raid6check: various cleanup/fixes

- document meaning of various arrays. In particular:
   stripes[]
   blocks[]
   blocks_page[]
   block_index_for_slot[]

  It needs to be clear if these are indexed by raid_disk
  number or syndrome number.

- changed meaning of block_index_for_slot[].  It didn't seem
  to be used consistently.  It also made use of the block numbers
  in array data ordering, which is not directly relevant for syndrome
  calculations.

- reduced number of args to autorepair and manual_repair
  There don't need both stripes[] and blocks[].  And they don't need
  diskP or diskQ.
  blocks[-1] is the P chunk, blocks[-2] is the Q chunk.
  block_index_for_slot[] can be used to find the target device for
  a particular syndrome block.

- remove stripe locking from within manual_repair, and instead
  use the global stripe locking used for check and autorepair.

- this necessitated changes to raid6_datap_recov and raid5_2data_reov
  so the P and Q blocks could be before or after the data blocks.



Signed-off-by: NeilBrown <neilb@suse.de>
This commit is contained in:
NeilBrown 2015-07-20 14:11:33 +10:00
parent 29a312f2f3
commit 50786d4731
2 changed files with 174 additions and 135 deletions

View File

@ -44,9 +44,10 @@ int is_ddf(int layout);
void qsyndrome(uint8_t *p, uint8_t *q, uint8_t **sources, int disks, int size); void qsyndrome(uint8_t *p, uint8_t *q, uint8_t **sources, int disks, int size);
void make_tables(void); void make_tables(void);
void ensure_zero_has_size(int chunk_size); void ensure_zero_has_size(int chunk_size);
void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs); void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs,
int neg_offset);
void raid6_2data_recov(int disks, size_t bytes, int faila, int failb, void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
uint8_t **ptrs); uint8_t **ptrs, int neg_offset);
void xor_blocks(char *target, char **sources, int disks, int size); void xor_blocks(char *target, char **sources, int disks, int size);
/* Collect per stripe consistency information */ /* Collect per stripe consistency information */
@ -160,38 +161,39 @@ int unlock_all_stripes(struct mdinfo *info, sighandler_t *sig) {
} }
/* Autorepair */ /* Autorepair */
int autorepair(int *disk, int diskP, int diskQ, unsigned long long start, int chunk_size, int autorepair(int *disk, unsigned long long start, int chunk_size,
char *name[], int raid_disks, int data_disks, char **blocks_page, char *name[], int raid_disks, int syndrome_disks, char **blocks_page,
char **blocks, uint8_t *p, char **stripes, int *block_index_for_slot, char **blocks, uint8_t *p, int *block_index_for_slot,
int *source, unsigned long long *offsets) int *source, unsigned long long *offsets)
{ {
int i, j; int i, j;
int pages_to_write_count = 0; int pages_to_write_count = 0;
int page_to_write[chunk_size >> CHECK_PAGE_BITS]; int page_to_write[chunk_size >> CHECK_PAGE_BITS];
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) { for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
if (disk[j] >= 0) { if (disk[j] >= -2 && block_index_for_slot[disk[j]] >= 0) {
printf("Auto-repairing slot %d (%s)\n", disk[j], name[disk[j]]); int slot = block_index_for_slot[disk[j]];
printf("Auto-repairing slot %d (%s)\n", slot, name[slot]);
pages_to_write_count++; pages_to_write_count++;
page_to_write[j] = 1; page_to_write[j] = 1;
for(i = 0; i < raid_disks; i++) { for(i = -2; i < syndrome_disks; i++) {
blocks_page[i] = blocks[i] + j * CHECK_PAGE_SIZE; blocks_page[i] = blocks[i] + j * CHECK_PAGE_SIZE;
