Common C++ classes and routines used by my applications such as argument parser, IO and conversion utilities
Go to file
Martchus 66b6fff0f2 Fix greediness of greedy arguments if they have sub arguments
Even sub arguments (e.g. `--help`) should be treated as values to be passed
to a nested argument parser (as documented). The sub arguments are only
added in this case to appear in the help.
2023-05-29 18:09:34 +02:00
.github Add stalebot config 2022-04-12 01:02:00 +02:00
application Fix greediness of greedy arguments if they have sub arguments 2023-05-29 18:09:34 +02:00
chrono Add formatting for `DateTimeExpression` 2022-08-13 14:41:24 +02:00
cmake Apply cmake-format and clang-format 2023-05-16 21:39:10 +02:00
conversion Fix warning from MSVC about data loss 2023-05-10 22:06:59 +02:00
doc Fix typos 2022-06-26 11:48:44 +02:00
feature_detection Make feature detection for thead local work with MSVC 2023-01-26 22:20:20 +01:00
io Apply clang-format 2023-04-29 12:53:18 +02:00
misc Apply clang-format 2023-01-28 18:49:54 +01:00
testfiles Allow ArgumentParserTests to pass when working dir present within testfiles dir 2020-06-16 01:03:39 +02:00
tests Improve test helper for launching an app 2023-04-29 13:06:31 +02:00
.gitignore Add directories of Visual Studio to `.gitignore` 2023-01-26 22:18:43 +01:00
CMakeLists.txt Apply cmake-format and clang-format 2023-05-16 21:39:10 +02:00
CMakePresets.json Add further debugging presets and set KF6 prefix for Qt 6 presets 2023-05-21 20:08:31 +02:00
LICENSE Create LICENSE 2015-04-22 19:01:00 +02:00
README.md Add GO_BIN to MSVC preset for libsyncthing 2023-05-16 21:50:14 +02:00
coding-style.clang-format Set clang-format standard to Cpp11 2017-05-04 22:43:20 +02:00
global.h Prefix most of the macros in global.h 2019-06-12 20:34:25 +02:00

README.md

C++ utilities

Useful C++ classes and routines such as argument parser, IO and conversion utilities.

Features

The library contains helpers for:

  • parsing command-line arguments and providing Bash completion
    • supports nested arguments
    • supports operations (no -- or - prefix, eg. git status)
    • can check for invalid or uncombinable arguments
    • can print help automatically
    • provides automatic Bash completion for argument names
    • allows customizing Bash completion for argument values
  • dealing with dates and times
  • conversion of primitive data types to byte-buffers and vice versa (litte-endian and big-endian)
  • common string conversions/operations, eg.
    • character set conversions via iconv
    • split, join, find and replace
    • conversion from number to string and vice verca
    • encoding/decoding base-64
    • building string without multiple heap allocations ("string builder")
  • using standard IO streams
    • reading/writing primitive data types of various sizes (little-endian and big-endian)
    • reading/writing terminated strings and size-prefixed strings
    • reading/writing INI files
    • reading bitwise (from a buffer; not using standard IO streams)
    • writing formatted output using ANSI escape sequences
    • instantiating a standard IO stream from a native file descriptor to support UTF-8 encoded file paths under Windows and Android's content:// URLs
  • using SFINAE by providing additional traits, eg. for checking whether a type is iterable
  • testing with CppUnit
    • finding testfiles and make working copies of testfiles
    • assert standard output
    • various helper
  • building with CMake by providing some modules and templates

Besides, the library provides a few useful algorithms and data structures:

  • min(), max() for any number of arguments
  • digitsum(), factorial(), powerModulo(), inverseModulo(), orderModulo()
  • DamerauLevenshtein distance
  • N-dimensional array

API/ABI stability

The following counts for c++utilities and my other libraries unless stated otherwise:

  • Different major versions are incompatible (API- and ABI-wise). Different major versions can be installed within the same prefix using the CMake variable CONFIGURATION_NAME (see documentation about build variables mentioned below).
  • Minor versions are backwards compatible (API- and ABI-wise) to previous ones within the same major version.
  • Patch versions are interchangeable (API- and ABI-wise) within the same major/minor version.
  • Some functions or classes are experimental. They might be modified in an incompatible way or even removed in the next minor or patch release.

Build instructions

These build instructions apply to c++utilities but also to my other projects using it.

