0x040F, // V_PRED: 0000 0100 0000 1111
1070 0x080F, // H_PRED: 0000 1000 0000 1111
1071 0x020F, // D45_PRED: 0000 0010 0000 1111
1072 0x080F, // D135_PRED: 0000 1000 0000 1111
1073 0x040F, // D113_PRED: 0000 0100 0000 1111
1074 0x080F, // D157_PRED: 0000 1000 0000 1111
1075 0x080F, // D203_PRED: 0000 1000 0000 1111
1076 0x040F, // D67_PRED: 0000 0100 0000 1111
1077 0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1078 0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1079 0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1080 0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1081};
1082
1083static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1084 0x0001, // 0000 0000 0000 0001
1085 0x0201, // 0000 0010 0000 0001
1086 0x020F, // 0000 0010 0000 1111
1087 0x0E0F, // 0000 1110 0000 1111
1088 0x0FFF, // 0000 1111 1111 1111
1089 0xFFFF, // 1111 1111 1111 1111
1090};
1091
1092static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1093 { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1094 { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1095};
1096
1097static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1098 int use_reduced_set) {
1099 const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1100 if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1101 if (tx_size_sqr_up == TX_32X32)
1102 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1103 if (use_reduced_set)
1104 return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1105 const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1106 return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1107}
1108
1109// Maps tx set types to the indices.
1110static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1111 { // Intra
1112 0, -1, 2, 1, -1, -1 },
1113 { // Inter
1114 0, 3, -1, -1, 2, 1 },
1115};
1116
1117static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1118 int use_reduced_set) {
1119 const TxSetType set_type =
1120 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1121 return ext_tx_set_index[is_inter][set_type];
1122}
1123
1124static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1125 int use_reduced_set) {
1126 const int set_type =
1127 av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1128 return av1_num_ext_tx_set[set_type];
1129}
1130
1131#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1132#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1133
1134static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1135 const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1136 const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1137 if (bsize == BLOCK_4X4)
1138 return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1139 if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1140 return max_rect_tx_size;
1141 else
1142 return largest_tx_size;
1143}
1144
1145static const uint8_t mode_to_angle_map[INTRA_MODES] = {
1146 0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1147};
1148
1149// Converts block_index for given transform size to index of the block in raster
1150// order.
1151static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1152 int block_idx) {
1153 // For transform size 4x8, the possible block_idx values are 0 & 2, because
1154 // block_idx values are incremented in steps of size 'tx_width_unit x
1155 // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1156 // block number 1 in raster order, inside an 8x8 MI block.
1157 // For any other transform size, the two indices are equivalent.
1158 return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1159}
1160
1161// Inverse of above function.
1162// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1163static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1164 int raster_order) {
1165 assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1166 // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1167 return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1168}
1169
1170static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1171 const MACROBLOCKD *xd,
1172 TX_SIZE tx_size,
1173 int use_screen_content_tools) {
1174 const MB_MODE_INFO *const mbmi = xd->mi[0];
1175
1176 if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1177 xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1178 use_screen_content_tools)
1179 return DEFAULT_INTER_TX_TYPE;
1180
1181 return intra_mode_to_tx_type(mbmi, plane_type);
1182}
1183
1184// Implements the get_plane_residual_size() function in the spec (Section
1185// 5.11.38. Get plane residual size function).
