AOMedia AV1 Codec
av1_common_int.h
1/*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12#ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13#define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14
15#include "config/aom_config.h"
16#include "config/av1_rtcd.h"
17
18#include "aom/internal/aom_codec_internal.h"
19#include "aom_dsp/flow_estimation/corner_detect.h"
20#include "aom_util/aom_pthread.h"
21#include "av1/common/alloccommon.h"
22#include "av1/common/av1_loopfilter.h"
23#include "av1/common/entropy.h"
24#include "av1/common/entropymode.h"
25#include "av1/common/entropymv.h"
26#include "av1/common/enums.h"
27#include "av1/common/frame_buffers.h"
28#include "av1/common/mv.h"
29#include "av1/common/quant_common.h"
31#include "av1/common/tile_common.h"
32#include "av1/common/timing.h"
33#include "aom_dsp/grain_params.h"
34#include "aom_dsp/grain_table.h"
35#include "aom_dsp/odintrin.h"
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#if defined(__clang__) && defined(__has_warning)
41#if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42#define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43#endif
44#elif defined(__GNUC__) && __GNUC__ >= 7
45#define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46#endif
47
48#ifndef AOM_FALLTHROUGH_INTENDED
49#define AOM_FALLTHROUGH_INTENDED \
50 do { \
51 } while (0)
52#endif
53
54#define CDEF_MAX_STRENGTHS 16
55
56/* Constant values while waiting for the sequence header */
57#define FRAME_ID_LENGTH 15
58#define DELTA_FRAME_ID_LENGTH 14
59
60#define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61// Extra frame context which is always kept at default values
62#define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63#define PRIMARY_REF_BITS 3
64#define PRIMARY_REF_NONE 7
65
66#define NUM_PING_PONG_BUFFERS 2
67
68#define MAX_NUM_TEMPORAL_LAYERS 8
69#define MAX_NUM_SPATIAL_LAYERS 4
70/* clang-format off */
71// clang-format seems to think this is a pointer dereference and not a
72// multiplication.
73#define MAX_NUM_OPERATING_POINTS \
74 (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
75/* clang-format on */
76
77// TODO(jingning): Turning this on to set up transform coefficient
78// processing timer.
79#define TXCOEFF_TIMER 0
80#define TXCOEFF_COST_TIMER 0
81
84enum {
85 SINGLE_REFERENCE = 0,
86 COMPOUND_REFERENCE = 1,
87 REFERENCE_MODE_SELECT = 2,
88 REFERENCE_MODES = 3,
89} UENUM1BYTE(REFERENCE_MODE);
90
91enum {
95 REFRESH_FRAME_CONTEXT_DISABLED,
100 REFRESH_FRAME_CONTEXT_BACKWARD,
101} UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
102
103#define MFMV_STACK_SIZE 3
104typedef struct {
105 int_mv mfmv0;
106 uint8_t ref_frame_offset;
107} TPL_MV_REF;
108
109typedef struct {
110 int_mv mv;
111 MV_REFERENCE_FRAME ref_frame;
112} MV_REF;
113
114typedef struct RefCntBuffer {
115 // For a RefCntBuffer, the following are reference-holding variables:
116 // - cm->ref_frame_map[]
117 // - cm->cur_frame
118 // - cm->scaled_ref_buf[] (encoder only)
119 // - pbi->output_frame_index[] (decoder only)
120 // With that definition, 'ref_count' is the number of reference-holding
121 // variables that are currently referencing this buffer.
122 // For example:
123 // - suppose this buffer is at index 'k' in the buffer pool, and
124 // - Total 'n' of the variables / array elements above have value 'k' (that
125 // is, they are pointing to buffer at index 'k').
126 // Then, pool->frame_bufs[k].ref_count = n.
127 int ref_count;
128
129 unsigned int order_hint;
130 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131
132 // These variables are used only in encoder and compare the absolute
133 // display order hint to compute the relative distance and overcome
134 // the limitation of get_relative_dist() which returns incorrect
135 // distance when a very old frame is used as a reference.
136 unsigned int display_order_hint;
137 unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
138 // Frame's level within the hierarchical structure.
139 unsigned int pyramid_level;
140 MV_REF *mvs;
141 uint8_t *seg_map;
142 struct segmentation seg;
143 int mi_rows;
144 int mi_cols;
145 // Width and height give the size of the buffer (before any upscaling, unlike
146 // the sizes that can be derived from the buf structure)
147 int width;
148 int height;
149 WarpedMotionParams global_motion[REF_FRAMES];
150 int showable_frame; // frame can be used as show existing frame in future
151 uint8_t film_grain_params_present;
152 aom_film_grain_t film_grain_params;
153 aom_codec_frame_buffer_t raw_frame_buffer;
155 int temporal_id; // Temporal layer ID of the frame
156 int spatial_id; // Spatial layer ID of the frame
157 FRAME_TYPE frame_type;
158
159 // This is only used in the encoder but needs to be indexed per ref frame
160 // so it's extremely convenient to keep it here.
161 int interp_filter_selected[SWITCHABLE];
162
163 // Inter frame reference frame delta for loop filter
164 int8_t ref_deltas[REF_FRAMES];
165
166 // 0 = ZERO_MV, MV
167 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
168
169 FRAME_CONTEXT frame_context;
170} RefCntBuffer;
171
172typedef struct BufferPool {
173// Protect BufferPool from being accessed by several FrameWorkers at
174// the same time during frame parallel decode.
175// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
176// TODO(wtc): Remove this. See
177// https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
178#if CONFIG_MULTITHREAD
179 pthread_mutex_t pool_mutex;
180#endif
181
182 // Private data associated with the frame buffer callbacks.
183 void *cb_priv;
184
187
188 RefCntBuffer *frame_bufs;
189 uint8_t num_frame_bufs;
190
191 // Frame buffers allocated internally by the codec.