} }
if (disk[j] == diskQ) { if (disk[j] == -2) {
qsyndrome(p, (uint8_t*)stripes[diskQ] + j * CHECK_PAGE_SIZE, (uint8_t**)blocks_page, data_disks, CHECK_PAGE_SIZE); qsyndrome(p, (uint8_t*)blocks_page[-2],
(uint8_t**)blocks_page,
syndrome_disks, CHECK_PAGE_SIZE);
} }
else { else {
char *all_but_failed_blocks[data_disks]; char *all_but_failed_blocks[syndrome_disks];
int failed_block_index = block_index_for_slot[disk[j]]; for(i = 0; i < syndrome_disks; i++) {
for(i = 0; i < data_disks; i++) { if (i == disk[j])
if (failed_block_index == i) { all_but_failed_blocks[i] = blocks_page[-1];
all_but_failed_blocks[i] = stripes[diskP] + j * CHECK_PAGE_SIZE; else
}
else {
all_but_failed_blocks[i] = blocks_page[i]; all_but_failed_blocks[i] = blocks_page[i];
}
} }
xor_blocks(stripes[disk[j]] + j * CHECK_PAGE_SIZE, xor_blocks(blocks_page[disk[j]],
all_but_failed_blocks, data_disks, CHECK_PAGE_SIZE); all_but_failed_blocks, syndrome_disks,
CHECK_PAGE_SIZE);
} }
} }
else { else {
@ -203,8 +205,11 @@ int autorepair(int *disk, int diskP, int diskQ, unsigned long long start, int ch
int write_res = 0; int write_res = 0;
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) { for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
if(page_to_write[j] == 1) { if(page_to_write[j] == 1) {
lseek64(source[disk[j]], offsets[disk[j]] + start * chunk_size + j * CHECK_PAGE_SIZE, SEEK_SET); int slot = block_index_for_slot[disk[j]];
write_res += write(source[disk[j]], stripes[disk[j]] + j * CHECK_PAGE_SIZE, CHECK_PAGE_SIZE); lseek64(source[slot], offsets[slot] + start * chunk_size + j * CHECK_PAGE_SIZE, SEEK_SET);
write_res += write(source[slot],
blocks[disk[j]] + j * CHECK_PAGE_SIZE,
CHECK_PAGE_SIZE);
} }
} }
@ -218,101 +223,83 @@ int autorepair(int *disk, int diskP, int diskQ, unsigned long long start, int ch
} }
/* Manual repair */ /* Manual repair */
int manual_repair(int diskP, int diskQ, int chunk_size, int raid_disks, int data_disks, int manual_repair(int chunk_size, int syndrome_disks,
int failed_disk1, int failed_disk2, unsigned long long start, int *block_index_for_slot, int failed_slot1, int failed_slot2,
char *name[], char **stripes, char **blocks, uint8_t *p, struct mdinfo *info, sighandler_t *sig, unsigned long long start, int *block_index_for_slot,
char *name[], char **stripes, char **blocks, uint8_t *p,
int *source, unsigned long long *offsets) int *source, unsigned long long *offsets)
{ {
int err = 0;
int i; int i;
int fd1 = block_index_for_slot[failed_slot1];
int fd2 = block_index_for_slot[failed_slot2];
printf("Repairing stripe %llu\n", start); printf("Repairing stripe %llu\n", start);
printf("Assuming slots %d (%s) and %d (%s) are incorrect\n", printf("Assuming slots %d (%s) and %d (%s) are incorrect\n",
failed_disk1, name[failed_disk1], fd1, name[fd1],
failed_disk2, name[failed_disk2]); fd2, name[fd2]);
if (failed_disk1 == diskQ || failed_disk2 == diskQ) { if (failed_slot1 == -2 || failed_slot2 == -2) {
char *all_but_failed_blocks[data_disks]; char *all_but_failed_blocks[syndrome_disks];
int failed_data_or_p; int failed_data_or_p;
int failed_block_index;
if (failed_disk1 == diskQ) { if (failed_slot1 == -2)
failed_data_or_p = failed_disk2; failed_data_or_p = failed_slot2;
} else
else { failed_data_or_p = failed_slot1;
failed_data_or_p = failed_disk1;
}
printf("Repairing D/P(%d) and Q\n", failed_data_or_p); printf("Repairing D/P(%d) and Q\n", failed_data_or_p);
failed_block_index = block_index_for_slot[failed_data_or_p];
for (i = 0; i < data_disks; i++) {
