mdadm/super-ddf.c

5242 lines
142 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2006-2014 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neil@brown.name>
*
* Specifications for DDF taken from Common RAID DDF Specification Revision 1.2
* (July 28 2006). Reused by permission of SNIA.
*/
#define HAVE_STDINT_H 1
#include "mdadm.h"
#include "mdmon.h"
#include "sha1.h"
#include <values.h>
#include <stddef.h>
/* a non-official T10 name for creation GUIDs */
static char T10[] = "Linux-MD";
/* DDF timestamps are 1980 based, so we need to add
* second-in-decade-of-seventies to convert to linux timestamps.
* 10 years with 2 leap years.
*/
#define DECADE (3600*24*(365*10+2))
unsigned long crc32(
unsigned long crc,
const unsigned char *buf,
unsigned len);
#define DDF_NOTFOUND (~0U)
#define DDF_CONTAINER (DDF_NOTFOUND-1)
/* Default for safe_mode_delay. Same value as for IMSM.
*/
static const int DDF_SAFE_MODE_DELAY = 4000;
/* The DDF metadata handling.
* DDF metadata lives at the end of the device.
* The last 512 byte block provides an 'anchor' which is used to locate
* the rest of the metadata which usually lives immediately behind the anchor.
*
* Note:
* - all multibyte numeric fields are bigendian.
* - all strings are space padded.
*
*/
typedef struct __be16 {
__u16 _v16;
} be16;
#define be16_eq(x, y) ((x)._v16 == (y)._v16)
#define be16_and(x, y) ((x)._v16 & (y)._v16)
#define be16_or(x, y) ((x)._v16 | (y)._v16)
#define be16_clear(x, y) ((x)._v16 &= ~(y)._v16)
#define be16_set(x, y) ((x)._v16 |= (y)._v16)
typedef struct __be32 {
__u32 _v32;
} be32;
#define be32_eq(x, y) ((x)._v32 == (y)._v32)
typedef struct __be64 {
__u64 _v64;
} be64;
#define be64_eq(x, y) ((x)._v64 == (y)._v64)
#define be16_to_cpu(be) __be16_to_cpu((be)._v16)
static inline be16 cpu_to_be16(__u16 x)
{
be16 be = { ._v16 = __cpu_to_be16(x) };
return be;
}
#define be32_to_cpu(be) __be32_to_cpu((be)._v32)
static inline be32 cpu_to_be32(__u32 x)
{
be32 be = { ._v32 = __cpu_to_be32(x) };
return be;
}
#define be64_to_cpu(be) __be64_to_cpu((be)._v64)
static inline be64 cpu_to_be64(__u64 x)
{
be64 be = { ._v64 = __cpu_to_be64(x) };
return be;
}
/* Primary Raid Level (PRL) */
#define DDF_RAID0 0x00
#define DDF_RAID1 0x01
#define DDF_RAID3 0x03
#define DDF_RAID4 0x04
#define DDF_RAID5 0x05
#define DDF_RAID1E 0x11
#define DDF_JBOD 0x0f
#define DDF_CONCAT 0x1f
#define DDF_RAID5E 0x15
#define DDF_RAID5EE 0x25
#define DDF_RAID6 0x06
/* Raid Level Qualifier (RLQ) */
#define DDF_RAID0_SIMPLE 0x00
#define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
#define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
#define DDF_RAID3_0 0x00 /* parity in first extent */
#define DDF_RAID3_N 0x01 /* parity in last extent */
#define DDF_RAID4_0 0x00 /* parity in first extent */
#define DDF_RAID4_N 0x01 /* parity in last extent */
/* these apply to raid5e and raid5ee as well */
#define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
#define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
#define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
#define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
#define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
#define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
/* Secondary RAID Level (SRL) */
#define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
#define DDF_2MIRRORED 0x01
#define DDF_2CONCAT 0x02
#define DDF_2SPANNED 0x03 /* This is also weird - be careful */
/* Magic numbers */
#define DDF_HEADER_MAGIC cpu_to_be32(0xDE11DE11)
#define DDF_CONTROLLER_MAGIC cpu_to_be32(0xAD111111)
#define DDF_PHYS_RECORDS_MAGIC cpu_to_be32(0x22222222)
#define DDF_PHYS_DATA_MAGIC cpu_to_be32(0x33333333)
#define DDF_VIRT_RECORDS_MAGIC cpu_to_be32(0xDDDDDDDD)
#define DDF_VD_CONF_MAGIC cpu_to_be32(0xEEEEEEEE)
#define DDF_SPARE_ASSIGN_MAGIC cpu_to_be32(0x55555555)
#define DDF_VU_CONF_MAGIC cpu_to_be32(0x88888888)
#define DDF_VENDOR_LOG_MAGIC cpu_to_be32(0x01dBEEF0)
#define DDF_BBM_LOG_MAGIC cpu_to_be32(0xABADB10C)
#define DDF_GUID_LEN 24
#define DDF_REVISION_0 "01.00.00"
#define DDF_REVISION_2 "01.02.00"
struct ddf_header {
be32 magic; /* DDF_HEADER_MAGIC */
be32 crc;
char guid[DDF_GUID_LEN];
char revision[8]; /* 01.02.00 */
be32 seq; /* starts at '1' */
be32 timestamp;
__u8 openflag;
__u8 foreignflag;
__u8 enforcegroups;
__u8 pad0; /* 0xff */
__u8 pad1[12]; /* 12 * 0xff */
/* 64 bytes so far */
__u8 header_ext[32]; /* reserved: fill with 0xff */
be64 primary_lba;
be64 secondary_lba;
__u8 type;
__u8 pad2[3]; /* 0xff */
be32 workspace_len; /* sectors for vendor space -
* at least 32768(sectors) */
be64 workspace_lba;
be16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
be16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
be16 max_partitions; /* i.e. max num of configuration
record entries per disk */
be16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
*12/512) */
be16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
__u8 pad3[54]; /* 0xff */
/* 192 bytes so far */
be32 controller_section_offset;
be32 controller_section_length;
be32 phys_section_offset;
be32 phys_section_length;
be32 virt_section_offset;
be32 virt_section_length;
be32 config_section_offset;
be32 config_section_length;
be32 data_section_offset;
be32 data_section_length;
be32 bbm_section_offset;
be32 bbm_section_length;
be32 diag_space_offset;
be32 diag_space_length;
be32 vendor_offset;
be32 vendor_length;
/* 256 bytes so far */
__u8 pad4[256]; /* 0xff */
};
/* type field */
#define DDF_HEADER_ANCHOR 0x00
#define DDF_HEADER_PRIMARY 0x01
#define DDF_HEADER_SECONDARY 0x02
/* The content of the 'controller section' - global scope */
struct ddf_controller_data {
be32 magic; /* DDF_CONTROLLER_MAGIC */
be32 crc;
char guid[DDF_GUID_LEN];
struct controller_type {
be16 vendor_id;
be16 device_id;
be16 sub_vendor_id;
be16 sub_device_id;
} type;
char product_id[16];
__u8 pad[8]; /* 0xff */
__u8 vendor_data[448];
};
/* The content of phys_section - global scope */
struct phys_disk {
be32 magic; /* DDF_PHYS_RECORDS_MAGIC */
be32 crc;
be16 used_pdes; /* This is a counter, not a max - the list
* of used entries may not be dense */
be16 max_pdes;
__u8 pad[52];
struct phys_disk_entry {
char guid[DDF_GUID_LEN];
be32 refnum;
be16 type;
be16 state;
be64 config_size; /* DDF structures must be after here */
char path[18]; /* Another horrible structure really
* but is "used for information
* purposes only" */
__u8 pad[6];
} entries[0];
};
/* phys_disk_entry.type is a bitmap - bigendian remember */
#define DDF_Forced_PD_GUID 1
#define DDF_Active_in_VD 2
#define DDF_Global_Spare 4 /* VD_CONF records are ignored */
#define DDF_Spare 8 /* overrides Global_spare */
#define DDF_Foreign 16
#define DDF_Legacy 32 /* no DDF on this device */
#define DDF_Interface_mask 0xf00
#define DDF_Interface_SCSI 0x100
#define DDF_Interface_SAS 0x200
#define DDF_Interface_SATA 0x300
#define DDF_Interface_FC 0x400
/* phys_disk_entry.state is a bigendian bitmap */
#define DDF_Online 1
#define DDF_Failed 2 /* overrides 1,4,8 */
#define DDF_Rebuilding 4
#define DDF_Transition 8
#define DDF_SMART 16
#define DDF_ReadErrors 32
#define DDF_Missing 64
/* The content of the virt_section global scope */
struct virtual_disk {
be32 magic; /* DDF_VIRT_RECORDS_MAGIC */
be32 crc;
be16 populated_vdes;
be16 max_vdes;
__u8 pad[52];
struct virtual_entry {
char guid[DDF_GUID_LEN];
be16 unit;
__u16 pad0; /* 0xffff */
be16 guid_crc;
be16 type;
__u8 state;
__u8 init_state;
__u8 pad1[14];
char name[16];
} entries[0];
};
/* virtual_entry.type is a bitmap - bigendian */
#define DDF_Shared 1
#define DDF_Enforce_Groups 2
#define DDF_Unicode 4
#define DDF_Owner_Valid 8
/* virtual_entry.state is a bigendian bitmap */
#define DDF_state_mask 0x7
#define DDF_state_optimal 0x0
#define DDF_state_degraded 0x1
#define DDF_state_deleted 0x2
#define DDF_state_missing 0x3
#define DDF_state_failed 0x4
#define DDF_state_part_optimal 0x5
#define DDF_state_morphing 0x8
#define DDF_state_inconsistent 0x10
/* virtual_entry.init_state is a bigendian bitmap */
#define DDF_initstate_mask 0x03
#define DDF_init_not 0x00
#define DDF_init_quick 0x01 /* initialisation is progress.
* i.e. 'state_inconsistent' */
#define DDF_init_full 0x02
#define DDF_access_mask 0xc0
#define DDF_access_rw 0x00
#define DDF_access_ro 0x80
#define DDF_access_blocked 0xc0
/* The content of the config_section - local scope
* It has multiple records each config_record_len sectors
* They can be vd_config or spare_assign
*/
struct vd_config {
be32 magic; /* DDF_VD_CONF_MAGIC */
be32 crc;
char guid[DDF_GUID_LEN];
be32 timestamp;
be32 seqnum;
__u8 pad0[24];
be16 prim_elmnt_count;
__u8 chunk_shift; /* 0 == 512, 1==1024 etc */
__u8 prl;
__u8 rlq;
__u8 sec_elmnt_count;
__u8 sec_elmnt_seq;
__u8 srl;
be64 blocks; /* blocks per component could be different
* on different component devices...(only
* for concat I hope) */
be64 array_blocks; /* blocks in array */
__u8 pad1[8];
be32 spare_refs[8]; /* This is used to detect missing spares.
* As we don't have an interface for that
* the values are ignored.