1186static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1187 int subsampling_x,
1188 int subsampling_y) {
1189 assert(bsize < BLOCK_SIZES_ALL);
1190 assert(subsampling_x >= 0 && subsampling_x < 2);
1191 assert(subsampling_y >= 0 && subsampling_y < 2);
1192 return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1193}
1194
1195/*
1196 * Logic to generate the lookup tables:
1197 *
1198 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1199 * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1200 * txs = sub_tx_size_map[txs];
1201 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1202 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1203 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1204 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1205 */
1206static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1207 int blk_col) {
1208 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1209 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1210 };
1211 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1212 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1213 };
1214 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1215 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1216 };
1217 const int index =
1218 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1219 (blk_col >> tw_w_log2_table[bsize]);
1220 assert(index < INTER_TX_SIZE_BUF_LEN);
1221 return index;
1222}
1223
1224#if CONFIG_INSPECTION
1225/*
1226 * Here is the logic to generate the lookup tables:
1227 *
1228 * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1229 * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1230 * txs = sub_tx_size_map[txs];
1231 * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1232 * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1233 * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1234 * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1235 */
1236static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1237 int blk_col) {
1238 static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1239 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1240 };
1241 static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1242 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1243 };
1244 static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1245 0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1246 };
1247 const int index =
1248 ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1249 (blk_col >> tw_w_log2_table[bsize]);
1250 assert(index < TXK_TYPE_BUF_LEN);
1251 return index;
1252}
1253#endif // CONFIG_INSPECTION
1254
1255static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1256 int blk_col, TX_SIZE tx_size,
1257 TX_TYPE tx_type) {
1258 const int stride = xd->tx_type_map_stride;
1259 xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1260
1261 const int txw = tx_size_wide_unit[tx_size];
1262 const int txh = tx_size_high_unit[tx_size];
1263 // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1264 // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1265 // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1266 // the intricacy, cover all the 16x16 units inside a 64 level transform.
1267 if (txw == tx_size_wide_unit[TX_64X64] ||
1268 txh == tx_size_high_unit[TX_64X64]) {
1269 const int tx_unit = tx_size_wide_unit[TX_16X16];
1270 for (int idy = 0; idy < txh; idy += tx_unit) {
1271 for (int idx = 0; idx < txw; idx += tx_unit) {
1272 xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1273 }
1274 }
1275 }
1276}
1277
1278static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1279 PLANE_TYPE plane_type, int blk_row,
1280 int blk_col, TX_SIZE tx_size,
1281 int reduced_tx_set) {
1282 const MB_MODE_INFO *const mbmi = xd->mi[0];
1283 if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1284 return DCT_DCT;
1285 }
1286
1287 TX_TYPE tx_type;
1288 if (plane_type == PLANE_TYPE_Y) {
1289 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1290 } else {
1291 if (is_inter_block(mbmi)) {
1292 // scale back to y plane's coordinate
1293 const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1294 blk_row <<= pd->subsampling_y;
1295 blk_col <<= pd->subsampling_x;
1296 tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1297 } else {
1298 // In intra mode, uv planes don't share the same prediction mode as y
1299 // plane, so the tx_type should not be shared
1300 tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1301 }
1302 const TxSetType tx_set_type =
1303 av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1304 if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1305 }
1306 assert(tx_type < TX_TYPES);
1307 assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1308 reduced_tx_set)][tx_type]);
1309 return tx_type;
1310}
1311
1312void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1313 const int num_planes);
1314
1315/*
1316 * Logic to generate the lookup table:
1317 *
1318 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1319 * int depth = 0;
1320 * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1321 * depth++;
1322 * tx_size = sub_tx_size_map[tx_size];
1323 * }
1324 */
1325static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1326 static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1327 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1328 };
1329 return bsize_to_max_depth_table[bsize];
1330}
1331
1332/*
1333 * Logic to generate the lookup table:
1334 *
1335 * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1336 * assert(tx_size != TX_4X4);
1337 * int depth = 0;
1338 * while (tx_size != TX_4X4) {
1339 * depth++;
1340 * tx_size = sub_tx_size_map[tx_size];
1341 * }
1342 * assert(depth < 10);
1343 */
1344static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1345 assert(bsize < BLOCK_SIZES_ALL);