192 InternalFrameBufferList int_frame_buffers;
193} BufferPool;
194
198typedef struct {
200 uint16_t *colbuf[MAX_MB_PLANE];
202 uint16_t *linebuf[MAX_MB_PLANE];
204 uint16_t *srcbuf;
206 size_t allocated_colbuf_size[MAX_MB_PLANE];
208 size_t allocated_linebuf_size[MAX_MB_PLANE];
216 int cdef_strengths[CDEF_MAX_STRENGTHS];
218 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
225} CdefInfo;
226
229typedef struct {
230 int delta_q_present_flag;
231 // Resolution of delta quant
232 int delta_q_res;
233 int delta_lf_present_flag;
234 // Resolution of delta lf level
235 int delta_lf_res;
236 // This is a flag for number of deltas of loop filter level
237 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238 // 1: use separate deltas for each filter level
239 int delta_lf_multi;
240} DeltaQInfo;
241
242typedef struct {
243 int enable_order_hint; // 0 - disable order hint, and related tools
244 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245 // frame_sign_bias
246 // if 0, enable_dist_wtd_comp and
247 // enable_ref_frame_mvs must be set as 0.
248 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249 // 1 - enable it
250 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251 // 1 - enable it
252} OrderHintInfo;
253
254// Sequence header structure.
255// Note: All syntax elements of sequence_header_obu that need to be
256// bit-identical across multiple sequence headers must be part of this struct,
257// so that consistency is checked by are_seq_headers_consistent() function.
258// One exception is the last member 'op_params' that is ignored by
259// are_seq_headers_consistent() function.
260typedef struct SequenceHeader {
261 int num_bits_width;
262 int num_bits_height;
263 int max_frame_width;
264 int max_frame_height;
265 // Whether current and reference frame IDs are signaled in the bitstream.
266 // Frame id numbers are additional information that do not affect the
267 // decoding process, but provide decoders with a way of detecting missing
268 // reference frames so that appropriate action can be taken.
269 uint8_t frame_id_numbers_present_flag;
270 int frame_id_length;
271 int delta_frame_id_length;
272 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273 int mib_size; // Size of the superblock in units of MI blocks
274 int mib_size_log2; // Log 2 of above.
275
276 OrderHintInfo order_hint_info;
277
278 uint8_t force_screen_content_tools; // 0 - force off
279 // 1 - force on
280 // 2 - adaptive
281 uint8_t still_picture; // Video is a single frame still picture
282 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284 // 1 - force to integer
285 // 2 - adaptive
286 uint8_t enable_filter_intra; // enables/disables filterintra
287 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288 uint8_t enable_interintra_compound; // enables/disables interintra_compound
289 uint8_t enable_masked_compound; // enables/disables masked compound
290 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291 // 1 - enable vert/horz filter selection
292 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293 // 1 - enable warp for the sequence
294 uint8_t enable_superres; // 0 - Disable superres for the sequence
295 // and no frame level superres flag
296 // 1 - Enable superres for the sequence
297 // enable per-frame superres flag
298 uint8_t enable_cdef; // To turn on/off CDEF
299 uint8_t enable_restoration; // To turn on/off loop restoration
300 BITSTREAM_PROFILE profile;
301
302 // Color config.
303 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306 uint8_t monochrome; // Monochrome video
307 aom_color_primaries_t color_primaries;
308 aom_transfer_characteristics_t transfer_characteristics;
309 aom_matrix_coefficients_t matrix_coefficients;
310 int color_range;
311 int subsampling_x; // Chroma subsampling for x
312 int subsampling_y; // Chroma subsampling for y
313 aom_chroma_sample_position_t chroma_sample_position;
314 uint8_t separate_uv_delta_q;
315 uint8_t film_grain_params_present;
316
317 // Operating point info.
318 int operating_points_cnt_minus_1;
319 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320 int timing_info_present;
321 aom_timing_info_t timing_info;
322 uint8_t decoder_model_info_present_flag;
323 aom_dec_model_info_t decoder_model_info;
324 uint8_t display_model_info_present_flag;
325 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327
328 // IMPORTANT: the op_params member must be at the end of the struct so that
329 // are_seq_headers_consistent() can be implemented with a memcmp() call.
330 // TODO(urvang): We probably don't need the +1 here.
331 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332} SequenceHeader;
333
334typedef struct {
335 int skip_mode_allowed;
336 int skip_mode_flag;
337 int ref_frame_idx_0;
338 int ref_frame_idx_1;
339} SkipModeInfo;
340
341typedef struct {
342 FRAME_TYPE frame_type;
343 REFERENCE_MODE reference_mode;
344
345 unsigned int order_hint;
346 unsigned int display_order_hint;
347 // Frame's level within the hierarchical structure.
348 unsigned int pyramid_level;
349 unsigned int frame_number;
350 SkipModeInfo skip_mode_info;
351 int refresh_frame_flags; // Which ref frames are overwritten by this frame
352 int frame_refs_short_signaling;
353} CurrentFrame;
354
425
498
514
518 int MBs;
519
530
552 BLOCK_SIZE mi_alloc_bsize;
553
570
577 TX_TYPE *tx_type_map;
578
587 void (*free_mi)(struct CommonModeInfoParams *mi_params);
592 void (*setup_mi)(struct CommonModeInfoParams *mi_params);
602 void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
603 int height, BLOCK_SIZE min_partition_size);
605};
606
616
622
631
642
643 /*
644 * Note: The qindex per superblock may have a delta from the qindex obtained
645 * at frame level from parameters above, based on 'cm->delta_q_info'.