*/
__u8 cache_pol[8];
__u8 bg_rate;
__u8 pad2[3];
__u8 pad3[52];
__u8 pad4[192];
__u8 v0[32]; /* reserved- 0xff */
__u8 v1[32]; /* reserved- 0xff */
__u8 v2[16]; /* reserved- 0xff */
__u8 v3[16]; /* reserved- 0xff */
__u8 vendor[32];
be32 phys_refnum[0]; /* refnum of each disk in sequence */
/*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
bvd are always the same size */
};
#define LBA_OFFSET(ddf, vd) ((be64 *) &(vd)->phys_refnum[(ddf)->mppe])
/* vd_config.cache_pol[7] is a bitmap */
#define DDF_cache_writeback 1 /* else writethrough */
#define DDF_cache_wadaptive 2 /* only applies if writeback */
#define DDF_cache_readahead 4
#define DDF_cache_radaptive 8 /* only if doing read-ahead */
#define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
#define DDF_cache_wallowed 32 /* enable write caching */
#define DDF_cache_rallowed 64 /* enable read caching */
struct spare_assign {
be32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
be32 crc;
be32 timestamp;
__u8 reserved[7];
__u8 type;
be16 populated; /* SAEs used */
be16 max; /* max SAEs */
__u8 pad[8];
struct spare_assign_entry {
char guid[DDF_GUID_LEN];
be16 secondary_element;
__u8 pad[6];
} spare_ents[0];
};
/* spare_assign.type is a bitmap */
#define DDF_spare_dedicated 0x1 /* else global */
#define DDF_spare_revertible 0x2 /* else committable */
#define DDF_spare_active 0x4 /* else not active */
#define DDF_spare_affinity 0x8 /* enclosure affinity */
/* The data_section contents - local scope */
struct disk_data {
be32 magic; /* DDF_PHYS_DATA_MAGIC */
be32 crc;
char guid[DDF_GUID_LEN];
be32 refnum; /* crc of some magic drive data ... */
__u8 forced_ref; /* set when above was not result of magic */
__u8 forced_guid; /* set if guid was forced rather than magic */
__u8 vendor[32];
__u8 pad[442];
};
/* bbm_section content */
struct bad_block_log {
be32 magic;
be32 crc;
be16 entry_count;
be32 spare_count;
__u8 pad[10];
be64 first_spare;
struct mapped_block {
be64 defective_start;
be32 replacement_start;
be16 remap_count;
__u8 pad[2];
} entries[0];
};
/* Struct for internally holding ddf structures */
/* The DDF structure stored on each device is potentially
* quite different, as some data is global and some is local.
* The global data is:
* - ddf header
* - controller_data
* - Physical disk records
* - Virtual disk records
* The local data is:
* - Configuration records
* - Physical Disk data section
* ( and Bad block and vendor which I don't care about yet).
*
* The local data is parsed into separate lists as it is read
* and reconstructed for writing. This means that we only need
* to make config changes once and they are automatically
* propagated to all devices.
* The global (config and disk data) records are each in a list
* of separate data structures. When writing we find the entry
* or entries applicable to the particular device.
*/
struct ddf_super {
struct ddf_header anchor, primary, secondary;
struct ddf_controller_data controller;
struct ddf_header *active;
struct phys_disk *phys;
struct virtual_disk *virt;
char *conf;
int pdsize, vdsize;
unsigned int max_part, mppe, conf_rec_len;
int currentdev;
int updates_pending;
struct vcl {
union {
char space[512];
struct {
struct vcl *next;
unsigned int vcnum; /* index into ->virt */
/* For an array with a secondary level there are
* multiple vd_config structures, all with the same
* guid but with different sec_elmnt_seq.
* One of these structures is in 'conf' below.
* The others are in other_bvds, not in any
* particular order.
*/
struct vd_config **other_bvds;
__u64 *block_sizes; /* NULL if all the same */
};
};
struct vd_config conf;
} *conflist, *currentconf;
struct dl {
union {
char space[512];
struct {
struct dl *next;
int major, minor;
char *devname;
int fd;
unsigned long long size; /* sectors */
be64 primary_lba; /* sectors */
be64 secondary_lba; /* sectors */
be64 workspace_lba; /* sectors */
int pdnum; /* index in ->phys */
struct spare_assign *spare;
void *mdupdate; /* hold metadata update */
/* These fields used by auto-layout */
int raiddisk; /* slot to fill in autolayout */
__u64 esize;
int displayed;
};
};
struct disk_data disk;
struct vcl *vlist[0]; /* max_part in size */
} *dlist, *add_list;
};
static int load_super_ddf_all(struct supertype *st, int fd,
void **sbp, char *devname);
static int get_svd_state(const struct ddf_super *, const struct vcl *);
static int
validate_geometry_ddf_container(struct supertype *st,
int level, int layout, int raiddisks,
int chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int verbose);
static int validate_geometry_ddf_bvd(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int verbose);
static void free_super_ddf(struct supertype *st);
static int all_ff(const char *guid);
static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
be32 refnum, unsigned int nmax,
const struct vd_config **bvd,
unsigned int *idx);
static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
static void uuid_from_ddf_guid(const char *guid, int uuid[4]);
static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i);
static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
static int init_super_ddf_bvd(struct supertype *st,
mdu_array_info_t *info,
unsigned long long size,
char *name, char *homehost,
int *uuid, unsigned long long data_offset);
#if DEBUG
static void pr_state(struct ddf_super *ddf, const char *msg)
{
unsigned int i;
dprintf("%s: ", msg);
for (i = 0; i < be16_to_cpu(ddf->active->max_vd_entries); i++) {
if (all_ff(ddf->virt->entries[i].guid))
continue;
dprintf_cont("%u(s=%02x i=%02x) ", i,
ddf->virt->entries[i].state,
ddf->virt->entries[i].init_state);
}
dprintf_cont("\n");
}
#else
static void pr_state(const struct ddf_super *ddf, const char *msg) {}
#endif
static void _ddf_set_updates_pending(struct ddf_super *ddf, struct vd_config *vc,
const char *func)
{
if (vc) {
vc->timestamp = cpu_to_be32(time(0)-DECADE);
vc->seqnum = cpu_to_be32(be32_to_cpu(vc->seqnum) + 1);
}
if (ddf->updates_pending)
return;
ddf->updates_pending = 1;
ddf->active->seq = cpu_to_be32((be32_to_cpu(ddf->active->seq)+1));
pr_state(ddf, func);
}
#define ddf_set_updates_pending(x,v) _ddf_set_updates_pending((x), (v), __func__)
static be32 calc_crc(void *buf, int len)
{
/* crcs are always at the same place as in the ddf_header */
struct ddf_header *ddf = buf;
be32 oldcrc = ddf->crc;
__u32 newcrc;
ddf->crc = cpu_to_be32(0xffffffff);
newcrc = crc32(0, buf, len);
ddf->crc = oldcrc;
/* The crc is stored (like everything) bigendian, so convert
* here for simplicity
*/
return cpu_to_be32(newcrc);
}
#define DDF_INVALID_LEVEL 0xff
#define DDF_NO_SECONDARY 0xff
static int err_bad_md_layout(const mdu_array_info_t *array)
{
pr_err("RAID%d layout %x with %d disks is unsupported for DDF\n",
array->level, array->layout, array->raid_disks);
return -1;
}
static int layout_md2ddf(const mdu_array_info_t *array,
struct vd_config *conf)
{
be16 prim_elmnt_count = cpu_to_be16(array->raid_disks);
__u8 prl = DDF_INVALID_LEVEL, rlq = 0;
__u8 sec_elmnt_count = 1;
__u8 srl = DDF_NO_SECONDARY;
switch (array->level) {
case LEVEL_LINEAR:
prl = DDF_CONCAT;
break;
case 0:
rlq = DDF_RAID0_SIMPLE;
prl = DDF_RAID0;
break;
case 1:
switch (array->raid_disks) {
case 2:
rlq = DDF_RAID1_SIMPLE;
break;
case 3:
rlq = DDF_RAID1_MULTI;
break;
default:
return err_bad_md_layout(array);
}
prl = DDF_RAID1;
break;
case 4:
if (array->layout != 0)
return err_bad_md_layout(array);
rlq = DDF_RAID4_N;
prl = DDF_RAID4;
break;
case 5:
switch (array->layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
rlq = DDF_RAID5_N_RESTART;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
rlq = DDF_RAID5_0_RESTART;
break;
case ALGORITHM_LEFT_SYMMETRIC:
rlq = DDF_RAID5_N_CONTINUE;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
/* not mentioned in standard */
default:
return err_bad_md_layout(array);
}
prl = DDF_RAID5;
break;
case 6:
switch (array->layout) {
case ALGORITHM_ROTATING_N_RESTART:
rlq = DDF_RAID5_N_RESTART;
break;
case ALGORITHM_ROTATING_ZERO_RESTART:
rlq = DDF_RAID6_0_RESTART;
break;
case ALGORITHM_ROTATING_N_CONTINUE:
rlq = DDF_RAID5_N_CONTINUE;
break;
default:
return err_bad_md_layout(array);
}
prl = DDF_RAID6;
break;
case 10:
if (array->raid_disks % 2 == 0 && array->layout == 0x102) {
rlq = DDF_RAID1_SIMPLE;
prim_elmnt_count = cpu_to_be16(2);
sec_elmnt_count = array->raid_disks / 2;
srl = DDF_2SPANNED;
prl = DDF_RAID1;
} else if (array->raid_disks % 3 == 0 &&
array->layout == 0x103) {
rlq = DDF_RAID1_MULTI;
prim_elmnt_count = cpu_to_be16(3);
sec_elmnt_count = array->raid_disks / 3;
srl = DDF_2SPANNED;
prl = DDF_RAID1;
} else if (array->layout == 0x201) {
prl = DDF_RAID1E;
rlq = DDF_RAID1E_OFFSET;
} else if (array->layout == 0x102) {
prl = DDF_RAID1E;
rlq = DDF_RAID1E_ADJACENT;
} else
return err_bad_md_layout(array);
break;
default:
return err_bad_md_layout(array);
}
conf->prl = prl;
conf->prim_elmnt_count = prim_elmnt_count;
conf->rlq = rlq;
conf->srl = srl;
conf->sec_elmnt_count = sec_elmnt_count;
return 0;
}
static int err_bad_ddf_layout(const struct vd_config *conf)
{
pr_err("DDF RAID %u qualifier %u with %u disks is unsupported\n",
conf->prl, conf->rlq, be16_to_cpu(conf->prim_elmnt_count));
return -1;
}
static int layout_ddf2md(const struct vd_config *conf,
mdu_array_info_t *array)
{
int level = LEVEL_UNSUPPORTED;
int layout = 0;
int raiddisks = be16_to_cpu(conf->prim_elmnt_count);
if (conf->sec_elmnt_count > 1) {
/* see also check_secondary() */
if (conf->prl != DDF_RAID1 ||
(conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED)) {
pr_err("Unsupported secondary RAID level %u/%u\n",
conf->prl, conf->srl);
return -1;
}
if (raiddisks == 2 && conf->rlq == DDF_RAID1_SIMPLE)
layout = 0x102;
else if (raiddisks == 3 && conf->rlq == DDF_RAID1_MULTI)
layout = 0x103;
else
return err_bad_ddf_layout(conf);
raiddisks *= conf->sec_elmnt_count;
level = 10;
goto good;
}
switch (conf->prl) {
case DDF_CONCAT:
level = LEVEL_LINEAR;
break;
case DDF_RAID0:
if (conf->rlq != DDF_RAID0_SIMPLE)
return err_bad_ddf_layout(conf);
level = 0;
break;
case DDF_RAID1:
if (!((conf->rlq == DDF_RAID1_SIMPLE && raiddisks == 2) ||
(conf->rlq == DDF_RAID1_MULTI && raiddisks == 3)))
return err_bad_ddf_layout(conf);
level = 1;