1346 static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1347 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1348 };
1349 const int depth = bsize_to_tx_size_depth_table[bsize];
1350 assert(depth <= MAX_TX_CATS);
1351 return depth - 1;
1352}
1353
1354static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1355 TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1356 TX_SIZE tx_size = max_tx_size;
1357 for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1358 return tx_size;
1359}
1360
1361static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1362 switch (tx_size) {
1363 case TX_64X64:
1364 case TX_64X32:
1365 case TX_32X64: return TX_32X32;
1366 case TX_64X16: return TX_32X16;
1367 case TX_16X64: return TX_16X32;
1368 default: return tx_size;
1369 }
1370}
1371
1372static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1373 int subsampling_y) {
1374 const BLOCK_SIZE plane_bsize =
1375 get_plane_block_size(bsize, subsampling_x, subsampling_y);
1376 assert(plane_bsize < BLOCK_SIZES_ALL);
1377 const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1378 return av1_get_adjusted_tx_size(uv_tx);
1379}
1380
1381static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1382 const MB_MODE_INFO *mbmi = xd->mi[0];
1383 if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1384 if (plane == 0) return mbmi->tx_size;
1385 const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1386 return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1387 pd->subsampling_y);
1388}
1389
1390void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1391 const int num_planes);
1392
1393void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1394
1395void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1396
1397typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1398 int blk_row, int blk_col,
1399 BLOCK_SIZE plane_bsize,
1400 TX_SIZE tx_size, void *arg);
1401
1402void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1403 struct macroblockd_plane *pd, int plane,
1404 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1405 int has_eob, int aoff, int loff);
1406
1407#define MAX_INTERINTRA_SB_SQUARE 32 * 32
1408static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1409 return (mbmi->ref_frame[0] > INTRA_FRAME &&
1410 mbmi->ref_frame[1] == INTRA_FRAME);
1411}
1412
1413static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1414 return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1415}
1416
1417static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1418 return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1419}
1420
1421static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1422 return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1423}
1424
1425static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1426 return is_interintra_allowed_bsize(mbmi->bsize) &&
1427 is_interintra_allowed_mode(mbmi->mode) &&
1428 is_interintra_allowed_ref(mbmi->ref_frame);
1429}
1430
1431static INLINE int is_interintra_allowed_bsize_group(int group) {
1432 int i;
1433 for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1434 if (size_group_lookup[i] == group &&
1435 is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1436 return 1;
1437 }
1438 }
1439 return 0;
1440}
1441
1442static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1443 return mbmi->ref_frame[0] > INTRA_FRAME &&
1444 mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1445}
1446
1447static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1448 int plane) {
1449 if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1450 const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1451 if (plane == 0) return max_txsize; // luma
1452 return av1_get_adjusted_tx_size(max_txsize); // chroma
1453}
1454
1455static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1456 assert(bsize < BLOCK_SIZES_ALL);
1457 return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1458}
1459
1460static INLINE int is_motion_variation_allowed_compound(
1461 const MB_MODE_INFO *mbmi) {
1462 return !has_second_ref(mbmi);
1463}
1464
1465// input: log2 of length, 0(4), 1(8), ...
1466static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1467
1468static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1469 return mbmi->overlappable_neighbors != 0;
1470}
1471
1472static INLINE MOTION_MODE
1473motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1474 const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1475 if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1476 if (xd->cur_frame_force_integer_mv == 0) {
1477 const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1478 if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1479 }
1480 if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1481 is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1482 is_motion_variation_allowed_compound(mbmi)) {
1483 assert(!has_second_ref(mbmi));
1484 if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1486 !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1487 return WARPED_CAUSAL;
1488 }
1489 return OBMC_CAUSAL;
1490 }
1491 return SIMPLE_TRANSLATION;
1492}
1493
1494static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1495 return (is_inter_block(mbmi));
1496}
1497
1498static INLINE int av1_allow_palette(int allow_screen_content_tools,
1499 BLOCK_SIZE sb_type) {
1500 assert(sb_type < BLOCK_SIZES_ALL);
1501 return allow_screen_content_tools &&
1502 block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1503 block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1504 sb_type >= BLOCK_8X8;
1505}
1506
1507// Returns sub-sampled dimensions of the given block.
1508// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1509// differ from 'height' and 'width' when part of the block is outside the
1510// right
1511// and/or bottom image boundary.