646 */
647
655 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
656 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
657 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
667 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
671 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
681 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
685 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
689 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
709};
710
711typedef struct CommonContexts CommonContexts;
720 PARTITION_CONTEXT **partition;
721
730 ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
731
738 TXFM_CONTEXT **txfm;
739
747};
748
752typedef struct AV1Common {
756 CurrentFrame current_frame;
760 struct aom_internal_error_info *error;
761
777 int width;
778 int height;
810
817 uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
824
828 RefCntBuffer *prev_frame;
829
834 RefCntBuffer *cur_frame;
835
856 int remapped_ref_idx[REF_FRAMES];
857
863 struct scale_factors sf_identity;
864
871 struct scale_factors ref_scale_factors[REF_FRAMES];
872
880 RefCntBuffer *ref_frame_map[REF_FRAMES];
881
888
896
903
908
913
914#if CONFIG_ENTROPY_STATS
918 int coef_cdf_category;
919#endif // CONFIG_ENTROPY_STATS
920
925
929 struct segmentation seg;
930
935
940 loop_filter_info_n lf_info;
941 struct loopfilter lf;
948 RestorationInfo rst_info[MAX_MB_PLANE];
949 int32_t *rst_tmpbuf;
950 RestorationLineBuffers *rlbs;
958
962 aom_film_grain_t film_grain_params;
963
967 DeltaQInfo delta_q_info;
968
972 WarpedMotionParams global_motion[REF_FRAMES];
973
978 SequenceHeader *seq_params;
979
983 FRAME_CONTEXT *fc;
989 FRAME_CONTEXT *default_frame_context;
990
995
999 BufferPool *buffer_pool;
1000
1008
1014 int ref_frame_id[REF_FRAMES];
1024 TPL_MV_REF *tpl_mvs;
1033 int ref_frame_sign_bias[REF_FRAMES];
1039 int8_t ref_frame_side[REF_FRAMES];
1040
1046
1052
1053#if TXCOEFF_TIMER
1054 int64_t cum_txcoeff_timer;
1055 int64_t txcoeff_timer;
1056 int txb_count;
1057#endif // TXCOEFF_TIMER
1058
1059#if TXCOEFF_COST_TIMER
1060 int64_t cum_txcoeff_cost_timer;
1061 int64_t txcoeff_cost_timer;
1062 int64_t txcoeff_cost_count;
1063#endif // TXCOEFF_COST_TIMER
1064} AV1_COMMON;
1065
1068// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1069// frame reference count.
1070static void lock_buffer_pool(BufferPool *const pool) {
1071#if CONFIG_MULTITHREAD
1072 pthread_mutex_lock(&pool->pool_mutex);
1073#else
1074 (void)pool;
1075#endif
1076}
1077
1078static void unlock_buffer_pool(BufferPool *const pool) {
1079#if CONFIG_MULTITHREAD
1080 pthread_mutex_unlock(&pool->pool_mutex);
1081#else
1082 (void)pool;
1083#endif
1084}
1085
1086static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1087 if (index < 0 || index >= REF_FRAMES) return NULL;
1088 if (cm->ref_frame_map[index] == NULL) return NULL;
1089 return &cm->ref_frame_map[index]->buf;
1090}
1091
1092static INLINE int get_free_fb(AV1_COMMON *cm) {
1093 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1094 int i;
1095
1096 lock_buffer_pool(cm->buffer_pool);
1097 const int num_frame_bufs = cm->buffer_pool->num_frame_bufs;
1098 for (i = 0; i < num_frame_bufs; ++i)
1099 if (frame_bufs[i].ref_count == 0) break;
1100
1101 if (i != num_frame_bufs) {
1102 if (frame_bufs[i].buf.use_external_reference_buffers) {
1103 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1104 // external reference buffers. Restore the buffer pointers to point to the
1105 // internally allocated memory.
1106 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1107 ybf->y_buffer = ybf->store_buf_adr[0];
1108 ybf->u_buffer = ybf->store_buf_adr[1];
1109 ybf->v_buffer = ybf->store_buf_adr[2];
1110 ybf->use_external_reference_buffers = 0;
1111 }
1112
1113 frame_bufs[i].ref_count = 1;
1114 } else {
1115 // We should never run out of free buffers. If this assertion fails, there
1116 // is a reference leak.
1117 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1118 // Reset i to be INVALID_IDX to indicate no free buffer found.
1119 i = INVALID_IDX;
1120 }
1121
1122 unlock_buffer_pool(cm->buffer_pool);
1123 return i;
1124}
1125
1126static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1127 // Release the previously-used frame-buffer
1128 if (cm->cur_frame != NULL) {
1129 --cm->cur_frame->ref_count;
1130 cm->cur_frame = NULL;
1131 }
1132
1133 // Assign a new framebuffer
1134 const int new_fb_idx = get_free_fb(cm);
1135 if (new_fb_idx == INVALID_IDX) return NULL;
1136
1137 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1138#if CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1139 aom_invalidate_pyramid(cm->cur_frame->buf.y_pyramid);
1140 av1_invalidate_corner_list(cm->cur_frame->buf.corners);
1141#endif // CONFIG_AV1_ENCODER && !CONFIG_REALTIME_ONLY
1142 av1_zero(cm->cur_frame->interp_filter_selected);
1143 return cm->cur_frame;
1144}
1145
1146// Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1147// counts accordingly.
1148static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1149 RefCntBuffer *rhs_ptr) {
1150 RefCntBuffer *const old_ptr = *lhs_ptr;
1151 if (old_ptr != NULL) {
1152 assert(old_ptr->ref_count > 0);
1153 // One less reference to the buffer at 'old_ptr', so decrease ref count.
1154 --old_ptr->ref_count;
1155 }
1156
1157 *lhs_ptr = rhs_ptr;
1158 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1159 ++rhs_ptr->ref_count;
1160}
1161
1162static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1163 return cm->current_frame.frame_type == KEY_FRAME ||
1164 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1165}
1166
1167static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1168 return cm->current_frame.frame_type == S_FRAME;
1169}
1170
1171// These functions take a reference frame label between LAST_FRAME and
1172// EXTREF_FRAME inclusive. Note that this is different to the indexing
1173// previously used by the frame_refs[] array.
1174static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1175 const MV_REFERENCE_FRAME ref_frame) {
1176 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1177 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1178 : INVALID_IDX;
1179}
1180
1181static INLINE RefCntBuffer *get_ref_frame_buf(
1182 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1183 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1184 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1185}
1186
1187// Both const and non-const versions of this function are provided so that it
1188// can be used with a const AV1_COMMON if needed.
1189static INLINE const struct scale_factors *get_ref_scale_factors_const(
1190 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193}
1194
1195static INLINE struct scale_factors *get_ref_scale_factors(
1196 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1197 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1198 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1199}
1200
1201static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1202 const AV1_COMMON *const cm) {
1203 const int primary_ref_frame = cm->features.primary_ref_frame;
1204 if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1205 const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1206 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1207}
1208
1209// Returns 1 if this frame might allow mvs from some reference frame.