break;
case DDF_RAID1E:
if (conf->rlq == DDF_RAID1E_ADJACENT)
layout = 0x102;
else if (conf->rlq == DDF_RAID1E_OFFSET)
layout = 0x201;
else
return err_bad_ddf_layout(conf);
level = 10;
break;
case DDF_RAID4:
if (conf->rlq != DDF_RAID4_N)
return err_bad_ddf_layout(conf);
level = 4;
break;
case DDF_RAID5:
switch (conf->rlq) {
case DDF_RAID5_N_RESTART:
layout = ALGORITHM_LEFT_ASYMMETRIC;
break;
case DDF_RAID5_0_RESTART:
layout = ALGORITHM_RIGHT_ASYMMETRIC;
break;
case DDF_RAID5_N_CONTINUE:
layout = ALGORITHM_LEFT_SYMMETRIC;
break;
default:
return err_bad_ddf_layout(conf);
}
level = 5;
break;
case DDF_RAID6:
switch (conf->rlq) {
case DDF_RAID5_N_RESTART:
layout = ALGORITHM_ROTATING_N_RESTART;
break;
case DDF_RAID6_0_RESTART:
layout = ALGORITHM_ROTATING_ZERO_RESTART;
break;
case DDF_RAID5_N_CONTINUE:
layout = ALGORITHM_ROTATING_N_CONTINUE;
break;
default:
return err_bad_ddf_layout(conf);
}
level = 6;
break;
default:
return err_bad_ddf_layout(conf);
};
good:
array->level = level;
array->layout = layout;
array->raid_disks = raiddisks;
return 0;
}
static int load_ddf_header(int fd, unsigned long long lba,
unsigned long long size,
int type,
struct ddf_header *hdr, struct ddf_header *anchor)
{
/* read a ddf header (primary or secondary) from fd/lba
* and check that it is consistent with anchor
* Need to check:
* magic, crc, guid, rev, and LBA's header_type, and
* everything after header_type must be the same
*/
if (lba >= size-1)
return 0;
if (lseek64(fd, lba<<9, 0) < 0)
return 0;
if (read(fd, hdr, 512) != 512)
return 0;
if (!be32_eq(hdr->magic, DDF_HEADER_MAGIC)) {
pr_err("bad header magic\n");
return 0;
}
if (!be32_eq(calc_crc(hdr, 512), hdr->crc)) {
pr_err("bad CRC\n");
return 0;
}
if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
memcmp(anchor->revision, hdr->revision, 8) != 0 ||
!be64_eq(anchor->primary_lba, hdr->primary_lba) ||
!be64_eq(anchor->secondary_lba, hdr->secondary_lba) ||
hdr->type != type ||
memcmp(anchor->pad2, hdr->pad2, 512 -
offsetof(struct ddf_header, pad2)) != 0) {
pr_err("header mismatch\n");
return 0;
}
/* Looks good enough to me... */
return 1;
}
static void *load_section(int fd, struct ddf_super *super, void *buf,
be32 offset_be, be32 len_be, int check)
{
unsigned long long offset = be32_to_cpu(offset_be);
unsigned long long len = be32_to_cpu(len_be);
int dofree = (buf == NULL);
if (check)
if (len != 2 && len != 8 && len != 32 &&
len != 128 && len != 512)
return NULL;
if (len > 1024)
return NULL;
if (!buf && posix_memalign(&buf, 512, len<<9) != 0)
buf = NULL;
if (!buf)
return NULL;
if (super->active->type == 1)
offset += be64_to_cpu(super->active->primary_lba);
else
offset += be64_to_cpu(super->active->secondary_lba);
if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
if (dofree)
free(buf);
return NULL;
}
if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
if (dofree)
free(buf);
return NULL;
}
return buf;
}
static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
{
unsigned long long dsize;
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize-512, 0) < 0) {
if (devname)
pr_err("Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (read(fd, &super->anchor, 512) != 512) {
if (devname)
pr_err("Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (!be32_eq(super->anchor.magic, DDF_HEADER_MAGIC)) {
if (devname)
pr_err("no DDF anchor found on %s\n",
devname);
return 2;
}
if (!be32_eq(calc_crc(&super->anchor, 512), super->anchor.crc)) {
if (devname)
pr_err("bad CRC on anchor on %s\n",
devname);
return 2;
}
if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
if (devname)
pr_err("can only support super revision %.8s and earlier, not %.8s on %s\n",
DDF_REVISION_2, super->anchor.revision,devname);
return 2;
}
super->active = NULL;
if (load_ddf_header(fd, be64_to_cpu(super->anchor.primary_lba),
dsize >> 9, 1,
&super->primary, &super->anchor) == 0) {
if (devname)
pr_err("Failed to load primary DDF header on %s\n", devname);
} else
super->active = &super->primary;
if (load_ddf_header(fd, be64_to_cpu(super->anchor.secondary_lba),
dsize >> 9, 2,
&super->secondary, &super->anchor)) {
if (super->active == NULL ||
(be32_to_cpu(super->primary.seq)
< be32_to_cpu(super->secondary.seq) &&
!super->secondary.openflag) ||
(be32_to_cpu(super->primary.seq) ==
be32_to_cpu(super->secondary.seq) &&
super->primary.openflag && !super->secondary.openflag))
super->active = &super->secondary;
} else if (devname &&
be64_to_cpu(super->anchor.secondary_lba) != ~(__u64)0)
pr_err("Failed to load secondary DDF header on %s\n",
devname);
if (super->active == NULL)
return 2;
return 0;
}
static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
{
void *ok;
ok = load_section(fd, super, &super->controller,
super->active->controller_section_offset,
super->active->controller_section_length,
0);
super->phys = load_section(fd, super, NULL,
super->active->phys_section_offset,
super->active->phys_section_length,
1);
super->pdsize = be32_to_cpu(super->active->phys_section_length) * 512;
super->virt = load_section(fd, super, NULL,
super->active->virt_section_offset,
super->active->virt_section_length,
1);
super->vdsize = be32_to_cpu(super->active->virt_section_length) * 512;
if (!ok ||
!super->phys ||
!super->virt) {
free(super->phys);
free(super->virt);
super->phys = NULL;
super->virt = NULL;
return 2;
}
super->conflist = NULL;
super->dlist = NULL;
super->max_part = be16_to_cpu(super->active->max_partitions);
super->mppe = be16_to_cpu(super->active->max_primary_element_entries);
super->conf_rec_len = be16_to_cpu(super->active->config_record_len);
return 0;
}
#define DDF_UNUSED_BVD 0xff
static int alloc_other_bvds(const struct ddf_super *ddf, struct vcl *vcl)
{
unsigned int n_vds = vcl->conf.sec_elmnt_count - 1;
unsigned int i, vdsize;
void *p;
if (n_vds == 0) {
vcl->other_bvds = NULL;
return 0;
}
vdsize = ddf->conf_rec_len * 512;
if (posix_memalign(&p, 512, n_vds *
(vdsize + sizeof(struct vd_config *))) != 0)
return -1;
vcl->other_bvds = (struct vd_config **) (p + n_vds * vdsize);
for (i = 0; i < n_vds; i++) {
vcl->other_bvds[i] = p + i * vdsize;
memset(vcl->other_bvds[i], 0, vdsize);
vcl->other_bvds[i]->sec_elmnt_seq = DDF_UNUSED_BVD;
}
return 0;
}
static void add_other_bvd(struct vcl *vcl, struct vd_config *vd,
unsigned int len)
{
int i;
for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
if (vcl->other_bvds[i]->sec_elmnt_seq == vd->sec_elmnt_seq)
break;
if (i < vcl->conf.sec_elmnt_count-1) {
if (be32_to_cpu(vd->seqnum) <=
be32_to_cpu(vcl->other_bvds[i]->seqnum))
return;
} else {
for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
if (vcl->other_bvds[i]->sec_elmnt_seq == DDF_UNUSED_BVD)
break;
if (i == vcl->conf.sec_elmnt_count-1) {
pr_err("no space for sec level config %u, count is %u\n",
vd->sec_elmnt_seq, vcl->conf.sec_elmnt_count);
return;
}
}
memcpy(vcl->other_bvds[i], vd, len);
}
static int load_ddf_local(int fd, struct ddf_super *super,
char *devname, int keep)
{
struct dl *dl;
struct stat stb;
char *conf;
unsigned int i;
unsigned int confsec;
int vnum;
unsigned int max_virt_disks =
be16_to_cpu(super->active->max_vd_entries);
unsigned long long dsize;
/* First the local disk info */
if (posix_memalign((void**)&dl, 512,
sizeof(*dl) +
(super->max_part) * sizeof(dl->vlist[0])) != 0) {
pr_err("could not allocate disk info buffer\n");
return 1;
}
load_section(fd, super, &dl->disk,
super->active->data_section_offset,
super->active->data_section_length,
0);
dl->devname = devname ? xstrdup(devname) : NULL;
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->dlist;
dl->fd = keep ? fd : -1;
dl->size = 0;
if (get_dev_size(fd, devname, &dsize))
dl->size = dsize >> 9;
/* If the disks have different sizes, the LBAs will differ
* between phys disks.
* At this point here, the values in super->active must be valid
* for this phys disk. */
dl->primary_lba = super->active->primary_lba;
dl->secondary_lba = super->active->secondary_lba;
dl->workspace_lba = super->active->workspace_lba;
dl->spare = NULL;
for (i = 0 ; i < super->max_part ; i++)
dl->vlist[i] = NULL;
super->dlist = dl;
dl->pdnum = -1;
for (i = 0; i < be16_to_cpu(super->active->max_pd_entries); i++)
if (memcmp(super->phys->entries[i].guid,
dl->disk.guid, DDF_GUID_LEN) == 0)
dl->pdnum = i;
/* Now the config list. */
/* 'conf' is an array of config entries, some of which are
* probably invalid. Those which are good need to be copied into
* the conflist
*/
conf = load_section(fd, super, super->conf,
super->active->config_section_offset,
super->active->config_section_length,
0);
super->conf = conf;
vnum = 0;
for (confsec = 0;
confsec < be32_to_cpu(super->active->config_section_length);
confsec += super->conf_rec_len) {
struct vd_config *vd =
(struct vd_config *)((char*)conf + confsec*512);
struct vcl *vcl;
if (be32_eq(vd->magic, DDF_SPARE_ASSIGN_MAGIC)) {
if (dl->spare)
continue;
if (posix_memalign((void**)&dl->spare, 512,
super->conf_rec_len*512) != 0) {
pr_err("could not allocate spare info buf\n");
return 1;
}
memcpy(dl->spare, vd, super->conf_rec_len*512);
continue;
}
if (!be32_eq(vd->magic, DDF_VD_CONF_MAGIC))
/* Must be vendor-unique - I cannot handle those */
continue;
for (vcl = super->conflist; vcl; vcl = vcl->next) {
if (memcmp(vcl->conf.guid,
vd->guid, DDF_GUID_LEN) == 0)
break;
}
if (vcl) {
dl->vlist[vnum++] = vcl;
if (vcl->other_bvds != NULL &&
vcl->conf.sec_elmnt_seq != vd->sec_elmnt_seq) {
add_other_bvd(vcl, vd, super->conf_rec_len*512);
continue;
}
if (be32_to_cpu(vd->seqnum) <=
be32_to_cpu(vcl->conf.seqnum))
continue;
} else {
if (posix_memalign((void**)&vcl, 512,
(super->conf_rec_len*512 +
offsetof(struct vcl, conf))) != 0) {
pr_err("could not allocate vcl buf\n");
return 1;
}
vcl->next = super->conflist;
vcl->block_sizes = NULL; /* FIXME not for CONCAT */
vcl->conf.sec_elmnt_count = vd->sec_elmnt_count;
if (alloc_other_bvds(super, vcl) != 0) {
pr_err("could not allocate other bvds\n");
free(vcl);
return 1;
};
super->conflist = vcl;
dl->vlist[vnum++] = vcl;
}
memcpy(&vcl->conf, vd, super->conf_rec_len*512);
for (i=0; i < max_virt_disks ; i++)
if (memcmp(super->virt->entries[i].guid,
vcl->conf.guid, DDF_GUID_LEN)==0)
break;
if (i < max_virt_disks)
vcl->vcnum = i;
}
return 0;
}
static int load_super_ddf(struct supertype *st, int fd,