1512static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1513 const MACROBLOCKD *xd, int *width,
1514 int *height,
1515 int *rows_within_bounds,
1516 int *cols_within_bounds) {
1517 const int block_height = block_size_high[bsize];
1518 const int block_width = block_size_wide[bsize];
1519 const int block_rows = (xd->mb_to_bottom_edge >= 0)
1520 ? block_height
1521 : (xd->mb_to_bottom_edge >> 3) + block_height;
1522 const int block_cols = (xd->mb_to_right_edge >= 0)
1523 ? block_width
1524 : (xd->mb_to_right_edge >> 3) + block_width;
1525 const struct macroblockd_plane *const pd = &xd->plane[plane];
1526 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1527 assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1528 assert(block_width >= block_cols);
1529 assert(block_height >= block_rows);
1530 const int plane_block_width = block_width >> pd->subsampling_x;
1531 const int plane_block_height = block_height >> pd->subsampling_y;
1532 // Special handling for chroma sub8x8.
1533 const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1534 const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1535 if (width) {
1536 *width = plane_block_width + 2 * is_chroma_sub8_x;
1537 assert(*width >= 0);
1538 }
1539 if (height) {
1540 *height = plane_block_height + 2 * is_chroma_sub8_y;
1541 assert(*height >= 0);
1542 }
1543 if (rows_within_bounds) {
1544 *rows_within_bounds =
1545 (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1546 assert(*rows_within_bounds >= 0);
1547 }
1548 if (cols_within_bounds) {
1549 *cols_within_bounds =
1550 (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1551 assert(*cols_within_bounds >= 0);
1552 }
1553}
1554
1555/* clang-format off */
1556// Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1557typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1558 [CDF_SIZE(PALETTE_COLORS)];
1559// Pointer to a const three-dimensional array whose first dimension is
1560// PALETTE_SIZES.
1561typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1562/* clang-format on */
1563
1564typedef struct {
1565 int rows;
1566 int cols;
1567 int n_colors;
1568 int plane_width;
1569 int plane_height;
1570 uint8_t *color_map;
1571 MapCdf map_cdf;
1572 ColorCost color_cost;
1573} Av1ColorMapParam;
1574
1575static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1576 const MB_MODE_INFO *mbmi) {
1577 int ref;
1578
1579 // First check if all modes are GLOBALMV
1580 if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1581
1582 if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1583 return 0;
1584
1585 // Now check if all global motion is non translational
1586 for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1587 if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1588 }
1589 return 1;
1590}
1591
1592static INLINE PLANE_TYPE get_plane_type(int plane) {
1593 return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1594}
1595
1596static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1597 if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1598 return 1024;
1599 }
1600 if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1601 return 512;
1602 }
1603 return tx_size_2d[tx_size];
1604}
1605
1608#ifdef __cplusplus
1609} // extern "C"
1610#endif
1611
1612#endif // AOM_AV1_COMMON_BLOCKD_H_
Stores the prediction/txfm mode of the current coding block.
Definition blockd.h:222
int8_t delta_lf_from_base
Definition blockd.h:300
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition blockd.h:248
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition blockd.h:261
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition blockd.h:244
int8_t delta_lf[FRAME_LF_COUNT]
Definition blockd.h:302
PREDICTION_MODE mode
The prediction mode used.
Definition blockd.h:232
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition blockd.h:263
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition blockd.h:324
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition blockd.h:234
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition blockd.h:280
uint8_t segment_id
The segment id.
Definition blockd.h:310
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition blockd.h:278
uint8_t ref_mv_idx
Which ref_mv to use.
Definition blockd.h:314
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition blockd.h:322
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition blockd.h:255
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition blockd.h:246
uint8_t skip_txfm
Whether to skip transforming and sending.
Definition blockd.h:288
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition blockd.h:292
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition blockd.h:326
int current_qindex
The q index for the current coding block.
Definition blockd.h:236
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition blockd.h:272
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition blockd.h:274
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition blockd.h:257
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition blockd.h:250
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition blockd.h:252
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition blockd.h:312
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition blockd.h:276
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition blockd.h:320
uint8_t skip_mode
Inter skip mode.