if (failed_block_index == i) {
all_but_failed_blocks[i] = stripes[diskP];
}
else {
all_but_failed_blocks[i] = blocks[i];
}
}
xor_blocks(stripes[failed_data_or_p],
all_but_failed_blocks, data_disks, chunk_size);
qsyndrome(p, (uint8_t*)stripes[diskQ], (uint8_t**)blocks, data_disks, chunk_size);
}
else {
ensure_zero_has_size(chunk_size);
if (failed_disk1 == diskP || failed_disk2 == diskP) {
int failed_data, failed_block_index;
if (failed_disk1 == diskP) {
failed_data = failed_disk2;
}
else {
failed_data = failed_disk1;
}
failed_block_index = block_index_for_slot[failed_data];
printf("Repairing D(%d) and P\n", failed_data);
raid6_datap_recov(raid_disks, chunk_size, failed_block_index, (uint8_t**)blocks);
}
else {
printf("Repairing D and D\n");
int failed_block_index1 = block_index_for_slot[failed_disk1];
int failed_block_index2 = block_index_for_slot[failed_disk2];
if (failed_block_index1 > failed_block_index2) {
int t = failed_block_index1;
failed_block_index1 = failed_block_index2;
failed_block_index2 = t;
}
raid6_2data_recov(raid_disks, chunk_size, failed_block_index1, failed_block_index2, (uint8_t**)blocks);
}
}
err = lock_stripe(info, start, chunk_size, data_disks, sig); for (i = 0; i < syndrome_disks; i++) {
if(err != 0) { if (i == failed_data_or_p)
if (err != 2) { all_but_failed_blocks[i] = blocks[-1];
return -1; else
all_but_failed_blocks[i] = blocks[i];
}
xor_blocks(blocks[failed_data_or_p],
all_but_failed_blocks, syndrome_disks, chunk_size);
qsyndrome(p, (uint8_t*)blocks[-2], (uint8_t**)blocks,
syndrome_disks, chunk_size);
} else {
ensure_zero_has_size(chunk_size);
if (failed_slot1 == -1 || failed_slot2 == -1) {
int failed_data;
if (failed_slot1 == -1)
failed_data = failed_slot2;
else
failed_data = failed_slot1;
printf("Repairing D(%d) and P\n", failed_data);
raid6_datap_recov(syndrome_disks+2, chunk_size,
failed_data, (uint8_t**)blocks, 1);
} else {
printf("Repairing D and D\n");
if (failed_slot1 > failed_slot2) {
int t = failed_slot1;
failed_slot1 = failed_slot2;
failed_slot2 = t;
}
raid6_2data_recov(syndrome_disks+2, chunk_size,
failed_slot1, failed_slot2,
(uint8_t**)blocks, 1);
} }
return -2;;
} }
int write_res1, write_res2; int write_res1, write_res2;
off64_t seek_res; off64_t seek_res;
seek_res = lseek64(source[failed_disk1], seek_res = lseek64(source[fd1],
offsets[failed_disk1] + start * chunk_size, SEEK_SET); offsets[fd1] + start * chunk_size, SEEK_SET);
if (seek_res < 0) { if (seek_res < 0) {
fprintf(stderr, "lseek failed for failed_disk1\n"); fprintf(stderr, "lseek failed for failed_disk1\n");
return -1; return -1;
} }
write_res1 = write(source[failed_disk1], stripes[failed_disk1], chunk_size); write_res1 = write(source[fd1], blocks[failed_slot1], chunk_size);
seek_res = lseek64(source[failed_disk2], seek_res = lseek64(source[fd2],
offsets[failed_disk2] + start * chunk_size, SEEK_SET); offsets[fd2] + start * chunk_size, SEEK_SET);
if (seek_res < 0) { if (seek_res < 0) {
fprintf(stderr, "lseek failed for failed_disk1\n"); fprintf(stderr, "lseek failed for failed_disk2\n");
return -1; return -1;
} }
write_res2 = write(source[failed_disk2], stripes[failed_disk2], chunk_size); write_res2 = write(source[fd2], blocks[failed_slot2], chunk_size);
err = unlock_all_stripes(info, sig);
if(err != 0) {
return -2;
}
if (write_res1 != chunk_size || write_res2 != chunk_size) { if (write_res1 != chunk_size || write_res2 != chunk_size) {
fprintf(stderr, "Failed to write a complete chunk.\n"); fprintf(stderr, "Failed to write a complete chunk.\n");