char *devname)
{
unsigned long long dsize;
struct ddf_super *super;
int rv;
if (get_dev_size(fd, devname, &dsize) == 0)
return 1;
if (test_partition(fd))
/* DDF is not allowed on partitions */
return 1;
/* 32M is a lower bound */
if (dsize <= 32*1024*1024) {
if (devname)
pr_err("%s is too small for ddf: size is %llu sectors.\n",
devname, dsize>>9);
return 1;
}
if (dsize & 511) {
if (devname)
pr_err("%s is an odd size for ddf: size is %llu bytes.\n",
devname, dsize);
return 1;
}
free_super_ddf(st);
if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
pr_err("malloc of %zu failed.\n",
sizeof(*super));
return 1;
}
memset(super, 0, sizeof(*super));
rv = load_ddf_headers(fd, super, devname);
if (rv) {
free(super);
return rv;
}
/* Have valid headers and have chosen the best. Let's read in the rest*/
rv = load_ddf_global(fd, super, devname);
if (rv) {
if (devname)
pr_err("Failed to load all information sections on %s\n", devname);
free(super);
return rv;
}
rv = load_ddf_local(fd, super, devname, 0);
if (rv) {
if (devname)
pr_err("Failed to load all information sections on %s\n", devname);
free(super);
return rv;
}
/* Should possibly check the sections .... */
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_ddf;
st->minor_version = 0;
st->max_devs = 512;
}
return 0;
}
static void free_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
if (ddf == NULL)
return;
free(ddf->phys);
free(ddf->virt);
free(ddf->conf);
while (ddf->conflist) {
struct vcl *v = ddf->conflist;
ddf->conflist = v->next;
if (v->block_sizes)
free(v->block_sizes);
if (v->other_bvds)
/*
v->other_bvds[0] points to beginning of buffer,
see alloc_other_bvds()
*/
free(v->other_bvds[0]);
free(v);
}
while (ddf->dlist) {
struct dl *d = ddf->dlist;
ddf->dlist = d->next;
if (d->fd >= 0)
close(d->fd);
if (d->spare)
free(d->spare);
free(d);
}
while (ddf->add_list) {
struct dl *d = ddf->add_list;
ddf->add_list = d->next;
if (d->fd >= 0)
close(d->fd);
if (d->spare)
free(d->spare);
free(d);
}
free(ddf);
st->sb = NULL;
}
static struct supertype *match_metadata_desc_ddf(char *arg)
{
/* 'ddf' only supports containers */
struct supertype *st;
if (strcmp(arg, "ddf") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = xcalloc(1, sizeof(*st));
st->ss = &super_ddf;
st->max_devs = 512;
st->minor_version = 0;
st->sb = NULL;
return st;
}
static mapping_t ddf_state[] = {
{ "Optimal", 0},
{ "Degraded", 1},
{ "Deleted", 2},
{ "Missing", 3},
{ "Failed", 4},
{ "Partially Optimal", 5},
{ "-reserved-", 6},
{ "-reserved-", 7},
{ NULL, 0}
};
static mapping_t ddf_init_state[] = {
{ "Not Initialised", 0},
{ "QuickInit in Progress", 1},
{ "Fully Initialised", 2},
{ "*UNKNOWN*", 3},
{ NULL, 0}
};
static mapping_t ddf_access[] = {
{ "Read/Write", 0},
{ "Reserved", 1},
{ "Read Only", 2},
{ "Blocked (no access)", 3},
{ NULL ,0}
};
static mapping_t ddf_level[] = {
{ "RAID0", DDF_RAID0},
{ "RAID1", DDF_RAID1},
{ "RAID3", DDF_RAID3},
{ "RAID4", DDF_RAID4},
{ "RAID5", DDF_RAID5},
{ "RAID1E",DDF_RAID1E},
{ "JBOD", DDF_JBOD},
{ "CONCAT",DDF_CONCAT},
{ "RAID5E",DDF_RAID5E},
{ "RAID5EE",DDF_RAID5EE},
{ "RAID6", DDF_RAID6},
{ NULL, 0}
};
static mapping_t ddf_sec_level[] = {
{ "Striped", DDF_2STRIPED},
{ "Mirrored", DDF_2MIRRORED},
{ "Concat", DDF_2CONCAT},
{ "Spanned", DDF_2SPANNED},
{ NULL, 0}
};
static int all_ff(const char *guid)
{
int i;
for (i = 0; i < DDF_GUID_LEN; i++)
if (guid[i] != (char)0xff)
return 0;
return 1;
}
static const char *guid_str(const char *guid)
{
static char buf[DDF_GUID_LEN*2+1];
int i;
char *p = buf;
for (i = 0; i < DDF_GUID_LEN; i++) {
unsigned char c = guid[i];
if (c >= 32 && c < 127)
p += sprintf(p, "%c", c);
else
p += sprintf(p, "%02x", c);
}
*p = '\0';
return (const char *) buf;
}
static void print_guid(char *guid, int tstamp)
{
/* A GUIDs are part (or all) ASCII and part binary.
* They tend to be space padded.
* We print the GUID in HEX, then in parentheses add
* any initial ASCII sequence, and a possible
* time stamp from bytes 16-19
*/
int l = DDF_GUID_LEN;
int i;
for (i=0 ; i<DDF_GUID_LEN ; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02X", guid[i]&255);
}
printf("\n (");
while (l && guid[l-1] == ' ')
l--;
for (i=0 ; i<l ; i++) {
if (guid[i] >= 0x20 && guid[i] < 0x7f)
fputc(guid[i], stdout);
else
break;
}
if (tstamp) {
time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
char tbuf[100];
struct tm *tm;
tm = localtime(&then);
strftime(tbuf, 100, " %D %T",tm);
fputs(tbuf, stdout);
}
printf(")");
}
static void examine_vd(int n, struct ddf_super *sb, char *guid)
{
int crl = sb->conf_rec_len;
struct vcl *vcl;
for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
unsigned int i;
struct vd_config *vc = &vcl->conf;
if (!be32_eq(calc_crc(vc, crl*512), vc->crc))
continue;
if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
continue;
/* Ok, we know about this VD, let's give more details */
printf(" Raid Devices[%d] : %d (", n,
be16_to_cpu(vc->prim_elmnt_count));
for (i = 0; i < be16_to_cpu(vc->prim_elmnt_count); i++) {
int j;
int cnt = be16_to_cpu(sb->phys->max_pdes);
for (j=0; j<cnt; j++)
if (be32_eq(vc->phys_refnum[i],
sb->phys->entries[j].refnum))
break;
if (i) printf(" ");
if (j < cnt)
printf("%d", j);
else
printf("--");
printf("@%lluK", (unsigned long long) be64_to_cpu(LBA_OFFSET(sb, vc)[i])/2);
}
printf(")\n");
if (vc->chunk_shift != 255)
printf(" Chunk Size[%d] : %d sectors\n", n,
1 << vc->chunk_shift);
printf(" Raid Level[%d] : %s\n", n,
map_num(ddf_level, vc->prl)?:"-unknown-");
if (vc->sec_elmnt_count != 1) {
printf(" Secondary Position[%d] : %d of %d\n", n,
vc->sec_elmnt_seq, vc->sec_elmnt_count);
printf(" Secondary Level[%d] : %s\n", n,
map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
}
printf(" Device Size[%d] : %llu\n", n,
be64_to_cpu(vc->blocks)/2);
printf(" Array Size[%d] : %llu\n", n,
be64_to_cpu(vc->array_blocks)/2);
}
}
static void examine_vds(struct ddf_super *sb)
{
int cnt = be16_to_cpu(sb->virt->populated_vdes);
unsigned int i;
printf(" Virtual Disks : %d\n", cnt);
for (i = 0; i < be16_to_cpu(sb->virt->max_vdes); i++) {
struct virtual_entry *ve = &sb->virt->entries[i];
if (all_ff(ve->guid))
continue;
printf("\n");
printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
printf("\n");
printf(" unit[%d] : %d\n", i, be16_to_cpu(ve->unit));
printf(" state[%d] : %s, %s%s\n", i,
map_num(ddf_state, ve->state & 7),
(ve->state & DDF_state_morphing) ? "Morphing, ": "",
(ve->state & DDF_state_inconsistent)? "Not Consistent" : "Consistent");
printf(" init state[%d] : %s\n", i,
map_num(ddf_init_state, ve->init_state&DDF_initstate_mask));
printf(" access[%d] : %s\n", i,
map_num(ddf_access, (ve->init_state & DDF_access_mask) >> 6));
printf(" Name[%d] : %.16s\n", i, ve->name);
examine_vd(i, sb, ve->guid);
}
if (cnt) printf("\n");
}
static void examine_pds(struct ddf_super *sb)
{
int cnt = be16_to_cpu(sb->phys->max_pdes);
int i;
struct dl *dl;
int unlisted = 0;
printf(" Physical Disks : %d\n", cnt);
printf(" Number RefNo Size Device Type/State\n");
for (dl = sb->dlist; dl; dl = dl->next)
dl->displayed = 0;
for (i=0 ; i<cnt ; i++) {
struct phys_disk_entry *pd = &sb->phys->entries[i];
int type = be16_to_cpu(pd->type);
int state = be16_to_cpu(pd->state);
if (be32_to_cpu(pd->refnum) == 0xffffffff)
/* Not in use */
continue;
//printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
//printf("\n");
printf(" %3d %08x ", i,
be32_to_cpu(pd->refnum));
printf("%8lluK ",
be64_to_cpu(pd->config_size)>>1);
for (dl = sb->dlist; dl ; dl = dl->next) {
if (be32_eq(dl->disk.refnum, pd->refnum)) {
char *dv = map_dev(dl->major, dl->minor, 0);
if (dv) {
printf("%-15s", dv);
break;
}
}
}
if (!dl)
printf("%15s","");
else
dl->displayed = 1;
printf(" %s%s%s%s%s",
(type&2) ? "active":"",
(type&4) ? "Global-Spare":"",
(type&8) ? "spare" : "",
(type&16)? ", foreign" : "",
(type&32)? "pass-through" : "");
if (state & DDF_Failed)
/* This over-rides these three */
state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
printf("/%s%s%s%s%s%s%s",
(state&1)? "Online": "Offline",
(state&2)? ", Failed": "",
(state&4)? ", Rebuilding": "",
(state&8)? ", in-transition": "",
(state&16)? ", SMART-errors": "",
(state&32)? ", Unrecovered-Read-Errors": "",
(state&64)? ", Missing" : "");
printf("\n");
}
for (dl = sb->dlist; dl; dl = dl->next) {
char *dv;
if (dl->displayed)
continue;
if (!unlisted)
printf(" Physical disks not in metadata!:\n");
unlisted = 1;
dv = map_dev(dl->major, dl->minor, 0);
printf(" %08x %s\n", be32_to_cpu(dl->disk.refnum),
dv ? dv : "-unknown-");
}
if (unlisted)
printf("\n");
}
static void examine_super_ddf(struct supertype *st, char *homehost)
{
struct ddf_super *sb = st->sb;
printf(" Magic : %08x\n", be32_to_cpu(sb->anchor.magic));
printf(" Version : %.8s\n", sb->anchor.revision);
printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
printf("\n");
printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
printf("\n");
printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
printf(" Redundant hdr : %s\n", (be32_eq(sb->secondary.magic,
DDF_HEADER_MAGIC)
?"yes" : "no"));
examine_vds(sb);
examine_pds(sb);
}
static unsigned int get_vd_num_of_subarray(struct supertype *st)
{
/*
* Figure out the VD number for this supertype.
* Returns DDF_CONTAINER for the container itself,
* and DDF_NOTFOUND on error.
*/
struct ddf_super *ddf = st->sb;
struct mdinfo *sra;
char *sub, *end;
unsigned int vcnum;
if (*st->container_devnm == '\0')
return DDF_CONTAINER;
sra = sysfs_read(-1, st->devnm, GET_VERSION);
if (!sra || sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
!is_subarray(sra->text_version))
return DDF_NOTFOUND;
sub = strchr(sra->text_version + 1, '/');
if (sub != NULL)
vcnum = strtoul(sub + 1, &end, 10);
if (sub == NULL || *sub == '\0' || *end != '\0' ||
vcnum >= be16_to_cpu(ddf->active->max_vd_entries))
return DDF_NOTFOUND;
return vcnum;
}
static void brief_examine_super_ddf(struct supertype *st, int verbose)
{
/* We just write a generic DDF ARRAY entry
*/
struct mdinfo info;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
}
static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
{
/* We write a DDF ARRAY member entry for each vd, identifying container
* by uuid and member by unit number and uuid.
