cpp-utilities/tests/conversiontests.cpp

219 lines
8.3 KiB
C++

#include "../conversion/binaryconversion.h"
#include "../conversion/stringconversion.h"
#include <cppunit/extensions/HelperMacros.h>
#include <cppunit/TestFixture.h>
#include <random>
#include <sstream>
#include <functional>
#include <initializer_list>
using namespace std;
using namespace ConversionUtilities;
using namespace CPPUNIT_NS;
/*!
* \brief The ConversionTests class tests classes and methods of the ConversionUtilities namespace.
*/
class ConversionTests : public TestFixture
{
CPPUNIT_TEST_SUITE(ConversionTests);
CPPUNIT_TEST(testEndianness);
CPPUNIT_TEST(testBinaryConversions);
CPPUNIT_TEST(testSwapOrderFunctions);
CPPUNIT_TEST(testStringConversions);
CPPUNIT_TEST_SUITE_END();
public:
ConversionTests();
void setUp() {}
void tearDown() {}
void testEndianness();
void testBinaryConversions();
void testSwapOrderFunctions();
void testStringConversions();
private:
template<typename intType>
void testConversion(const char *message, function<void (intType, char *)> vice, function<intType (const char *)> verca, intType min, intType max);
char m_buff[8];
random_device m_randomDevice;
mt19937 m_randomEngine;
};
CPPUNIT_TEST_SUITE_REGISTRATION(ConversionTests);
ConversionTests::ConversionTests() :
m_randomDevice(),
m_randomEngine(m_randomDevice())
{}
/*!
* \brief Tests whether macros for endianness are correct.
*/
void ConversionTests::testEndianness()
{
union {
uint32_t integer;
char characters[4];
} test = {0x01020304};
#if defined(CONVERSION_UTILITIES_BYTE_ORDER_BIG_ENDIAN)
// test whether macro definitions are consistent
CPPUNIT_ASSERT(CONVERSION_UTILITIES_IS_BYTE_ORDER_BIG_ENDIAN == true);
CPPUNIT_ASSERT(CONVERSION_UTILITIES_IS_BYTE_ORDER_LITTLE_ENDIAN == false);
// test whether byte order assumption is correct
CPPUNIT_ASSERT_MESSAGE("Byte order assumption (big-endian) is wrong", test.characters[0] == 0x01);
#elif defined(CONVERSION_UTILITIES_BYTE_ORDER_LITTLE_ENDIAN)
// test whether macro definitions are consistent
CPPUNIT_ASSERT(CONVERSION_UTILITIES_IS_BYTE_ORDER_BIG_ENDIAN == false);
CPPUNIT_ASSERT(CONVERSION_UTILITIES_IS_BYTE_ORDER_LITTLE_ENDIAN == true);
// test whether byte order assumption is correct
CPPUNIT_ASSERT_MESSAGE("Byte order assumption (little-endian) is wrong", test.characters[0] == 0x04);
#else
CPPUNIT_FAIL("There is not valid byte order assumption");
#endif
}
template<typename intType>
void ConversionTests::testConversion(const char *message, function<void (intType, char *)> vice, function<intType (const char *)> versa, intType min, intType max)
{
const intType random = uniform_int_distribution<intType>(min, max)(m_randomEngine);
stringstream msg;
msg << message << '(' << hex << '0' << 'x' << random << ')';
vice(random, m_buff);
CPPUNIT_ASSERT_MESSAGE(msg.str(), versa(m_buff) == random);
}
#define TEST_TYPE(endianness, function) \
decltype(endianness::function(m_buff))
#define TEST_CONVERSION(function, endianness) \
testConversion<TEST_TYPE(endianness, function)>( \
"testing " #function, \
static_cast<void(*)(TEST_TYPE(endianness, function), char *)>(&endianness::getBytes), \
endianness::function, \
numeric_limits<TEST_TYPE(endianness, function)>::min(), \
numeric_limits<TEST_TYPE(endianness, function)>::max() \
)
#define TEST_BE_CONVERSION(function) \
TEST_CONVERSION( \
function, BE \
)
#define TEST_LE_CONVERSION(function) \
TEST_CONVERSION( \
function, LE \
)
#define TEST_CUSTOM_CONVERSION(vice, versa, endianness, min, max) \
testConversion<TEST_TYPE(endianness, versa)>( \
"testing " #versa, \
static_cast<void(*)(TEST_TYPE(endianness, versa), char *)>(&endianness::vice), \
endianness::versa, \
min, max \
)
/*!
* \brief Tests most important binary conversions.
*
* Tests toUInt16(), ... toUInt64(), toInt16(), ... toInt64() and
* the inverse getBytes() functions with random numbers.