@ -331,10 +318,27 @@ int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
int data_disks = raid_disks - 2; int data_disks = raid_disks - 2;
int syndrome_disks = data_disks + is_ddf(layout) * 2; int syndrome_disks = data_disks + is_ddf(layout) * 2;
char *stripe_buf = xmalloc(raid_disks * chunk_size); char *stripe_buf = xmalloc(raid_disks * chunk_size);
/* stripes[] is indexed by raid_disk and holds chunks from each device */
char **stripes = xmalloc(raid_disks * sizeof(char*)); char **stripes = xmalloc(raid_disks * sizeof(char*));
/* blocks[] is indexed by syndrome number and points to either one of the
* chunks from 'stripes[]', or to a chunk of zeros. -1 and -2 are
* P and Q */
char **blocks = xmalloc((syndrome_disks + 2) * sizeof(char*)); char **blocks = xmalloc((syndrome_disks + 2) * sizeof(char*));
char **blocks_page = xmalloc(raid_disks * sizeof(char*));
/* blocks_page[] is a temporary index to just one page of the chunks
* that blocks[] points to. */
char **blocks_page = xmalloc((syndrome_disks + 2) * sizeof(char*));
/* block_index_for_slot[] provides the reverse mapping from blocks to stripes.
* The index is a syndrome position, the content is a raid_disk number.
* indicies -1 and -2 work, and are P and Q disks */
int *block_index_for_slot = xmalloc((syndrome_disks+2) * sizeof(int)); int *block_index_for_slot = xmalloc((syndrome_disks+2) * sizeof(int));
/* 'p' and 'q' contain calcualted P and Q, to be compared with
* blocks[-1] and blocks[-2];
*/
uint8_t *p = xmalloc(chunk_size); uint8_t *p = xmalloc(chunk_size);
uint8_t *q = xmalloc(chunk_size); uint8_t *q = xmalloc(chunk_size);
char *zero = xmalloc(chunk_size); char *zero = xmalloc(chunk_size);
@ -350,11 +354,19 @@ int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
if (!tables_ready) if (!tables_ready)
make_tables(); make_tables();
block_index_for_slot += 2;
blocks += 2;
blocks_page += 2;
memset(zero, 0, chunk_size); memset(zero, 0, chunk_size);
for ( i = 0 ; i < raid_disks ; i++) for ( i = 0 ; i < raid_disks ; i++)
stripes[i] = stripe_buf + i * chunk_size; stripes[i] = stripe_buf + i * chunk_size;
while (length > 0) { while (length > 0) {
/* The syndrome number of the broken disk is recorded
* in 'disk[]' which allows a different broken disk for
* each page.
*/
int disk[chunk_size >> CHECK_PAGE_BITS]; int disk[chunk_size >> CHECK_PAGE_BITS];
err = lock_stripe(info, start, chunk_size, data_disks, sig); err = lock_stripe(info, start, chunk_size, data_disks, sig);
@ -382,7 +394,13 @@ int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
} }
diskP = geo_map(-1, start, raid_disks, level, layout); diskP = geo_map(-1, start, raid_disks, level, layout);
block_index_for_slot[-1] = diskP;
blocks[-1] = stripes[diskP];
diskQ = geo_map(-2, start, raid_disks, level, layout); diskQ = geo_map(-2, start, raid_disks, level, layout);
block_index_for_slot[-2] = diskQ;
blocks[-2] = stripes[diskQ];
if (!is_ddf(layout)) { if (!is_ddf(layout)) {
/* The syndrome-order of disks starts immediately after 'Q', /* The syndrome-order of disks starts immediately after 'Q',
* but skips P */ * but skips P */
@ -396,46 +414,47 @@ int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
if (diskD >= raid_disks) if (diskD >= raid_disks)
diskD = 0; diskD = 0;
blocks[i] = stripes[diskD]; blocks[i] = stripes[diskD];
block_index_for_slot[diskD] = i; block_index_for_slot[i] = diskD;
} }
} else { } else {
/* The syndrome-order exactly follows raid-disk /* The syndrome-order exactly follows raid-disk
* numbers, with ZERO in place of P and Q * numbers, with ZERO in place of P and Q