Requirements

Build-only dependencies

  • C++ compiler supporting C++17, tested with
    • g++ to compile for GNU/Linux and Windows
    • clang++ to compile for GNU/Linux and Android
  • CMake (at least 3.3.0) and Ninja or GNU Make
  • cppunit for unit tests (optional)
  • Doxygen for API documentation (optional)
  • Graphviz for diagrams in the API documentation (optional)
  • clang-format for tidying (optional)
  • llvm-profdata, llvm-cov and cppunit for source-based code coverage analysis (optional)
  • appstreamcli for validation of generated AppStream files (optional)

Runtime dependencies

  • The c++utilities library itself only needs
    • C++ standard library supporting C++17, tested with
      • libstdc++ under GNU/Linux and Windows
      • libc++ under GNU/Linux and Android
    • glibc with iconv support or standalone iconv library
    • libstdc++ or Boost.Iostreams for NativeFileStream (optional)
  • My other projects have further dependencies such as Qt. Checkout the README of these projects for further details.

How to build

Example using Ninja:

cmake -G Ninja \
      -S "path/to/source/directory" \
      -B "path/to/build/directory" \
      -DCMAKE_BUILD_TYPE=Release \
      -DCMAKE_INSTALL_PREFIX="/final/install/location"
make # build the binaries
cmake --build "path/to/build/directory"
# format source files (optional, must be enabled via CLANG_FORMAT_ENABLED)
cmake --build "path/to/build/directory" --target tidy
# build and run tests (optional)
cmake --build "path/to/build/directory" --target check
# build and run tests measuring test coverage (optional, must be enabled via CLANG_SOURCE_BASED_COVERAGE_ENABLED)
cmake --build "path/to/build/directory" --target coverage
# build API documentation (optional)
cmake --build "path/to/build/directory" --target apidoc
# install binaries, headers and additional files
DESTDIR="/temporary/install/location" \
  cmake --install "path/to/build/directory"

General notes

  • LIB_SUFFIX, LIB_SUFFIX_32 and LIB_SUFFIX_64 can be set to specify a suffix for the library directory, eg. lib64 or lib32. The 32/64 variants are only used when building for 32/64-bit architecture.
  • By default the build system will build static libs. To build shared libraries instead, set BUILD_SHARED_LIBS=ON.
  • By default the build system will prefer linking against shared libraries. To force linking against static libraries set STATIC_LINKAGE=ON. However, this will only affect applications. To force linking statically when building shared libraries set STATIC_LIBRARY_LINKAGE=ON.
  • If thread local storage is not supported by your compiler/platform (might be the case on MacOS), you can disable making use of it via ENABLE_THREAD_LOCAL=OFF.
  • To disable use of std::filesystem, set USE_STANDARD_FILESYSTEM=OFF. Note that the Bash completion will not be able to suggest files and directories with USE_STANDARD_FILESYSTEM=OFF.
  • To disable NativeFileStream (and make it just a regular std::fstream), set USE_NATIVE_FILE_BUFFER=OFF. Note that handling paths with non-ASCII characters will then cease to work on Windows.
  • The Qt-based applications support bundeling icon themes by specifying e.g. BUILTIN_ICON_THEMES=breeze;breeze-dark.
    • This variable must be set when building the application (not when building any of the libraries).
    • The specified icon themes need to be installed in the usual location. Otherwise, use e.g. DBUILTIN_ICON_THEMES_SEARCH_PATH=D:/programming/misc/breeze-icons/usr/share/icons to specify the search path.
  • For more detailed documentation, see the documentation about build variables (in directory doc and in Doxygen version accessible via "Related Pages").
  • The repository PKGBUILDs contains build scripts for GNU/Linux, Android, Windows and MacOS X in form of Arch Linux packages using ninja. These scripts can be used as an example also when building under/for other platforms.

Windows-specific notes

  • To create application icons the tool ffmpeg/avconv is required.
  • Windows builds are mainly conducted using mingw-w64/GCC so using them is recommended. Building with MSVC should be possible as well but it is not as well tested.
  • When using BUILTIN_ICON_THEMES, the icon theme still needs to be installed as if it was installed on a GNU/Linux system. So simply grab e.g. the Arch Linux package breeze-icons and extract it somewhere. Do not use the package from MSYS2 or what comes with builds from KDE's binary factory.