*/
struct ddf_super *ddf = st->sb;
struct mdinfo info;
unsigned int i;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
struct virtual_entry *ve = &ddf->virt->entries[i];
struct vcl vcl;
char nbuf1[64];
char namebuf[17];
if (all_ff(ve->guid))
continue;
memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
ddf->currentconf =&vcl;
vcl.vcnum = i;
uuid_from_super_ddf(st, info.uuid);
fname_from_uuid(st, &info, nbuf1, ':');
_ddf_array_name(namebuf, ddf, i);
printf("ARRAY%s%s container=%s member=%d UUID=%s\n",
namebuf[0] == '\0' ? "" : " /dev/md/", namebuf,
nbuf+5, i, nbuf1+5);
}
}
static void export_examine_super_ddf(struct supertype *st)
{
struct mdinfo info;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("MD_METADATA=ddf\n");
printf("MD_LEVEL=container\n");
printf("MD_UUID=%s\n", nbuf+5);
printf("MD_DEVICES=%u\n",
be16_to_cpu(((struct ddf_super *)st->sb)->phys->used_pdes));
}
static int copy_metadata_ddf(struct supertype *st, int from, int to)
{
void *buf;
unsigned long long dsize, offset;
int bytes;
struct ddf_header *ddf;
int written = 0;
/* The meta consists of an anchor, a primary, and a secondary.
* This all lives at the end of the device.
* So it is easiest to find the earliest of primary and
* secondary, and copy everything from there.
*
* Anchor is 512 from end. It contains primary_lba and secondary_lba
* we choose one of those
*/
if (posix_memalign(&buf, 4096, 4096) != 0)
return 1;
if (!get_dev_size(from, NULL, &dsize))
goto err;
if (lseek64(from, dsize-512, 0) < 0)
goto err;
if (read(from, buf, 512) != 512)
goto err;
ddf = buf;
if (!be32_eq(ddf->magic, DDF_HEADER_MAGIC) ||
!be32_eq(calc_crc(ddf, 512), ddf->crc) ||
(memcmp(ddf->revision, DDF_REVISION_0, 8) != 0 &&
memcmp(ddf->revision, DDF_REVISION_2, 8) != 0))
goto err;
offset = dsize - 512;
if ((be64_to_cpu(ddf->primary_lba) << 9) < offset)
offset = be64_to_cpu(ddf->primary_lba) << 9;
if ((be64_to_cpu(ddf->secondary_lba) << 9) < offset)
offset = be64_to_cpu(ddf->secondary_lba) << 9;
bytes = dsize - offset;
if (lseek64(from, offset, 0) < 0 ||
lseek64(to, offset, 0) < 0)
goto err;
while (written < bytes) {
int n = bytes - written;
if (n > 4096)
n = 4096;
if (read(from, buf, n) != n)
goto err;
if (write(to, buf, n) != n)
goto err;
written += n;
}
free(buf);
return 0;
err:
free(buf);
return 1;
}
static void detail_super_ddf(struct supertype *st, char *homehost,
char *subarray)
{
struct ddf_super *sb = st->sb;
int cnt = be16_to_cpu(sb->virt->populated_vdes);
printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
printf("\n");
printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
printf(" Virtual Disks : %d\n", cnt);
printf("\n");
}
static const char *vendors_with_variable_volume_UUID[] = {
"LSI ",
};
static int volume_id_is_reliable(const struct ddf_super *ddf)
{
int n = ARRAY_SIZE(vendors_with_variable_volume_UUID);
int i;
for (i = 0; i < n; i++)
if (!memcmp(ddf->controller.guid,
vendors_with_variable_volume_UUID[i], 8))
return 0;
return 1;
}
static void uuid_of_ddf_subarray(const struct ddf_super *ddf,
unsigned int vcnum, int uuid[4])
{
char buf[DDF_GUID_LEN+18], sha[20], *p;
struct sha1_ctx ctx;
if (volume_id_is_reliable(ddf)) {
uuid_from_ddf_guid(ddf->virt->entries[vcnum].guid, uuid);
return;
}
/*
* Some fake RAID BIOSes (in particular, LSI ones) change the
* VD GUID at every boot. These GUIDs are not suitable for
* identifying an array. Luckily the header GUID appears to
* remain constant.
* We construct a pseudo-UUID from the header GUID and those
* properties of the subarray that we expect to remain constant.
*/
memset(buf, 0, sizeof(buf));
p = buf;
memcpy(p, ddf->anchor.guid, DDF_GUID_LEN);
p += DDF_GUID_LEN;
memcpy(p, ddf->virt->entries[vcnum].name, 16);
p += 16;
*((__u16 *) p) = vcnum;
sha1_init_ctx(&ctx);
sha1_process_bytes(buf, sizeof(buf), &ctx);
sha1_finish_ctx(&ctx, sha);
memcpy(uuid, sha, 4*4);
}
static void brief_detail_super_ddf(struct supertype *st, char *subarray)
{
struct mdinfo info;
char nbuf[64];
struct ddf_super *ddf = st->sb;
unsigned int vcnum = get_vd_num_of_subarray(st);
if (vcnum == DDF_CONTAINER)
uuid_from_super_ddf(st, info.uuid);
else if (vcnum == DDF_NOTFOUND)
return;
else
uuid_of_ddf_subarray(ddf, vcnum, info.uuid);
fname_from_uuid(st, &info, nbuf,':');
printf(" UUID=%s", nbuf + 5);
}
static int match_home_ddf(struct supertype *st, char *homehost)
{
/* It matches 'this' host if the controller is a
* Linux-MD controller with vendor_data matching
* the hostname. It would be nice if we could
* test against controller found in /sys or somewhere...
*/
struct ddf_super *ddf = st->sb;
unsigned int len;
if (!homehost)
return 0;
len = strlen(homehost);
return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
len < sizeof(ddf->controller.vendor_data) &&
memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
ddf->controller.vendor_data[len] == 0);
}
static int find_index_in_bvd(const struct ddf_super *ddf,
const struct vd_config *conf, unsigned int n,
unsigned int *n_bvd)
{
/*
* Find the index of the n-th valid physical disk in this BVD.
* Unused entries can be sprinkled in with the used entries,
* but don't count.
*/
unsigned int i, j;
for (i = 0, j = 0;
i < ddf->mppe && j < be16_to_cpu(conf->prim_elmnt_count);
i++) {
if (be32_to_cpu(conf->phys_refnum[i]) != 0xffffffff) {
if (n == j) {
*n_bvd = i;
return 1;
}
j++;
}
}
dprintf("couldn't find BVD member %u (total %u)\n",
n, be16_to_cpu(conf->prim_elmnt_count));
return 0;
}
/* Given a member array instance number, and a raid disk within that instance,
* find the vd_config structure. The offset of the given disk in the phys_refnum
* table is returned in n_bvd.
* For two-level members with a secondary raid level the vd_config for
* the appropriate BVD is returned.
* The return value is always &vlc->conf, where vlc is returned in last pointer.
*/
static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst,
unsigned int n,
unsigned int *n_bvd, struct vcl **vcl)
{
struct vcl *v;
for (v = ddf->conflist; v; v = v->next) {
unsigned int nsec, ibvd = 0;
struct vd_config *conf;
if (inst != v->vcnum)
continue;
conf = &v->conf;
if (conf->sec_elmnt_count == 1) {
if (find_index_in_bvd(ddf, conf, n, n_bvd)) {
*vcl = v;
return conf;
} else
goto bad;
}
if (v->other_bvds == NULL) {
pr_err("BUG: other_bvds is NULL, nsec=%u\n",
conf->sec_elmnt_count);
goto bad;
}
nsec = n / be16_to_cpu(conf->prim_elmnt_count);
if (conf->sec_elmnt_seq != nsec) {
for (ibvd = 1; ibvd < conf->sec_elmnt_count; ibvd++) {
if (v->other_bvds[ibvd-1]->sec_elmnt_seq ==
nsec)
break;
}
if (ibvd == conf->sec_elmnt_count)
goto bad;
conf = v->other_bvds[ibvd-1];
}
if (!find_index_in_bvd(ddf, conf,
n - nsec*conf->sec_elmnt_count, n_bvd))
goto bad;
dprintf("found disk %u as member %u in bvd %d of array %u\n",
n, *n_bvd, ibvd, inst);
*vcl = v;
return conf;
}
bad:
pr_err("Couldn't find disk %d in array %u\n", n, inst);
return NULL;
}
static int find_phys(const struct ddf_super *ddf, be32 phys_refnum)
{
/* Find the entry in phys_disk which has the given refnum
* and return it's index
*/
unsigned int i;
for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++)
if (be32_eq(ddf->phys->entries[i].refnum, phys_refnum))
return i;
return -1;
}
static void uuid_from_ddf_guid(const char *guid, int uuid[4])
{
char buf[20];
struct sha1_ctx ctx;
sha1_init_ctx(&ctx);
sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
sha1_finish_ctx(&ctx, buf);
memcpy(uuid, buf, 4*4);
}
static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
{
/* The uuid returned here is used for:
* uuid to put into bitmap file (Create, Grow)
* uuid for backup header when saving critical section (Grow)
* comparing uuids when re-adding a device into an array
* In these cases the uuid required is that of the data-array,
* not the device-set.
* uuid to recognise same set when adding a missing device back
* to an array. This is a uuid for the device-set.
*
* For each of these we can make do with a truncated
* or hashed uuid rather than the original, as long as
* everyone agrees.
* In the case of SVD we assume the BVD is of interest,
* though that might be the case if a bitmap were made for
* a mirrored SVD - worry about that later.
* So we need to find the VD configuration record for the
* relevant BVD and extract the GUID and Secondary_Element_Seq.
* The first 16 bytes of the sha1 of these is used.
*/
struct ddf_super *ddf = st->sb;
struct vcl *vcl = ddf->currentconf;
if (vcl)
uuid_of_ddf_subarray(ddf, vcl->vcnum, uuid);
else
uuid_from_ddf_guid(ddf->anchor.guid, uuid);
}
static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
{
struct ddf_super *ddf = st->sb;
int map_disks = info->array.raid_disks;
__u32 *cptr;
if (ddf->currentconf) {
getinfo_super_ddf_bvd(st, info, map);
return;
}
memset(info, 0, sizeof(*info));
info->array.raid_disks = be16_to_cpu(ddf->phys->used_pdes);
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
cptr = (__u32 *)(ddf->anchor.guid + 16);
info->array.ctime = DECADE + __be32_to_cpu(*cptr);
info->array.chunk_size = 0;
info->container_enough = 1;
info->disk.major = 0;
info->disk.minor = 0;
if (ddf->dlist) {
struct phys_disk_entry *pde = NULL;
info->disk.number = be32_to_cpu(ddf->dlist->disk.refnum);
info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
info->data_offset = be64_to_cpu(ddf->phys->
entries[info->disk.raid_disk].