*/ */
for (i = 0 ; i < raid_disks; i++) for (i = 0 ; i < raid_disks; i++) {
if (i == diskP || i == diskQ) if (i == diskP || i == diskQ) {
blocks[i] = zero; blocks[i] = zero;
else block_index_for_slot[i] = -1;
} else {
blocks[i] = stripes[i]; blocks[i] = stripes[i];
block_index_for_slot[i] = i;
}
}
} }
qsyndrome(p, q, (uint8_t**)blocks, syndrome_disks, chunk_size); qsyndrome(p, q, (uint8_t**)blocks, syndrome_disks, chunk_size);
blocks[syndrome_disks] = stripes[diskP];
block_index_for_slot[diskP] = data_disks;
blocks[syndrome_disks+1] = stripes[diskQ];
block_index_for_slot[diskQ] = data_disks+1;
raid6_collect(chunk_size, p, q, stripes[diskP], stripes[diskQ], results); raid6_collect(chunk_size, p, q, stripes[diskP], stripes[diskQ], results);
raid6_stats(disk, results, raid_disks, chunk_size); raid6_stats(disk, results, raid_disks, chunk_size);
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) { for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
int role = disk[j]; int role = disk[j];
if(disk[j] >= -2) { if (role >= -2) {
disk[j] = geo_map(disk[j], start, raid_disks, level, layout); int slot = block_index_for_slot[role];
} if (slot >= 0)
if(disk[j] >= 0) { printf("Error detected at stripe %llu, page %d: possible failed disk slot %d: %d --> %s\n",
printf("Error detected at stripe %llu, page %d: possible failed disk slot %d: %d --> %s\n", start, j, role, slot, name[slot]);
start, j, role, disk[j], name[disk[j]]); else
} printf("Error detected at stripe %llu, page %d: failed slot %d should be zeros\n",
if(disk[j] == -65535) { start, j, role);
} else if(disk[j] == -65535) {
printf("Error detected at stripe %llu, page %d: disk slot unknown\n", start, j); printf("Error detected at stripe %llu, page %d: disk slot unknown\n", start, j);
} }
} }
if(repair == AUTO_REPAIR) { if(repair == AUTO_REPAIR) {
err = autorepair(disk, diskP, diskQ, start, chunk_size, err = autorepair(disk, start, chunk_size,
name, raid_disks, data_disks, blocks_page, name, raid_disks, syndrome_disks, blocks_page,
blocks, p, stripes, block_index_for_slot, blocks, p, block_index_for_slot,
source, offsets); source, offsets);
if(err != 0) { if(err != 0) {
unlock_all_stripes(info, sig); unlock_all_stripes(info, sig);
@ -443,22 +462,30 @@ int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
} }
} }
if(repair == MANUAL_REPAIR) {
int failed_slot1 = -1, failed_slot2 = -1;
for (i = -2; i < syndrome_disks; i++) {
if (block_index_for_slot[i] == failed_disk1)
failed_slot1 = i;
if (block_index_for_slot[i] == failed_disk2)
failed_slot2 = i;
}
err = manual_repair(chunk_size, syndrome_disks,
failed_slot1, failed_slot2,
start, block_index_for_slot,
name, stripes, blocks, p,
source, offsets);
if(err == -1) {
unlock_all_stripes(info, sig);
goto exitCheck;
}
}
err = unlock_all_stripes(info, sig); err = unlock_all_stripes(info, sig);
if(err != 0) { if(err != 0) {
goto exitCheck; goto exitCheck;
} }
if(repair == MANUAL_REPAIR) {
err = manual_repair(diskP, diskQ, chunk_size, raid_disks, data_disks,
failed_disk1, failed_disk2, start, block_index_for_slot,
name, stripes, blocks, p, info, sig,
source, offsets);
if(err == -1) {
unlock_all_stripes(info, sig);
goto exitCheck;
}
}
length--; length--;
start++; start++;
} }
@ -467,9 +494,9 @@ exitCheck:
free(stripe_buf); free(stripe_buf);
free(stripes); free(stripes);
free(blocks); free(blocks-2);
free(blocks_page); free(blocks_page-2);
free(block_index_for_slot); free(block_index_for_slot-2);
free(p); free(p);
free(q); free(q);
free(results); free(results);