1210static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1211 return !cm->features.error_resilient_mode &&
1212 cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1213 cm->seq_params->order_hint_info.enable_order_hint &&
1214 !frame_is_intra_only(cm);
1215}
1216
1217// Returns 1 if this frame might use warped_motion
1218static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1219 return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1220 cm->seq_params->enable_warped_motion;
1221}
1222
1223static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1224 const int buf_rows = buf->mi_rows;
1225 const int buf_cols = buf->mi_cols;
1226 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1227
1228 if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1229 buf_cols != mi_params->mi_cols) {
1230 aom_free(buf->mvs);
1231 buf->mi_rows = mi_params->mi_rows;
1232 buf->mi_cols = mi_params->mi_cols;
1233 CHECK_MEM_ERROR(cm, buf->mvs,
1234 (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1235 ((mi_params->mi_cols + 1) >> 1),
1236 sizeof(*buf->mvs)));
1237 aom_free(buf->seg_map);
1238 CHECK_MEM_ERROR(
1239 cm, buf->seg_map,
1240 (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1241 sizeof(*buf->seg_map)));
1242 }
1243
1244 const int mem_size =
1245 ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1246
1247 if (cm->tpl_mvs == NULL || cm->tpl_mvs_mem_size < mem_size) {
1248 aom_free(cm->tpl_mvs);
1249 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1250 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1251 cm->tpl_mvs_mem_size = mem_size;
1252 }
1253}
1254
1255void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1256
1257static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1258 return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1259}
1260
1261static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1262 int num_planes, int tile_row,
1263 MACROBLOCKD *xd) {
1264 for (int i = 0; i < num_planes; ++i) {
1265 xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1266 }
1267 xd->above_partition_context = above_contexts->partition[tile_row];
1268 xd->above_txfm_context = above_contexts->txfm[tile_row];
1269}
1270
1271static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1272 const int num_planes = av1_num_planes(cm);
1273 const CommonQuantParams *const quant_params = &cm->quant_params;
1274
1275 for (int i = 0; i < num_planes; ++i) {
1276 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1277 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1278 sizeof(quant_params->y_dequant_QTX));
1279 memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1280 sizeof(quant_params->y_iqmatrix));
1281
1282 } else {
1283 if (i == AOM_PLANE_U) {
1284 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1285 sizeof(quant_params->u_dequant_QTX));
1286 memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1287 sizeof(quant_params->u_iqmatrix));
1288 } else {
1289 memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1290 sizeof(quant_params->v_dequant_QTX));
1291 memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1292 sizeof(quant_params->v_iqmatrix));
1293 }
1294 }
1295 }
1296 xd->mi_stride = cm->mi_params.mi_stride;
1297 xd->error_info = cm->error;
1298 cfl_init(&xd->cfl, cm->seq_params);
1299}
1300
1301static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1302 const int num_planes) {
1303 int i;
1304 int row_offset = mi_row;
1305 int col_offset = mi_col;
1306 for (i = 0; i < num_planes; ++i) {
1307 struct macroblockd_plane *const pd = &xd->plane[i];
1308 // Offset the buffer pointer
1309 const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1310 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1311 row_offset = mi_row - 1;
1312 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1313 col_offset = mi_col - 1;
1314 int above_idx = col_offset;
1315 int left_idx = row_offset & MAX_MIB_MASK;
1316 pd->above_entropy_context =
1317 &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1318 pd->left_entropy_context =
1319 &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1320 }
1321}
1322
1323static INLINE int calc_mi_size(int len) {
1324 // len is in mi units. Align to a multiple of SBs.
1325 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1326}
1327
1328static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1329 const int num_planes) {
1330 int i;
1331 for (i = 0; i < num_planes; i++) {
1332 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1333 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1334
1335 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1336 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1337 }
1338}
1339
1340static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1341 int mi_row, int bh, int mi_col, int bw,
1342 int mi_rows, int mi_cols) {
1343 xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1344 xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1345 xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1346 xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1347
1348 xd->mi_row = mi_row;
1349 xd->mi_col = mi_col;
1350
1351 // Are edges available for intra prediction?
1352 xd->up_available = (mi_row > tile->mi_row_start);
1353
1354 const int ss_x = xd->plane[1].subsampling_x;
1355 const int ss_y = xd->plane[1].subsampling_y;
1356
1357 xd->left_available = (mi_col > tile->mi_col_start);
1360 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1361 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1362 if (ss_y && bh < mi_size_high[BLOCK_8X8])
1363 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1364 if (xd->up_available) {
1365 xd->above_mbmi = xd->mi[-xd->mi_stride];
1366 } else {
1367 xd->above_mbmi = NULL;
1368 }
1369
1370 if (xd->left_available) {
1371 xd->left_mbmi = xd->mi[-1];
1372 } else {
1373 xd->left_mbmi = NULL;
1374 }
1375
1376 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1377 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1378 xd->is_chroma_ref = chroma_ref;
1379 if (chroma_ref) {
1380 // To help calculate the "above" and "left" chroma blocks, note that the
1381 // current block may cover multiple luma blocks (e.g., if partitioned into
1382 // 4x4 luma blocks).
1383 // First, find the top-left-most luma block covered by this chroma block
1384 MB_MODE_INFO **base_mi =
1385 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1386
1387 // Then, we consider the luma region covered by the left or above 4x4 chroma
1388 // prediction. We want to point to the chroma reference block in that
1389 // region, which is the bottom-right-most mi unit.