config_size);
info->component_size = ddf->dlist->size - info->data_offset;
if (info->disk.raid_disk >= 0)
pde = ddf->phys->entries + info->disk.raid_disk;
if (pde &&
!(be16_to_cpu(pde->state) & DDF_Failed) &&
!(be16_to_cpu(pde->state) & DDF_Missing))
info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
else
info->disk.state = 1 << MD_DISK_FAULTY;
} else {
/* There should always be a dlist, but just in case...*/
info->disk.number = -1;
info->disk.raid_disk = -1;
info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
}
info->events = be32_to_cpu(ddf->active->seq);
info->array.utime = DECADE + be32_to_cpu(ddf->active->timestamp);
info->recovery_start = MaxSector;
info->reshape_active = 0;
info->recovery_blocked = 0;
info->name[0] = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
strcpy(info->text_version, "ddf");
info->safe_mode_delay = 0;
uuid_from_super_ddf(st, info->uuid);
if (map) {
int i, e = 0;
int max = be16_to_cpu(ddf->phys->max_pdes);
for (i = e = 0 ; i < map_disks ; i++, e++) {
while (e < max &&
be32_to_cpu(ddf->phys->entries[e].refnum) == 0xffffffff)
e++;
if (i < info->array.raid_disks && e < max &&
!(be16_to_cpu(ddf->phys->entries[e].state) &
DDF_Failed))
map[i] = 1;
else
map[i] = 0;
}
}
}
/* size of name must be at least 17 bytes! */
static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i)
{
int j;
memcpy(name, ddf->virt->entries[i].name, 16);
name[16] = 0;
for(j = 0; j < 16; j++)
if (name[j] == ' ')
name[j] = 0;
}
static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
{
struct ddf_super *ddf = st->sb;
struct vcl *vc = ddf->currentconf;
int cd = ddf->currentdev;
int n_prim;
int j;
struct dl *dl = NULL;
int map_disks = info->array.raid_disks;
__u32 *cptr;
struct vd_config *conf;
memset(info, 0, sizeof(*info));
if (layout_ddf2md(&vc->conf, &info->array) == -1)
return;
info->array.md_minor = -1;
cptr = (__u32 *)(vc->conf.guid + 16);
info->array.ctime = DECADE + __be32_to_cpu(*cptr);
info->array.utime = DECADE + be32_to_cpu(vc->conf.timestamp);
info->array.chunk_size = 512 << vc->conf.chunk_shift;
info->custom_array_size = be64_to_cpu(vc->conf.array_blocks);
conf = &vc->conf;
n_prim = be16_to_cpu(conf->prim_elmnt_count);
if (conf->sec_elmnt_count > 1 && cd >= n_prim) {
int ibvd = cd / n_prim - 1;
cd %= n_prim;
conf = vc->other_bvds[ibvd];
}
if (cd >= 0 && (unsigned)cd < ddf->mppe) {
info->data_offset =
be64_to_cpu(LBA_OFFSET(ddf, conf)[cd]);
if (vc->block_sizes)
info->component_size = vc->block_sizes[cd];
else
info->component_size = be64_to_cpu(conf->blocks);
for (dl = ddf->dlist; dl ; dl = dl->next)
if (be32_eq(dl->disk.refnum, conf->phys_refnum[cd]))
break;
}
info->disk.major = 0;
info->disk.minor = 0;
info->disk.state = 0;
if (dl && dl->pdnum >= 0) {
info->disk.major = dl->major;
info->disk.minor = dl->minor;
info->disk.raid_disk = cd + conf->sec_elmnt_seq
* be16_to_cpu(conf->prim_elmnt_count);
info->disk.number = dl->pdnum;
info->disk.state = 0;
if (info->disk.number >= 0 &&
(be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Online) &&
!(be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Failed))
info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
info->events = be32_to_cpu(ddf->active->seq);
}
info->container_member = ddf->currentconf->vcnum;
info->recovery_start = MaxSector;
info->resync_start = 0;
info->reshape_active = 0;
info->recovery_blocked = 0;
if (!(ddf->virt->entries[info->container_member].state &
DDF_state_inconsistent) &&
(ddf->virt->entries[info->container_member].init_state &
DDF_initstate_mask) == DDF_init_full)
info->resync_start = MaxSector;
uuid_from_super_ddf(st, info->uuid);
info->array.major_version = -1;
info->array.minor_version = -2;
sprintf(info->text_version, "/%s/%d",
st->container_devnm,
info->container_member);
info->safe_mode_delay = DDF_SAFE_MODE_DELAY;
_ddf_array_name(info->name, ddf, info->container_member);
if (map)
for (j = 0; j < map_disks; j++) {
map[j] = 0;
if (j < info->array.raid_disks) {
int i = find_phys(ddf, vc->conf.phys_refnum[j]);
if (i >= 0 &&
(be16_to_cpu(ddf->phys->entries[i].state)
& DDF_Online) &&
!(be16_to_cpu(ddf->phys->entries[i].state)
& DDF_Failed))
map[i] = 1;
}
}
}
static int update_super_ddf(struct supertype *st, struct mdinfo *info,
char *update,
char *devname, int verbose,
int uuid_set, char *homehost)
{
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* uuid: Change the uuid of the array to match what is given
* homehost: update the recorded homehost
* name: update the name - preserving the homehost
* _reshape_progress: record new reshape_progress position.
*
* Following are not relevant for this version:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
*/
int rv = 0;
// struct ddf_super *ddf = st->sb;
// struct vd_config *vd = find_vdcr(ddf, info->container_member);
// struct virtual_entry *ve = find_ve(ddf);
/* we don't need to handle "force-*" or "assemble" as
* there is no need to 'trick' the kernel. When the metadata is
* first updated to activate the array, all the implied modifications
* will just happen.
*/
if (strcmp(update, "grow") == 0) {
/* FIXME */
} else if (strcmp(update, "resync") == 0) {
// info->resync_checkpoint = 0;
} else if (strcmp(update, "homehost") == 0) {
/* homehost is stored in controller->vendor_data,
* or it is when we are the vendor
*/
// if (info->vendor_is_local)
// strcpy(ddf->controller.vendor_data, homehost);
rv = -1;
} else if (strcmp(update, "name") == 0) {
/* name is stored in virtual_entry->name */
// memset(ve->name, ' ', 16);
// strncpy(ve->name, info->name, 16);
rv = -1;
} else if (strcmp(update, "_reshape_progress") == 0) {
/* We don't support reshape yet */
} else if (strcmp(update, "assemble") == 0 ) {
/* Do nothing, just succeed */
rv = 0;
} else
rv = -1;
// update_all_csum(ddf);
return rv;
}
static void make_header_guid(char *guid)
{
be32 stamp;
/* Create a DDF Header of Virtual Disk GUID */
/* 24 bytes of fiction required.
* first 8 are a 'vendor-id' - "Linux-MD"
* next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
* Remaining 8 random number plus timestamp
*/
memcpy(guid, T10, sizeof(T10));
stamp = cpu_to_be32(0xdeadbeef);
memcpy(guid+8, &stamp, 4);
stamp = cpu_to_be32(0);
memcpy(guid+12, &stamp, 4);
stamp = cpu_to_be32(time(0) - DECADE);
memcpy(guid+16, &stamp, 4);
stamp._v32 = random32();
memcpy(guid+20, &stamp, 4);
}
static unsigned int find_unused_vde(const struct ddf_super *ddf)
{
unsigned int i;
for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
if (all_ff(ddf->virt->entries[i].guid))
return i;
}
return DDF_NOTFOUND;
}
static unsigned int find_vde_by_name(const struct ddf_super *ddf,
const char *name)
{
unsigned int i;
if (name == NULL)
return DDF_NOTFOUND;
for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
if (all_ff(ddf->virt->entries[i].guid))
continue;
if (!strncmp(name, ddf->virt->entries[i].name,
sizeof(ddf->virt->entries[i].name)))
return i;
}
return DDF_NOTFOUND;
}
static unsigned int find_vde_by_guid(const struct ddf_super *ddf,
const char *guid)
{
unsigned int i;
if (guid == NULL || all_ff(guid))
return DDF_NOTFOUND;
for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++)
if (!memcmp(ddf->virt->entries[i].guid, guid, DDF_GUID_LEN))
return i;
return DDF_NOTFOUND;
}
static int init_super_ddf(struct supertype *st,
mdu_array_info_t *info,
struct shape *s, char *name, char *homehost,
int *uuid, unsigned long long data_offset)
{
/* This is primarily called by Create when creating a new array.
* We will then get add_to_super called for each component, and then
* write_init_super called to write it out to each device.
* For DDF, Create can create on fresh devices or on a pre-existing
* array.
* To create on a pre-existing array a different method will be called.
* This one is just for fresh drives.
*
* We need to create the entire 'ddf' structure which includes:
* DDF headers - these are easy.
* Controller data - a Sector describing this controller .. not that
* this is a controller exactly.
* Physical Disk Record - one entry per device, so
* leave plenty of space.
* Virtual Disk Records - again, just leave plenty of space.
* This just lists VDs, doesn't give details.
* Config records - describe the VDs that use this disk
* DiskData - describes 'this' device.
* BadBlockManagement - empty
* Diag Space - empty
* Vendor Logs - Could we put bitmaps here?
*
*/
struct ddf_super *ddf;
char hostname[17];
int hostlen;
int max_phys_disks, max_virt_disks;
unsigned long long sector;
int clen;
int i;
int pdsize, vdsize;
struct phys_disk *pd;
struct virtual_disk *vd;
if (st->sb)
return init_super_ddf_bvd(st, info, s->size, name, homehost, uuid,
data_offset);
if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
pr_err("could not allocate superblock\n");
return 0;
}
memset(ddf, 0, sizeof(*ddf));
st->sb = ddf;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
/* At least 32MB *must* be reserved for the ddf. So let's just
* start 32MB from the end, and put the primary header there.
* Don't do secondary for now.
* We don't know exactly where that will be yet as it could be
* different on each device. So just set up the lengths.
*/
ddf->anchor.magic = DDF_HEADER_MAGIC;
make_header_guid(ddf->anchor.guid);
memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
ddf->anchor.seq = cpu_to_be32(1);
ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
ddf->anchor.openflag = 0xFF;
ddf->anchor.foreignflag = 0;
ddf->anchor.enforcegroups = 0; /* Is this best?? */
ddf->anchor.pad0 = 0xff;
memset(ddf->anchor.pad1, 0xff, 12);
memset(ddf->anchor.header_ext, 0xff, 32);
ddf->anchor.primary_lba = cpu_to_be64(~(__u64)0);
ddf->anchor.secondary_lba = cpu_to_be64(~(__u64)0);
ddf->anchor.type = DDF_HEADER_ANCHOR;
memset(ddf->anchor.pad2, 0xff, 3);
ddf->anchor.workspace_len = cpu_to_be32(32768); /* Must be reserved */
/* Put this at bottom of 32M reserved.. */
ddf->anchor.workspace_lba = cpu_to_be64(~(__u64)0);
max_phys_disks = 1023; /* Should be enough, 4095 is also allowed */
ddf->anchor.max_pd_entries = cpu_to_be16(max_phys_disks);
max_virt_disks = 255; /* 15, 63, 255, 1024, 4095 are all allowed */
ddf->anchor.max_vd_entries = cpu_to_be16(max_virt_disks);
ddf->max_part = 64;
ddf->anchor.max_partitions = cpu_to_be16(ddf->max_part);
ddf->mppe = 256; /* 16, 64, 256, 1024, 4096 are all allowed */
ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
ddf->anchor.config_record_len = cpu_to_be16(ddf->conf_rec_len);
ddf->anchor.max_primary_element_entries = cpu_to_be16(ddf->mppe);
memset(ddf->anchor.pad3, 0xff, 54);
/* Controller section is one sector long immediately
* after the ddf header */
sector = 1;
ddf->anchor.controller_section_offset = cpu_to_be32(sector);
ddf->anchor.controller_section_length = cpu_to_be32(1);
sector += 1;
/* phys is 8 sectors after that */
pdsize = ROUND_UP(sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry)*max_phys_disks,
512);
switch(pdsize/512) {
case 2: case 8: case 32: case 128: case 512: break;
default: abort();
}
ddf->anchor.phys_section_offset = cpu_to_be32(sector);
ddf->anchor.phys_section_length =
cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
sector += pdsize/512;
/* virt is another 32 sectors */
vdsize = ROUND_UP(sizeof(struct virtual_disk) +
sizeof(struct virtual_entry) * max_virt_disks,
512);
switch(vdsize/512) {
case 2: case 8: case 32: case 128: case 512: break;
default: abort();
}
ddf->anchor.virt_section_offset = cpu_to_be32(sector);
ddf->anchor.virt_section_length =
cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
sector += vdsize/512;
clen = ddf->conf_rec_len * (ddf->max_part+1);
ddf->anchor.config_section_offset = cpu_to_be32(sector);
ddf->anchor.config_section_length = cpu_to_be32(clen);
sector += clen;
ddf->anchor.data_section_offset = cpu_to_be32(sector);
ddf->anchor.data_section_length = cpu_to_be32(1);
sector += 1;
ddf->anchor.bbm_section_length = cpu_to_be32(0);
ddf->anchor.bbm_section_offset = cpu_to_be32(0xFFFFFFFF);
ddf->anchor.diag_space_length = cpu_to_be32(0);
ddf->anchor.diag_space_offset = cpu_to_be32(0xFFFFFFFF);
ddf->anchor.vendor_length = cpu_to_be32(0);
ddf->anchor.vendor_offset = cpu_to_be32(0xFFFFFFFF);
memset(ddf->anchor.pad4, 0xff, 256);
memcpy(&ddf->primary, &ddf->anchor, 512);
memcpy(&ddf->secondary, &ddf->anchor, 512);
ddf->primary.openflag = 1; /* I guess.. */
ddf->primary.type = DDF_HEADER_PRIMARY;
ddf->secondary.openflag = 1; /* I guess.. */
ddf->secondary.type = DDF_HEADER_SECONDARY;
ddf->active = &ddf->primary;
ddf->controller.magic = DDF_CONTROLLER_MAGIC;
/* 24 more bytes of fiction required.