*/
void ConversionTests::testBinaryConversions()
{
// test to...() / getBytes() with random numbers
for(byte b = 1; b < 100; ++b) {
TEST_BE_CONVERSION(toUInt16);
TEST_BE_CONVERSION(toUInt32);
TEST_BE_CONVERSION(toUInt64);
TEST_LE_CONVERSION(toUInt16);
TEST_LE_CONVERSION(toUInt32);
TEST_LE_CONVERSION(toUInt64);
TEST_BE_CONVERSION(toInt16);
TEST_BE_CONVERSION(toInt32);
TEST_BE_CONVERSION(toInt64);
TEST_LE_CONVERSION(toInt16);
TEST_LE_CONVERSION(toInt32);
TEST_LE_CONVERSION(toInt64);
TEST_CUSTOM_CONVERSION(getBytes24, toUInt24, BE, 0, 0xFFFFFF);
TEST_CUSTOM_CONVERSION(getBytes24, toUInt24, LE, 0, 0xFFFFFF);
}
}
/*!
* \brief Tests swap order functions.
*/
void ConversionTests::testSwapOrderFunctions()
{
CPPUNIT_ASSERT(swapOrder(static_cast<uint16>(0x7825)) == 0x2578);
CPPUNIT_ASSERT(swapOrder(static_cast<uint32>(0x12345678)) == 0x78563412);
CPPUNIT_ASSERT(swapOrder(static_cast<uint64>(0x1122334455667788)) == 0x8877665544332211);
}
/*!
* \brief Tests most important string conversions.
*/
void ConversionTests::testStringConversions()
{
// test stringToNumber() / numberToString() with random numbers
uniform_int_distribution<int64> randomDistSigned(numeric_limits<int64>::min());
uniform_int_distribution<uint64> randomDistUnsigned(0);
for(byte b = 1; b < 100; ++b) {
auto signedRandom = randomDistSigned(m_randomEngine);
auto unsignedRandom = randomDistUnsigned(m_randomEngine);
for(const auto base : initializer_list<byte>{2, 8, 10, 16}) {
auto resultString = stringToNumber<uint64, string>(numberToString<uint64, string>(unsignedRandom, base), base);
auto resultWideString = stringToNumber<uint64, wstring>(numberToString<uint64, wstring>(unsignedRandom, base), base);
CPPUNIT_ASSERT(resultString == unsignedRandom);
CPPUNIT_ASSERT(resultWideString == unsignedRandom);
}
for(const auto base : initializer_list<byte>{10}) {
auto resultString = stringToNumber<int64, string>(numberToString<int64, string>(signedRandom, base), base);
auto resultWideString = stringToNumber<int64, wstring>(numberToString<int64, wstring>(signedRandom, base), base);
CPPUNIT_ASSERT(resultString == signedRandom);
CPPUNIT_ASSERT(resultWideString == signedRandom);
}
}
// test interpretIntegerAsString()
CPPUNIT_ASSERT(interpretIntegerAsString<uint32>(0x54455354) == "TEST");
// test splitString() / joinStrings()
auto splitJoinTest = joinStrings(splitString<vector<string> >(",a,,ab,ABC,s", ",", EmptyPartsTreat::Keep), " ", false, "(", ")");
CPPUNIT_ASSERT(splitJoinTest == "() (a) () (ab) (ABC) (s)");
splitJoinTest = joinStrings(splitString<vector<string> >(",a,,ab,ABC,s", ",", EmptyPartsTreat::Keep), " ", true, "(", ")");
CPPUNIT_ASSERT(splitJoinTest == "(a) (ab) (ABC) (s)");
splitJoinTest = joinStrings(splitString<vector<string> >(",a,,ab,ABC,s", ",", EmptyPartsTreat::Omit), " ", false, "(", ")");
CPPUNIT_ASSERT(splitJoinTest == "(a) (ab) (ABC) (s)");
splitJoinTest = joinStrings(splitString<vector<string> >(",a,,ab,ABC,s", ",", EmptyPartsTreat::Merge), " ", false, "(", ")");
CPPUNIT_ASSERT(splitJoinTest == "(a,ab) (ABC) (s)");
// test findAndReplace()
string findReplaceTest("findAndReplace()");
findAndReplace<string>(findReplaceTest, "And", "Or");
CPPUNIT_ASSERT(findReplaceTest == "findOrReplace()");
// test startsWith()
CPPUNIT_ASSERT(!startsWith<string>(findReplaceTest, "findAnd"));
CPPUNIT_ASSERT(startsWith<string>(findReplaceTest, "findOr"));
// test encodeBase64() / decodeBase64() with random data
uniform_int_distribution<byte> randomDistChar;
byte originalBase64Data[4047];
for(byte &c : originalBase64Data) {
c = randomDistChar(m_randomEngine);
}
const auto encodedBase64Data = encodeBase64(originalBase64Data, sizeof(originalBase64Data));
auto decodedBase64Data = decodeBase64(encodedBase64Data.data(), encodedBase64Data.size());
CPPUNIT_ASSERT(decodedBase64Data.second == sizeof(originalBase64Data));
for(unsigned int i = 0; i < sizeof(originalBase64Data); ++i) {
CPPUNIT_ASSERT(decodedBase64Data.first[i] == originalBase64Data[i]);
}
}