1390 // This leads to the following offsets:
1391 MB_MODE_INFO *chroma_above_mi =
1392 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1393 xd->chroma_above_mbmi = chroma_above_mi;
1394
1395 MB_MODE_INFO *chroma_left_mi =
1396 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1397 xd->chroma_left_mbmi = chroma_left_mi;
1398 }
1399
1400 xd->height = bh;
1401 xd->width = bw;
1402
1403 xd->is_last_vertical_rect = 0;
1404 if (xd->width < xd->height) {
1405 if (!((mi_col + xd->width) & (xd->height - 1))) {
1406 xd->is_last_vertical_rect = 1;
1407 }
1408 }
1409
1411 if (xd->width > xd->height)
1412 if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1413}
1414
1415static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1416 const MB_MODE_INFO *above_mi,
1417 const MB_MODE_INFO *left_mi) {
1418 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1419 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1420 const int above_ctx = intra_mode_context[above];
1421 const int left_ctx = intra_mode_context[left];
1422 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1423}
1424
1425static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1426 int mi_col, BLOCK_SIZE subsize,
1427 BLOCK_SIZE bsize) {
1428 PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1429 PARTITION_CONTEXT *const left_ctx =
1430 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1431
1432 const int bw = mi_size_wide[bsize];
1433 const int bh = mi_size_high[bsize];
1434 memset(above_ctx, partition_context_lookup[subsize].above, bw);
1435 memset(left_ctx, partition_context_lookup[subsize].left, bh);
1436}
1437
1438static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1439 int subsampling_x, int subsampling_y) {
1440 assert(bsize < BLOCK_SIZES_ALL);
1441 const int bw = mi_size_wide[bsize];
1442 const int bh = mi_size_high[bsize];
1443 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1444 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1445 return ref_pos;
1446}
1447
1448static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1449 size_t element) {
1450 assert(cdf != NULL);
1451 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1452}
1453
1454static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1455 const aom_cdf_prob *const in,
1456 BLOCK_SIZE bsize) {
1457 (void)bsize;
1458 out[0] = CDF_PROB_TOP;
1459 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1460 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1461 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1462 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1463 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1464 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1465 out[0] = AOM_ICDF(out[0]);
1466 out[1] = AOM_ICDF(CDF_PROB_TOP);
1467}
1468
1469static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1470 const aom_cdf_prob *const in,
1471 BLOCK_SIZE bsize) {
1472 (void)bsize;
1473 out[0] = CDF_PROB_TOP;
1474 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1475 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1476 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1477 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1478 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1479 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1480 out[0] = AOM_ICDF(out[0]);
1481 out[1] = AOM_ICDF(CDF_PROB_TOP);
1482}
1483
1484static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1485 int mi_col, BLOCK_SIZE subsize,
1486 BLOCK_SIZE bsize,
1487 PARTITION_TYPE partition) {
1488 if (bsize >= BLOCK_8X8) {
1489 const int hbs = mi_size_wide[bsize] / 2;
1490 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1491 switch (partition) {
1492 case PARTITION_SPLIT:
1493 if (bsize != BLOCK_8X8) break;
1494 AOM_FALLTHROUGH_INTENDED;
1495 case PARTITION_NONE:
1496 case PARTITION_HORZ:
1497 case PARTITION_VERT:
1498 case PARTITION_HORZ_4:
1499 case PARTITION_VERT_4:
1500 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1501 break;
1502 case PARTITION_HORZ_A:
1503 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1504 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1505 break;
1506 case PARTITION_HORZ_B:
1507 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1508 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1509 break;
1510 case PARTITION_VERT_A:
1511 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1512 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1513 break;
1514 case PARTITION_VERT_B:
1515 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1516 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1517 break;
1518 default: assert(0 && "Invalid partition type");
1519 }
1520 }
1521}
1522
1523static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1524 int mi_col, BLOCK_SIZE bsize) {
1525 const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1526 const PARTITION_CONTEXT *left_ctx =
1527 xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1528 // Minimum partition point is 8x8. Offset the bsl accordingly.
1529 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1530 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1531
1532 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1533 assert(bsl >= 0);
1534
1535 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1536}
1537
1538// Return the number of elements in the partition CDF when
1539// partitioning the (square) block with luma block size of bsize.
1540static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1541 if (bsize <= BLOCK_8X8)
1542 return PARTITION_TYPES;
1543 else if (bsize == BLOCK_128X128)
1544 return EXT_PARTITION_TYPES - 2;
1545 else
1546 return EXT_PARTITION_TYPES;
1547}
1548
1549static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1550 int plane) {
1551 assert(bsize < BLOCK_SIZES_ALL);
1552 int max_blocks_wide = block_size_wide[bsize];
1553
1554 if (xd->mb_to_right_edge < 0) {
1555 const struct macroblockd_plane *const pd = &xd->plane[plane];
1556 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1557 }
1558
1559 // Scale the width in the transform block unit.
1560 return max_blocks_wide >> MI_SIZE_LOG2;
1561}
1562
1563static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1564 int plane) {
1565 int max_blocks_high = block_size_high[bsize];
1566
1567 if (xd->mb_to_bottom_edge < 0) {
1568 const struct macroblockd_plane *const pd = &xd->plane[plane];
1569 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1570 }
1571
1572 // Scale the height in the transform block unit.
1573 return max_blocks_high >> MI_SIZE_LOG2;
1574}
1575
1576static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1577 const MACROBLOCKD *xd,
1578 int mi_col_start, int mi_col_end,
1579 const int tile_row) {
1580 const SequenceHeader *const seq_params = cm->seq_params;
1581 const int num_planes = av1_num_planes(cm);
1582 const int width = mi_col_end - mi_col_start;
1583 const int aligned_width =
1584 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1585 const int offset_y = mi_col_start;
1586 const int width_y = aligned_width;
1587 const int offset_uv = offset_y >> seq_params->subsampling_x;
1588 const int width_uv = width_y >> seq_params->subsampling_x;
1589 CommonContexts *const above_contexts = &cm->above_contexts;
1590
1591 av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1592 if (num_planes > 1) {
1593 if (above_contexts->entropy[1][tile_row] &&
1594 above_contexts->entropy[2][tile_row]) {
1595 av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1596 width_uv);
1597 av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1598 width_uv);
1599 } else {
1600 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1601 "Invalid value of planes");
1602 }
1603 }
1604
1605 av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1606 aligned_width);
1607
1608 memset(above_contexts->txfm[tile_row] + mi_col_start,
1609 tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1610}
1611
1612static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1613 av1_zero(xd->left_entropy_context);
1614 av1_zero(xd->left_partition_context);
1615
1616 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1617 sizeof(xd->left_txfm_context_buffer));
1618}
1619
1620static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1621 int i;
1622 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1623}
1624
1625static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1626 const MACROBLOCKD *xd) {
1627 uint8_t bw = tx_size_wide[tx_size];
1628 uint8_t bh = tx_size_high[tx_size];
1629
1630 if (skip) {
1631 bw = n4_w * MI_SIZE;
1632 bh = n4_h * MI_SIZE;
1633 }
1634
1635 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1636 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1637}
1638
1639static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1640 int mi_row, int mi_col) {
1641 return mi_row * mi_params->mi_stride + mi_col;
1642}
1643
1644static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1645 int mi_row, int mi_col) {
1646 const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1647 const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1648 const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1649
1650 return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1651}
1652
1653// For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1654static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1655 MACROBLOCKD *const xd, int mi_row,
1656 int mi_col) {
1657 // 'mi_grid_base' should point to appropriate memory in 'mi'.