* first 8 are a 'vendor-id' - "Linux-MD"
* Remaining 16 are serial number.... maybe a hostname would do?
*/
memcpy(ddf->controller.guid, T10, sizeof(T10));
gethostname(hostname, sizeof(hostname));
hostname[sizeof(hostname) - 1] = 0;
hostlen = strlen(hostname);
memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
for (i = strlen(T10) ; i+hostlen < 24; i++)
ddf->controller.guid[i] = ' ';
ddf->controller.type.vendor_id = cpu_to_be16(0xDEAD);
ddf->controller.type.device_id = cpu_to_be16(0xBEEF);
ddf->controller.type.sub_vendor_id = cpu_to_be16(0);
ddf->controller.type.sub_device_id = cpu_to_be16(0);
memcpy(ddf->controller.product_id, "What Is My PID??", 16);
memset(ddf->controller.pad, 0xff, 8);
memset(ddf->controller.vendor_data, 0xff, 448);
if (homehost && strlen(homehost) < 440)
strcpy((char*)ddf->controller.vendor_data, homehost);
if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
pr_err("could not allocate pd\n");
return 0;
}
ddf->phys = pd;
ddf->pdsize = pdsize;
memset(pd, 0xff, pdsize);
memset(pd, 0, sizeof(*pd));
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = cpu_to_be16(0);
pd->max_pdes = cpu_to_be16(max_phys_disks);
memset(pd->pad, 0xff, 52);
for (i = 0; i < max_phys_disks; i++)
memset(pd->entries[i].guid, 0xff, DDF_GUID_LEN);
if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
pr_err("could not allocate vd\n");
return 0;
}
ddf->virt = vd;
ddf->vdsize = vdsize;
memset(vd, 0, vdsize);
vd->magic = DDF_VIRT_RECORDS_MAGIC;
vd->populated_vdes = cpu_to_be16(0);
vd->max_vdes = cpu_to_be16(max_virt_disks);
memset(vd->pad, 0xff, 52);
for (i=0; i<max_virt_disks; i++)
memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
st->sb = ddf;
ddf_set_updates_pending(ddf, NULL);
return 1;
}
static int chunk_to_shift(int chunksize)
{
return ffs(chunksize/512)-1;
}
struct extent {
unsigned long long start, size;
};
static int cmp_extent(const void *av, const void *bv)
{
const struct extent *a = av;
const struct extent *b = bv;
if (a->start < b->start)
return -1;
if (a->start > b->start)
return 1;
return 0;
}
static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
{
/* Find a list of used extents on the given physical device
* (dnum) of the given ddf.
* Return a malloced array of 'struct extent'
*/
struct extent *rv;
int n = 0;
unsigned int i;
__u16 state;
if (dl->pdnum < 0)
return NULL;
state = be16_to_cpu(ddf->phys->entries[dl->pdnum].state);
if ((state & (DDF_Online|DDF_Failed|DDF_Missing)) != DDF_Online)
return NULL;
rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
for (i = 0; i < ddf->max_part; i++) {
const struct vd_config *bvd;
unsigned int ibvd;
struct vcl *v = dl->vlist[i];
if (v == NULL ||
get_pd_index_from_refnum(v, dl->disk.refnum, ddf->mppe,
&bvd, &ibvd) == DDF_NOTFOUND)
continue;
rv[n].start = be64_to_cpu(LBA_OFFSET(ddf, bvd)[ibvd]);
rv[n].size = be64_to_cpu(bvd->blocks);
n++;
}
qsort(rv, n, sizeof(*rv), cmp_extent);
rv[n].start = be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
rv[n].size = 0;
return rv;
}
static unsigned long long find_space(
struct ddf_super *ddf, struct dl *dl,
unsigned long long data_offset,
unsigned long long *size)
{
/* Find if the requested amount of space is available.
* If it is, return start.
* If not, set *size to largest space.
* If data_offset != INVALID_SECTORS, then the space must start
* at this location.
*/
struct extent *e = get_extents(ddf, dl);
int i = 0;
unsigned long long pos = 0;
unsigned long long max_size = 0;
if (!e) {
*size = 0;
return INVALID_SECTORS;
}
do {
unsigned long long esize = e[i].start - pos;
if (data_offset != INVALID_SECTORS &&
pos <= data_offset &&
e[i].start > data_offset) {
pos = data_offset;
esize = e[i].start - pos;
}
if (data_offset != INVALID_SECTORS &&
pos != data_offset) {
i++;
continue;
}
if (esize >= *size) {
/* Found! */
free(e);
return pos;
}
if (esize > max_size)
max_size = esize;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
*size = max_size;
free(e);
return INVALID_SECTORS;
}
static int init_super_ddf_bvd(struct supertype *st,
mdu_array_info_t *info,
unsigned long long size,
char *name, char *homehost,
int *uuid, unsigned long long data_offset)
{
/* We are creating a BVD inside a pre-existing container.
* so st->sb is already set.
* We need to create a new vd_config and a new virtual_entry
*/
struct ddf_super *ddf = st->sb;
unsigned int venum, i;
struct virtual_entry *ve;
struct vcl *vcl;
struct vd_config *vc;
if (find_vde_by_name(ddf, name) != DDF_NOTFOUND) {
pr_err("This ddf already has an array called %s\n", name);
return 0;
}
venum = find_unused_vde(ddf);
if (venum == DDF_NOTFOUND) {
pr_err("Cannot find spare slot for virtual disk\n");
return 0;
}
ve = &ddf->virt->entries[venum];
/* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
* timestamp, random number
*/
make_header_guid(ve->guid);
ve->unit = cpu_to_be16(info->md_minor);
ve->pad0 = 0xFFFF;
ve->guid_crc._v16 = crc32(0, (unsigned char *)ddf->anchor.guid,
DDF_GUID_LEN);
ve->type = cpu_to_be16(0);
ve->state = DDF_state_degraded; /* Will be modified as devices are added */
if (info->state & 1) /* clean */
ve->init_state = DDF_init_full;
else
ve->init_state = DDF_init_not;
memset(ve->pad1, 0xff, 14);
memset(ve->name, ' ', 16);
if (name)
strncpy(ve->name, name, 16);
ddf->virt->populated_vdes =
cpu_to_be16(be16_to_cpu(ddf->virt->populated_vdes)+1);
/* Now create a new vd_config */
if (posix_memalign((void**)&vcl, 512,
(offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
pr_err("could not allocate vd_config\n");
return 0;
}
vcl->vcnum = venum;
vcl->block_sizes = NULL; /* FIXME not for CONCAT */
vc = &vcl->conf;
vc->magic = DDF_VD_CONF_MAGIC;
memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
vc->timestamp = cpu_to_be32(time(0)-DECADE);
vc->seqnum = cpu_to_be32(1);
memset(vc->pad0, 0xff, 24);
vc->chunk_shift = chunk_to_shift(info->chunk_size);
if (layout_md2ddf(info, vc) == -1 ||
be16_to_cpu(vc->prim_elmnt_count) > ddf->mppe) {
pr_err("unsupported RAID level/layout %d/%d with %d disks\n",
info->level, info->layout, info->raid_disks);
free(vcl);
return 0;
}
vc->sec_elmnt_seq = 0;
if (alloc_other_bvds(ddf, vcl) != 0) {
pr_err("could not allocate other bvds\n");
free(vcl);
return 0;
}
vc->blocks = cpu_to_be64(size * 2);
vc->array_blocks = cpu_to_be64(
calc_array_size(info->level, info->raid_disks, info->layout,
info->chunk_size, size * 2));
memset(vc->pad1, 0xff, 8);
vc->spare_refs[0] = cpu_to_be32(0xffffffff);
vc->spare_refs[1] = cpu_to_be32(0xffffffff);
vc->spare_refs[2] = cpu_to_be32(0xffffffff);
vc->spare_refs[3] = cpu_to_be32(0xffffffff);
vc->spare_refs[4] = cpu_to_be32(0xffffffff);
vc->spare_refs[5] = cpu_to_be32(0xffffffff);
vc->spare_refs[6] = cpu_to_be32(0xffffffff);
vc->spare_refs[7] = cpu_to_be32(0xffffffff);
memset(vc->cache_pol, 0, 8);
vc->bg_rate = 0x80;
memset(vc->pad2, 0xff, 3);
memset(vc->pad3, 0xff, 52);
memset(vc->pad4, 0xff, 192);
memset(vc->v0, 0xff, 32);
memset(vc->v1, 0xff, 32);
memset(vc->v2, 0xff, 16);
memset(vc->v3, 0xff, 16);
memset(vc->vendor, 0xff, 32);
memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
for (i = 1; i < vc->sec_elmnt_count; i++) {
memcpy(vcl->other_bvds[i-1], vc, ddf->conf_rec_len * 512);
vcl->other_bvds[i-1]->sec_elmnt_seq = i;
}
vcl->next = ddf->conflist;
ddf->conflist = vcl;
ddf->currentconf = vcl;
ddf_set_updates_pending(ddf, NULL);
return 1;
}
static void add_to_super_ddf_bvd(struct supertype *st,
mdu_disk_info_t *dk, int fd, char *devname,
unsigned long long data_offset)
{
/* fd and devname identify a device within the ddf container (st).
* dk identifies a location in the new BVD.
* We need to find suitable free space in that device and update
* the phys_refnum and lba_offset for the newly created vd_config.
* We might also want to update the type in the phys_disk
* section.
*
* Alternately: fd == -1 and we have already chosen which device to
* use and recorded in dlist->raid_disk;
*/
struct dl *dl;
struct ddf_super *ddf = st->sb;
struct vd_config *vc;
unsigned int i;
unsigned long long blocks, pos;
unsigned int raid_disk = dk->raid_disk;
if (fd == -1) {
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->raiddisk == dk->raid_disk)
break;
} else {
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
}
if (!dl || dl->pdnum < 0 || ! (dk->state & (1<<MD_DISK_SYNC)))
return;
vc = &ddf->currentconf->conf;
if (vc->sec_elmnt_count > 1) {
unsigned int n = be16_to_cpu(vc->prim_elmnt_count);
if (raid_disk >= n)
vc = ddf->currentconf->other_bvds[raid_disk / n - 1];
raid_disk %= n;
}
blocks = be64_to_cpu(vc->blocks);
if (ddf->currentconf->block_sizes)
blocks = ddf->currentconf->block_sizes[dk->raid_disk];
pos = find_space(ddf, dl, data_offset, &blocks);
if (pos == INVALID_SECTORS)
return;
ddf->currentdev = dk->raid_disk;
vc->phys_refnum[raid_disk] = dl->disk.refnum;
LBA_OFFSET(ddf, vc)[raid_disk] = cpu_to_be64(pos);
for (i = 0; i < ddf->max_part ; i++)
if (dl->vlist[i] == NULL)
break;
if (i == ddf->max_part)
return;
dl->vlist[i] = ddf->currentconf;
if (fd >= 0)
dl->fd = fd;
if (devname)
dl->devname = devname;
/* Check if we can mark array as optimal yet */
i = ddf->currentconf->vcnum;
ddf->virt->entries[i].state =
(ddf->virt->entries[i].state & ~DDF_state_mask)
| get_svd_state(ddf, ddf->currentconf);
be16_clear(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Global_Spare));
be16_set(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Active_in_VD));
dprintf("added disk %d/%08x to VD %d/%s as disk %d\n",
dl->pdnum, be32_to_cpu(dl->disk.refnum),
ddf->currentconf->vcnum, guid_str(vc->guid),
dk->raid_disk);
ddf_set_updates_pending(ddf, vc);
}
static unsigned int find_unused_pde(const struct ddf_super *ddf)
{
unsigned int i;
for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++) {
if (all_ff(ddf->phys->entries[i].guid))
return i;
}
return DDF_NOTFOUND;
}
static void _set_config_size(struct phys_disk_entry *pde, const struct dl *dl)
{
__u64 cfs, t;
cfs = min(dl->size - 32*1024*2ULL, be64_to_cpu(dl->primary_lba));
t = be64_to_cpu(dl->secondary_lba);
if (t != ~(__u64)0)
cfs = min(cfs, t);
/*
* Some vendor DDF structures interpret workspace_lba
* very differently than we do: Make a sanity check on the value.