Definition blockd.h:316
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition blockd.h:259
PARTITION_TYPE partition
The partition type of the current coding block.
Definition blockd.h:230
BLOCK_SIZE bsize
The block size of the current coding block.
Definition blockd.h:228
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition blockd.h:290
uint8_t use_intrabc
Whether intrabc is used.
Definition blockd.h:318
Parameters related to Sgrproj Filter.
Definition blockd.h:507
int ep
Definition blockd.h:511
Parameters related to Wiener Filter.
Definition blockd.h:494
Variables related to current coding block.
Definition blockd.h:570
bool left_available
Definition blockd.h:626
uint8_t * tx_type_map
Definition blockd.h:666
int mb_to_bottom_edge
Definition blockd.h:680
TXFM_CONTEXT * left_txfm_context
Definition blockd.h:740
struct macroblockd_plane plane[3]
Definition blockd.h:606
TileInfo tile
Definition blockd.h:611
int mb_to_top_edge
Definition blockd.h:679
int8_t delta_lf_from_base
Definition blockd.h:853
int mb_to_right_edge
Definition blockd.h:678
WienerInfo wiener_info[3]
Definition blockd.h:757
bool up_available
Definition blockd.h:622
CONV_BUF_TYPE * tmp_conv_dst
Definition blockd.h:916
MB_MODE_INFO * above_mbmi
Definition blockd.h:645
bool chroma_up_available
Definition blockd.h:630
TXFM_CONTEXT * above_txfm_context
Definition blockd.h:733
int bd
Definition blockd.h:808
bool chroma_left_available
Definition blockd.h:634
PARTITION_CONTEXT * above_partition_context
Definition blockd.h:718
uint8_t * seg_mask
Definition blockd.h:889
int qindex[8]
Definition blockd.h:813
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition blockd.h:781
MB_MODE_INFO * chroma_left_mbmi
Definition blockd.h:652
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition blockd.h:747
int tx_type_map_stride
Definition blockd.h:671
const WarpedMotionParams * global_motion
Definition blockd.h:843
MB_MODE_INFO * chroma_above_mbmi
Definition blockd.h:659
FRAME_CONTEXT * tile_ctx
Definition blockd.h:803
uint8_t * tmp_obmc_bufs[2]
Definition blockd.h:927
int mi_row
Definition blockd.h:575
const YV12_BUFFER_CONFIG * cur_buf
Definition blockd.h:695
int mi_stride
Definition blockd.h:582
bool is_last_vertical_rect
Definition blockd.h:787
bool is_first_horizontal_rect
Definition blockd.h:792
uint8_t width
Definition blockd.h:765
struct aom_internal_error_info * error_info
Definition blockd.h:838
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition blockd.h:776
int current_base_qindex
Definition blockd.h:828
CFL_CTX cfl
Definition blockd.h:894
const struct scale_factors * block_ref_scale_factors[2]
Definition blockd.h:687
int lossless[8]
Definition blockd.h:817
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition blockd.h:710
bool cdef_transmitted[4]
Definition blockd.h:884
ENTROPY_CONTEXT * above_entropy_context[3]
Definition blockd.h:703
int8_t delta_lf[FRAME_LF_COUNT]
Definition blockd.h:868
MB_MODE_INFO ** mi
Definition blockd.h:617
uint8_t height
Definition blockd.h:766
MB_MODE_INFO * left_mbmi
Definition blockd.h:640
uint16_t color_index_map_offset[2]
Definition blockd.h:905
SgrprojInfo sgrproj_info[3]
Definition blockd.h:758
int cur_frame_force_integer_mv
Definition blockd.h:833
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition blockd.h:725
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition blockd.h:798
bool is_chroma_ref
Definition blockd.h:601
int mi_col
Definition blockd.h:576
int mb_to_left_edge
Definition blockd.h:677
YV12 frame buffer data structure.
Definition yv12config.h:46