1658 const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1659 const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1660 mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1661 // 'xd->mi' should point to an offset in 'mi_grid_base';
1662 xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1663 // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1664 xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1665 xd->tx_type_map_stride = mi_params->mi_stride;
1666}
1667
1668static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1669 TXFM_CONTEXT *left_ctx,
1670 TX_SIZE tx_size, TX_SIZE txb_size) {
1671 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1672 int bh = mi_size_high[bsize];
1673 int bw = mi_size_wide[bsize];
1674 uint8_t txw = tx_size_wide[tx_size];
1675 uint8_t txh = tx_size_high[tx_size];
1676 int i;
1677 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1678 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1679}
1680
1681static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1682 switch (tx_dim) {
1683 case 128:
1684 case 64: return TX_64X64; break;
1685 case 32: return TX_32X32; break;
1686 case 16: return TX_16X16; break;
1687 case 8: return TX_8X8; break;
1688 default: return TX_4X4;
1689 }
1690}
1691
1692static INLINE TX_SIZE get_tx_size(int width, int height) {
1693 if (width == height) {
1694 return get_sqr_tx_size(width);
1695 }
1696 if (width < height) {
1697 if (width + width == height) {
1698 switch (width) {
1699 case 4: return TX_4X8; break;
1700 case 8: return TX_8X16; break;
1701 case 16: return TX_16X32; break;
1702 case 32: return TX_32X64; break;
1703 }
1704 } else {
1705 switch (width) {
1706 case 4: return TX_4X16; break;
1707 case 8: return TX_8X32; break;
1708 case 16: return TX_16X64; break;
1709 }
1710 }
1711 } else {
1712 if (height + height == width) {
1713 switch (height) {
1714 case 4: return TX_8X4; break;
1715 case 8: return TX_16X8; break;
1716 case 16: return TX_32X16; break;
1717 case 32: return TX_64X32; break;
1718 }
1719 } else {
1720 switch (height) {
1721 case 4: return TX_16X4; break;
1722 case 8: return TX_32X8; break;
1723 case 16: return TX_64X16; break;
1724 }
1725 }
1726 }
1727 assert(0);
1728 return TX_4X4;
1729}
1730
1731static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1732 const TXFM_CONTEXT *const left_ctx,
1733 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1734 const uint8_t txw = tx_size_wide[tx_size];
1735 const uint8_t txh = tx_size_high[tx_size];
1736 const int above = *above_ctx < txw;
1737 const int left = *left_ctx < txh;
1738 int category = TXFM_PARTITION_CONTEXTS;
1739
1740 // dummy return, not used by others.
1741 if (tx_size <= TX_4X4) return 0;
1742
1743 TX_SIZE max_tx_size =
1744 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1745
1746 if (max_tx_size >= TX_8X8) {
1747 category =
1748 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1749 (TX_SIZES - 1 - max_tx_size) * 2;
1750 }
1751 assert(category != TXFM_PARTITION_CONTEXTS);
1752 return category * 3 + above + left;
1753}
1754
1755// Compute the next partition in the direction of the sb_type stored in the mi
1756// array, starting with bsize.
1757static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1758 int mi_row, int mi_col,
1759 BLOCK_SIZE bsize) {
1760 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1761 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1762 return PARTITION_INVALID;
1763
1764 const int offset = mi_row * mi_params->mi_stride + mi_col;
1765 MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1766 const BLOCK_SIZE subsize = mi[0]->bsize;
1767
1768 assert(bsize < BLOCK_SIZES_ALL);
1769
1770 if (subsize == bsize) return PARTITION_NONE;
1771
1772 const int bhigh = mi_size_high[bsize];
1773 const int bwide = mi_size_wide[bsize];
1774 const int sshigh = mi_size_high[subsize];
1775 const int sswide = mi_size_wide[subsize];
1776
1777 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1778 mi_col + bhigh / 2 < mi_params->mi_cols) {
1779 // In this case, the block might be using an extended partition
1780 // type.
1781 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1782 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1783
1784 if (sswide == bwide) {
1785 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1786 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1787 // half was split.
1788 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1789 assert(sshigh * 2 == bhigh);
1790
1791 if (mbmi_below->bsize == subsize)
1792 return PARTITION_HORZ;
1793 else
1794 return PARTITION_HORZ_B;
1795 } else if (sshigh == bhigh) {
1796 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1797 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1798 // half was split.
1799 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1800 assert(sswide * 2 == bhigh);
1801
1802 if (mbmi_right->bsize == subsize)
1803 return PARTITION_VERT;
1804 else
1805 return PARTITION_VERT_B;
1806 } else {
1807 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1808 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1809 // dimensions, we immediately know this is a split (which will recurse to
1810 // get to subsize). Otherwise look down and to the right. With
1811 // PARTITION_VERT_A, the right block will have height bhigh; with
1812 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1813 // it's PARTITION_SPLIT.
1814 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1815
1816 if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1817 if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1818
1819 return PARTITION_SPLIT;
1820 }
1821 }
1822 const int vert_split = sswide < bwide;
1823 const int horz_split = sshigh < bhigh;
1824 const int split_idx = (vert_split << 1) | horz_split;
1825 assert(split_idx != 0);
1826
1827 static const PARTITION_TYPE base_partitions[4] = {
1828 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1829 };
1830
1831 return base_partitions[split_idx];
1832}
1833
1834static INLINE void set_sb_size(SequenceHeader *const seq_params,
1835 BLOCK_SIZE sb_size) {
1836 seq_params->sb_size = sb_size;
1837 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1838 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1839}
1840
1841// Returns true if the frame is fully lossless at the coded resolution.