View File

@ -345,16 +345,22 @@ void ensure_zero_has_size(int chunk_size)
/* Following was taken from linux/drivers/md/raid6recov.c */ /* Following was taken from linux/drivers/md/raid6recov.c */
/* Recover two failed data blocks. */ /* Recover two failed data blocks. */
void raid6_2data_recov(int disks, size_t bytes, int faila, int failb, void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
uint8_t **ptrs) uint8_t **ptrs, int neg_offset)
{ {
uint8_t *p, *q, *dp, *dq; uint8_t *p, *q, *dp, *dq;
uint8_t px, qx, db; uint8_t px, qx, db;
const uint8_t *pbmul; /* P multiplier table for B data */ const uint8_t *pbmul; /* P multiplier table for B data */
const uint8_t *qmul; /* Q multiplier table (for both) */ const uint8_t *qmul; /* Q multiplier table (for both) */
p = ptrs[disks-2]; if (neg_offset) {
q = ptrs[disks-1]; p = ptrs[-1];
q = ptrs[-2];
} else {
p = ptrs[disks-2];
q = ptrs[disks-1];
}
/* Compute syndrome with zero for the missing data pages /* Compute syndrome with zero for the missing data pages
Use the dead data pages as temporary storage for Use the dead data pages as temporary storage for
@ -385,13 +391,19 @@ void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
} }
/* Recover failure of one data block plus the P block */ /* Recover failure of one data block plus the P block */
void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs) void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs,
int neg_offset)
{ {
uint8_t *p, *q, *dq; uint8_t *p, *q, *dq;
const uint8_t *qmul; /* Q multiplier table */ const uint8_t *qmul; /* Q multiplier table */
p = ptrs[disks-2]; if (neg_offset) {
q = ptrs[disks-1]; p = ptrs[-1];
q = ptrs[-2];
} else {
p = ptrs[disks-2];
q = ptrs[disks-1];
}
/* Compute syndrome with zero for the missing data page /* Compute syndrome with zero for the missing data page
Use the dead data page as temporary storage for delta q */ Use the dead data page as temporary storage for delta q */
@ -637,7 +649,7 @@ int save_stripes(int *source, unsigned long long *offsets,
if (fblock[1] == data_disks) if (fblock[1] == data_disks)
/* One data failed, and parity failed */ /* One data failed, and parity failed */
raid6_datap_recov(syndrome_disks+2, chunk_size, raid6_datap_recov(syndrome_disks+2, chunk_size,
fdisk[0], bufs); fdisk[0], bufs, 0);
else { else {
if (fdisk[0] > fdisk[1]) { if (fdisk[0] > fdisk[1]) {
int t = fdisk[0]; int t = fdisk[0];
@ -646,7 +658,7 @@ int save_stripes(int *source, unsigned long long *offsets,
} }
/* Two data blocks failed, P,Q OK */ /* Two data blocks failed, P,Q OK */
raid6_2data_recov(syndrome_disks+2, chunk_size, raid6_2data_recov(syndrome_disks+2, chunk_size,
fdisk[0], fdisk[1], bufs); fdisk[0], fdisk[1], bufs, 0);
} }
} }
if (dest) { if (dest) {