MacOS-specific notes

  • To create application icons the tool png2icns is required.
  • Building for MacOS X under GNU/Linux is possible using osxcross.
  • MacOS X builds are not tested regularly but should generally work (maybe with minor tweaks necassary).
  • There is a Homebrew formula to build Tag Editor (without GUI).
  • There are MacPorts packages to build Syncthing Tray.

Development builds

During development I find it useful to build all required projects (for instance c++utilities, qtutilities, tagparser and tageditor) as one big project.

This can be easily achieved by using CMake's add_subdirectory() function. For project files see the repository subdirs. For an example, see build instructions for Syncthing Tray or build instructions for Tag Editor.

For a debug build, use -DCMAKE_BUILD_TYPE=Debug. To tweak various settings (e.g. warnings) for development, use -DENABLE_DEVEL_DEFAULTS=ON.

CMake presets

There are some generic presets available but also some specific to certain Arch Linux packaging found in the AUR and my PKGBUILDs repository.

Use cmake --list-presets to list all presets. All cmake commands need to be executed within the source directory. Builds will be created within a sub-directory of the path specified via the environment variable BUILD_DIR. Here is an example for creating a build with the arch-static-compat-devel preset and invoking tests:

export BUILD_DIR=$HOME/builds                                   # set build directory via environment variable
cmake --preset arch-static-compat-devel                         # configure build
cmake --build --preset arch-static-compat-devel -- -v           # conduct build
cmake --build --preset arch-static-compat-devel --target check  # run tests
cmake --build --preset arch-static-compat-devel --target tidy   # apply formatting

This preset is quite special (see PKGBUILDs for details about it). The most useful presets for development are likely devel, devel-qt6 and debug.

Note that these presets are supposed to cover all of my projects (so some of them aren't really making a difference when just building c++utilities itself). To use presets in other projects, simply symlink the file CMakePresets.json into the source directory of those projects which works with the "subdirs" projects mentioned in the previous section as well.

Note that the devel preset (and all presets inheriting from it) use ccache which therefore needs to be installed.

The win-x64-msvc-static preset (and all presets inheriting from it) need various additional environment variables to be set:

  • MSYS2_ROOT: for Perl (only used by qtforkawesome so far), clang-format, Doxygen, FFmpeg and Go (only used by libsyncthing) provided via MSYS2 packages; install the following packages:
    pacman -Syu perl mingw-w64-x86_64-clang-tools-extra mingw-w64-x86_64-doxygen mingw-w64-x86_64-ffmpeg mingw-w64-x86_64-go
    
  • MSVC_ROOT: for compiler and stdlib usually installed as part of Visual Studio setup, e.g. C:/Program Files/Microsoft Visual Studio/2022/Community/VC/Tools/MSVC/14.34.31933
  • WIN_KITS_ROOT: for Windows platform headers/libraries usually installed as part of Visual Studio setup, e.g. C:/Program Files (x86)/Windows Kits/10
  • QT_ROOT: for Qt libraries provided by the official Qt installer, e.g. D:/programming/qt/6.5.0/msvc2019_64
  • QT_TOOLS: for additional build tools provided by the official Qt installer, e.g. D:/programming/qt/Tools
  • VCPKG_ROOT: directory of VCPKG checkout used for other dependencies; install the following packages:
    vcpkg install boost-system:x64-windows-static boost-iostreams:x64-windows-static boost-filesystem:x64-windows-static boost-hana:x64-windows-static boost-process:x64-windows-static boost-asio:x64-windows-static libiconv:x64-windows-static zlib:x64-windows-static openssl:x64-windows-static cppunit:x64-windows-static
    

Packaging

The mentioned repositories contain packages for c++utilities itself but also for my other projects. However, the README files of my other projects contain a more exhaustive list.

Arch Linux package

The repository PKGBUILDs contains files for building Arch Linux packages of the latest release and the Git master.

PKGBUILDs to cross compile for Android, Windows (using mingw-w64) and for MacOS X (using osxcross) are included as well.

RPM packages for openSUSE and Fedora

RPM *.spec files can be found at openSUSE Build Servide. Packages are available for several architectures.

There is also a sub project containing the builds from the Git master branch.

Gentoo

Checkout Case_Of's overlay or perfect7gentleman's overlay.

Copyright © 2015-2023 Marius Kittler

All code is licensed under GPL-2-or-later.