1842// Note: If super-resolution is used, such a frame will still NOT be lossless at
1843// the upscaled resolution.
1844static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1845 const MACROBLOCKD *xd) {
1846 int coded_lossless = 1;
1847 if (cm->seg.enabled) {
1848 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1849 if (!xd->lossless[i]) {
1850 coded_lossless = 0;
1851 break;
1852 }
1853 }
1854 } else {
1855 coded_lossless = xd->lossless[0];
1856 }
1857 return coded_lossless;
1858}
1859
1860static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1861 return seq_level_idx == SEQ_LEVEL_MAX ||
1862 (seq_level_idx < SEQ_LEVELS &&
1863 // The following levels are currently undefined.
1864 seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1865 seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1866 seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3
1867#if !CONFIG_CWG_C013
1868 && seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1869 seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3 &&
1870 seq_level_idx != SEQ_LEVEL_8_0 && seq_level_idx != SEQ_LEVEL_8_1 &&
1871 seq_level_idx != SEQ_LEVEL_8_2 && seq_level_idx != SEQ_LEVEL_8_3
1872#endif
1873 );
1874}
1875
1878#ifdef __cplusplus
1879} // extern "C"
1880#endif
1881
1882#endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition aom_image.h:211
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition av1_common_int.h:752
uint8_t * last_frame_seg_map
Definition av1_common_int.h:934
RestorationInfo rst_info[3]
Definition av1_common_int.h:948
WarpedMotionParams global_motion[REF_FRAMES]
Definition av1_common_int.h:972
int superres_upscaled_width
Definition av1_common_int.h:801
int8_t ref_frame_side[REF_FRAMES]
Definition av1_common_int.h:1039
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition av1_common_int.h:871
RefCntBuffer * prev_frame
Definition av1_common_int.h:828
FRAME_CONTEXT * default_frame_context
Definition av1_common_int.h:989
int ref_frame_id[REF_FRAMES]
Definition av1_common_int.h:1014
int superres_upscaled_height
Definition av1_common_int.h:802
DeltaQInfo delta_q_info
Definition av1_common_int.h:967
SequenceHeader * seq_params
Definition av1_common_int.h:978
int width
Definition av1_common_int.h:777
RefCntBuffer * cur_frame
Definition av1_common_int.h:834
CdefInfo cdef_info
Definition av1_common_int.h:957
loop_filter_info_n lf_info
Definition av1_common_int.h:940
CurrentFrame current_frame
Definition av1_common_int.h:756
int remapped_ref_idx[REF_FRAMES]
Definition av1_common_int.h:856
RestorationLineBuffers * rlbs
Definition av1_common_int.h:950
aom_film_grain_t film_grain_params
Definition av1_common_int.h:962
int show_existing_frame
Definition av1_common_int.h:902
uint32_t buffer_removal_times[(8 *4)+1]
Definition av1_common_int.h:817
int temporal_layer_id
Definition av1_common_int.h:1045
struct aom_internal_error_info * error
Definition av1_common_int.h:760
int showable_frame
Definition av1_common_int.h:895
int tpl_mvs_mem_size
Definition av1_common_int.h:1028
uint32_t frame_presentation_time
Definition av1_common_int.h:823
struct loopfilter lf
Definition av1_common_int.h:941
int spatial_layer_id
Definition av1_common_int.h:1051
FeatureFlags features
Definition av1_common_int.h:907
struct scale_factors sf_identity
Definition av1_common_int.h:863
YV12_BUFFER_CONFIG rst_frame
Definition av1_common_int.h:951
CommonModeInfoParams mi_params
Definition av1_common_int.h:912
uint8_t superres_scale_denominator
Definition av1_common_int.h:809
int show_frame
Definition av1_common_int.h:887
struct segmentation seg
Definition av1_common_int.h:929
CommonQuantParams quant_params
Definition av1_common_int.h:924
TPL_MV_REF * tpl_mvs
Definition av1_common_int.h:1024
int current_frame_id
Definition av1_common_int.h:1013
int32_t * rst_tmpbuf
Definition av1_common_int.h:949
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition av1_common_int.h:880
CommonContexts above_contexts
Definition av1_common_int.h:1007
CommonTileParams tiles
Definition av1_common_int.h:994
BufferPool * buffer_pool
Definition av1_common_int.h:999
int ref_frame_sign_bias[REF_FRAMES]
Definition av1_common_int.h:1033
FRAME_CONTEXT * fc
Definition av1_common_int.h:983
int height
Definition av1_common_int.h:778
int render_width
Definition av1_common_int.h:788
int render_height
Definition av1_common_int.h:789
Parameters related to CDEF.
Definition av1_common_int.h:198
int cdef_bits
Number of CDEF strength values in bits.
Definition av1_common_int.h:220
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition av1_common_int.h:222
int allocated_num_workers
Number of CDEF workers.
Definition av1_common_int.h:224
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition av1_common_int.h:210
int nb_cdef_strengths
Number of CDEF strength values.
Definition av1_common_int.h:214
int cdef_damping
CDEF damping factor.
Definition av1_common_int.h:212
uint16_t * srcbuf
CDEF intermediate buffer.
Definition av1_common_int.h:204
Contexts used for transmitting various symbols in the bitstream.
Definition av1_common_int.h:715
PARTITION_CONTEXT ** partition
Definition av1_common_int.h:720
int num_planes
Definition av1_common_int.h:744
ENTROPY_CONTEXT ** entropy[3]
Definition av1_common_int.h:730
int num_tile_rows
Definition av1_common_int.h:745
int num_mi_cols
Definition av1_common_int.h:746
TXFM_CONTEXT ** txfm
Definition av1_common_int.h:738
Params related to MB_MODE_INFO arrays and related info.
Definition av1_common_int.h:503
int mb_cols
Definition av1_common_int.h:513
MB_MODE_INFO * mi_alloc
Definition av1_common_int.h:537
int mi_rows
Definition av1_common_int.h:524
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition av1_common_int.h:592
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition av1_common_int.h:587
int mi_cols
Definition av1_common_int.h:529
int mi_alloc_size
Definition av1_common_int.h:541
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, BLOCK_SIZE min_partition_size)
Definition av1_common_int.h:602
int MBs
Definition av1_common_int.h:518
TX_TYPE * tx_type_map
Definition av1_common_int.h:577
int mi_alloc_stride
Definition av1_common_int.h:545
int mi_grid_size
Definition av1_common_int.h:565
int mi_stride
Definition av1_common_int.h:569
int mb_rows
Definition av1_common_int.h:508
MB_MODE_INFO ** mi_grid_base
Definition av1_common_int.h:561
BLOCK_SIZE mi_alloc_bsize
Definition av1_common_int.h:552
Parameters related to quantization at the frame level.
Definition av1_common_int.h:611
int u_ac_delta_q
Definition av1_common_int.h:636
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:685
int qmatrix_level_v
Definition av1_common_int.h:707
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition av1_common_int.h:667
int16_t u_dequant_QTX[8][2]
Definition av1_common_int.h:656
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:681
int qmatrix_level_y
Definition av1_common_int.h:705
int v_ac_delta_q
Definition av1_common_int.h:641
bool using_qmatrix
Definition av1_common_int.h:698
int u_dc_delta_q
Definition av1_common_int.h:626
int qmatrix_level_u
Definition av1_common_int.h:706
int base_qindex
Definition av1_common_int.h:615
int16_t v_dequant_QTX[8][2]
Definition av1_common_int.h:657
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition av1_common_int.h:689
int16_t y_dequant_QTX[8][2]
Definition av1_common_int.h:655
int v_dc_delta_q
Definition av1_common_int.h:630
int y_dc_delta_q
Definition av1_common_int.h:621
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition av1_common_int.h:671
Params related to tiles.
Definition av1_common_int.h:429
int uniform_spacing
Definition av1_common_int.h:445
int max_width_sb
Definition av1_common_int.h:432
int log2_rows
Definition av1_common_int.h:452
int min_log2_rows
Definition av1_common_int.h:464
int width
Definition av1_common_int.h:453
int max_log2_rows
Definition av1_common_int.h:472
int row_start_sb[MAX_TILE_ROWS+1]
Definition av1_common_int.h:486
int cols
Definition av1_common_int.h:430
int max_height_sb
Definition av1_common_int.h:433
unsigned int large_scale
Definition av1_common_int.h:490
unsigned int single_tile_decoding
Definition av1_common_int.h:496
int max_log2_cols
Definition av1_common_int.h:468
int log2_cols
Definition av1_common_int.h:451
int min_log2
Definition av1_common_int.h:476
int rows
Definition av1_common_int.h:431
int min_inner_width
Definition av1_common_int.h:438
int min_log2_cols
Definition av1_common_int.h:460
int col_start_sb[MAX_TILE_COLS+1]
Definition av1_common_int.h:481
int height
Definition av1_common_int.h:454
Frame level features.
Definition av1_common_int.h:360
InterpFilter interp_filter
Definition av1_common_int.h:409
bool allow_ref_frame_mvs
Definition av1_common_int.h:383
bool allow_warped_motion
Definition av1_common_int.h:379
bool allow_screen_content_tools
Definition av1_common_int.h:377
bool switchable_motion_mode
Definition av1_common_int.h:407
TX_MODE tx_mode
Definition av1_common_int.h:408
bool reduced_tx_set_used
Definition av1_common_int.h:396
bool allow_intrabc
Definition av1_common_int.h:378
int byte_alignment
Definition av1_common_int.h:418
bool coded_lossless
Definition av1_common_int.h:387
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition av1_common_int.h:423
bool error_resilient_mode
Definition av1_common_int.h:402
int primary_ref_frame
Definition av1_common_int.h:414
bool disable_cdf_update
Definition av1_common_int.h:364
bool allow_high_precision_mv
Definition av1_common_int.h:369
bool cur_frame_force_integer_mv
Definition av1_common_int.h:373
bool all_lossless
Definition av1_common_int.h:391
Stores the prediction/txfm mode of the current coding block.
Definition blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition blockd.h:228
Parameters related to Restoration Info.
Definition restoration.h:246
External frame buffer.
Definition aom_frame_buffer.h:40
Variables related to current coding block.
Definition blockd.h:570
bool left_available
Definition blockd.h:626
uint8_t * tx_type_map
Definition blockd.h:666
int mb_to_bottom_edge
Definition blockd.h:680
TXFM_CONTEXT * left_txfm_context
Definition blockd.h:740
struct macroblockd_plane plane[3]
Definition blockd.h:606
int mb_to_top_edge
Definition blockd.h:679
int mb_to_right_edge
Definition blockd.h:678
bool up_available
Definition blockd.h:622
MB_MODE_INFO * above_mbmi
Definition blockd.h:645
bool chroma_up_available
Definition blockd.h:630
TXFM_CONTEXT * above_txfm_context
Definition blockd.h:733
bool chroma_left_available
Definition blockd.h:634
PARTITION_CONTEXT * above_partition_context
Definition blockd.h:718
MB_MODE_INFO * chroma_left_mbmi
Definition blockd.h:652
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition blockd.h:747
int tx_type_map_stride
Definition blockd.h:671
MB_MODE_INFO * chroma_above_mbmi
Definition blockd.h:659
int mi_row
Definition blockd.h:575
int mi_stride
Definition blockd.h:582
bool is_last_vertical_rect
Definition blockd.h:787
bool is_first_horizontal_rect
Definition blockd.h:792
uint8_t width
Definition blockd.h:765
struct aom_internal_error_info * error_info
Definition blockd.h:838
CFL_CTX cfl
Definition blockd.h:894
int lossless[8]
Definition blockd.h:817
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition blockd.h:710
ENTROPY_CONTEXT * above_entropy_context[3]
Definition blockd.h:703
MB_MODE_INFO ** mi
Definition blockd.h:617
uint8_t height
Definition blockd.h:766
MB_MODE_INFO * left_mbmi
Definition blockd.h:640
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition blockd.h:725
bool is_chroma_ref
Definition blockd.h:601
int mi_col
Definition blockd.h:576
int mb_to_left_edge
Definition blockd.h:677
YV12 frame buffer data structure.
Definition yv12config.h:46