*/
t = be64_to_cpu(dl->workspace_lba);
if (t < cfs) {
__u64 wsp = cfs - t;
if (wsp > 1024*1024*2ULL && wsp > dl->size / 16) {
pr_err("%x:%x: workspace size 0x%llx too big, ignoring\n",
dl->major, dl->minor, (unsigned long long)wsp);
} else
cfs = t;
}
pde->config_size = cpu_to_be64(cfs);
dprintf("%x:%x config_size %llx, DDF structure is %llx blocks\n",
dl->major, dl->minor,
(unsigned long long)cfs, (unsigned long long)(dl->size-cfs));
}
/* Add a device to a container, either while creating it or while
* expanding a pre-existing container
*/
static int add_to_super_ddf(struct supertype *st,
mdu_disk_info_t *dk, int fd, char *devname,
unsigned long long data_offset)
{
struct ddf_super *ddf = st->sb;
struct dl *dd;
time_t now;
struct tm *tm;
unsigned long long size;
struct phys_disk_entry *pde;
unsigned int n, i;
struct stat stb;
__u32 *tptr;
if (ddf->currentconf) {
add_to_super_ddf_bvd(st, dk, fd, devname, data_offset);
return 0;
}
/* This is device numbered dk->number. We need to create
* a phys_disk entry and a more detailed disk_data entry.
*/
fstat(fd, &stb);
n = find_unused_pde(ddf);
if (n == DDF_NOTFOUND) {
pr_err("No free slot in array, cannot add disk\n");
return 1;
}
pde = &ddf->phys->entries[n];
get_dev_size(fd, NULL, &size);
if (size <= 32*1024*1024) {
pr_err("device size must be at least 32MB\n");
return 1;
}
size >>= 9;
if (posix_memalign((void**)&dd, 512,
sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
pr_err("could allocate buffer for new disk, aborting\n");
return 1;
}
dd->major = major(stb.st_rdev);
dd->minor = minor(stb.st_rdev);
dd->devname = devname;
dd->fd = fd;
dd->spare = NULL;
dd->disk.magic = DDF_PHYS_DATA_MAGIC;
now = time(0);
tm = localtime(&now);
sprintf(dd->disk.guid, "%8s%04d%02d%02d", T10,
(__u16)tm->tm_year+1900,
(__u8)tm->tm_mon+1, (__u8)tm->tm_mday);
tptr = (__u32 *)(dd->disk.guid + 16);
*tptr++ = random32();
*tptr = random32();
do {
/* Cannot be bothered finding a CRC of some irrelevant details*/
dd->disk.refnum._v32 = random32();
for (i = be16_to_cpu(ddf->active->max_pd_entries);
i > 0; i--)
if (be32_eq(ddf->phys->entries[i-1].refnum,
dd->disk.refnum))
break;
} while (i > 0);
dd->disk.forced_ref = 1;
dd->disk.forced_guid = 1;
memset(dd->disk.vendor, ' ', 32);
memcpy(dd->disk.vendor, "Linux", 5);
memset(dd->disk.pad, 0xff, 442);
for (i = 0; i < ddf->max_part ; i++)
dd->vlist[i] = NULL;
dd->pdnum = n;
if (st->update_tail) {
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
struct phys_disk *pd;
pd = xmalloc(len);
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = cpu_to_be16(n);
pde = &pd->entries[0];
dd->mdupdate = pd;
} else
ddf->phys->used_pdes = cpu_to_be16(
1 + be16_to_cpu(ddf->phys->used_pdes));
memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
pde->refnum = dd->disk.refnum;
pde->type = cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
pde->state = cpu_to_be16(DDF_Online);
dd->size = size;
/*
* If there is already a device in dlist, try to reserve the same
* amount of workspace. Otherwise, use 32MB.
* We checked disk size above already.
*/
#define __calc_lba(new, old, lba, mb) do { \
unsigned long long dif; \
if ((old) != NULL) \
dif = (old)->size - be64_to_cpu((old)->lba); \
else \
dif = (new)->size; \
if ((new)->size > dif) \
(new)->lba = cpu_to_be64((new)->size - dif); \
else \
(new)->lba = cpu_to_be64((new)->size - (mb*1024*2)); \
} while (0)
__calc_lba(dd, ddf->dlist, workspace_lba, 32);
__calc_lba(dd, ddf->dlist, primary_lba, 16);
if (ddf->dlist == NULL ||
be64_to_cpu(ddf->dlist->secondary_lba) != ~(__u64)0)
__calc_lba(dd, ddf->dlist, secondary_lba, 32);
_set_config_size(pde, dd);
sprintf(pde->path, "%17.17s","Information: nil") ;
memset(pde->pad, 0xff, 6);
if (st->update_tail) {
dd->next = ddf->add_list;
ddf->add_list = dd;
} else {
dd->next = ddf->dlist;
ddf->dlist = dd;
ddf_set_updates_pending(ddf, NULL);
}
return 0;
}
static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
{
struct ddf_super *ddf = st->sb;
struct dl *dl;
/* mdmon has noticed that this disk (dk->major/dk->minor) has
* disappeared from the container.
* We need to arrange that it disappears from the metadata and
* internal data structures too.
* Most of the work is done by ddf_process_update which edits
* the metadata and closes the file handle and attaches the memory
* where free_updates will free it.
*/
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
if (!dl || dl->pdnum < 0)
return -1;
if (st->update_tail) {
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
struct phys_disk *pd;
pd = xmalloc(len);
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = cpu_to_be16(dl->pdnum);
pd->entries[0].state = cpu_to_be16(DDF_Missing);
append_metadata_update(st, pd, len);
}
return 0;
}
/*
* This is the write_init_super method for a ddf container. It is
* called when creating a container or adding another device to a
* container.
*/
static int __write_ddf_structure(struct dl *d, struct ddf_super *ddf, __u8 type)
{
unsigned long long sector;
struct ddf_header *header;
int fd, i, n_config, conf_size, buf_size;
int ret = 0;
char *conf;
fd = d->fd;
switch (type) {
case DDF_HEADER_PRIMARY:
header = &ddf->primary;
sector = be64_to_cpu(header->primary_lba);
break;
case DDF_HEADER_SECONDARY:
header = &ddf->secondary;
sector = be64_to_cpu(header->secondary_lba);
break;
default:
return 0;
}
if (sector == ~(__u64)0)
return 0;
header->type = type;
header->openflag = 1;
header->crc = calc_crc(header, 512);
lseek64(fd, sector<<9, 0);
if (write(fd, header, 512) < 0)
goto out;
ddf->controller.crc = calc_crc(&ddf->controller, 512);
if (write(fd, &ddf->controller, 512) < 0)
goto out;
ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
if (write(fd, ddf->phys, ddf->pdsize) < 0)
goto out;
ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
if (write(fd, ddf->virt, ddf->vdsize) < 0)
goto out;
/* Now write lots of config records. */
n_config = ddf->max_part;
conf_size = ddf->conf_rec_len * 512;
conf = ddf->conf;
buf_size = conf_size * (n_config + 1);
if (!conf) {
if (posix_memalign((void**)&conf, 512, buf_size) != 0)
goto out;
ddf->conf = conf;
}
for (i = 0 ; i <= n_config ; i++) {
struct vcl *c;
struct vd_config *vdc = NULL;
if (i == n_config) {
c = (struct vcl *)d->spare;
if (c)
vdc = &c->conf;
} else {
unsigned int dummy;
c = d->vlist[i];
if (c)
get_pd_index_from_refnum(
c, d->disk.refnum,
ddf->mppe,
(const struct vd_config **)&vdc,
&dummy);
}
if (vdc) {
dprintf("writing conf record %i on disk %08x for %s/%u\n",
i, be32_to_cpu(d->disk.refnum),
guid_str(vdc->guid),
vdc->sec_elmnt_seq);
vdc->crc = calc_crc(vdc, conf_size);
memcpy(conf + i*conf_size, vdc, conf_size);
} else
memset(conf + i*conf_size, 0xff, conf_size);
}
if (write(fd, conf, buf_size) != buf_size)
goto out;
d->disk.crc = calc_crc(&d->disk, 512);
if (write(fd, &d->disk, 512) < 0)
goto out;
ret = 1;
out:
header->openflag = 0;
header->crc = calc_crc(header, 512);
lseek64(fd, sector<<9, 0);
if (write(fd, header, 512) < 0)
ret = 0;
return ret;
}
static int _write_super_to_disk(struct ddf_super *ddf, struct dl *d)
{
unsigned long long size;
int fd = d->fd;
if (fd < 0)
return 0;
/* We need to fill in the primary, (secondary) and workspace
* lba's in the headers, set their checksums,
* Also checksum phys, virt....
*
* Then write everything out, finally the anchor is written.
*/
get_dev_size(fd, NULL, &size);
size /= 512;
memcpy(&ddf->anchor, ddf->active, 512);
if (be64_to_cpu(d->workspace_lba) != 0ULL)
ddf->anchor.workspace_lba = d->workspace_lba;
else
ddf->anchor.workspace_lba =
cpu_to_be64(size - 32*1024*2);
if (be64_to_cpu(d->primary_lba) != 0ULL)
ddf->anchor.primary_lba = d->primary_lba;
else
ddf->anchor.primary_lba =
cpu_to_be64(size - 16*1024*2);
if (be64_to_cpu(d->secondary_lba) != 0ULL)
ddf->anchor.secondary_lba = d->secondary_lba;
else
ddf->anchor.secondary_lba =
cpu_to_be64(size - 32*1024*2);
ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
memcpy(&ddf->primary, &ddf->anchor, 512);
memcpy(&ddf->secondary, &ddf->anchor, 512);
ddf->anchor.type = DDF_HEADER_ANCHOR;
ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
ddf->anchor.seq = cpu_to_be32(0xFFFFFFFF); /* no sequencing in anchor */
ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
if (!__write_ddf_structure(d, ddf, DDF_HEADER_PRIMARY))
return 0;
if (!__write_ddf_structure(d, ddf, DDF_HEADER_SECONDARY))
return 0;
lseek64(fd, (size-1)*512, SEEK_SET);
if (write(fd, &ddf->anchor, 512) < 0)
return 0;
return 1;
}
static int __write_init_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
struct dl *d;
int attempts = 0;
int successes = 0;
pr_state(ddf, __func__);
/* try to write updated metadata,
* if we catch a failure move on to the next disk
*/
for (d = ddf->dlist; d; d=d->next) {
attempts++;
successes += _write_super_to_disk(ddf, d);
}
return attempts != successes;
}
static int write_init_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
struct vcl *currentconf = ddf->currentconf;
/* We are done with currentconf - reset it so st refers to the container */
ddf->currentconf = NULL;
if (st->update_tail) {
/* queue the virtual_disk and vd_config as metadata updates */
struct virtual_disk *vd;
struct vd_config *vc;
int len, tlen;
unsigned int i;
if (!currentconf) {
/* Must be adding a physical disk to the container */
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
/* adding a disk to the container. */
if (!ddf->add_list)
return 0;
append_metadata_update(st, ddf->add_list->mdupdate, len);
ddf->add_list->mdupdate = NULL;
return 0;
}
/* Newly created VD */
/* First the virtual disk. We have a slightly fake header */
len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
vd = xmalloc(len);
*vd = *ddf->virt;
vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
vd->populated_vdes = cpu_to_be16(currentconf->vcnum);
append_metadata_update(st, vd, len);
/* Then the vd_config */
len = ddf->conf_rec_len * 512;
tlen = len * currentconf->conf.sec_elmnt_count;
vc = xmalloc(tlen);
memcpy(vc, &currentconf->conf, len);
for (i = 1; i < currentconf->conf.sec_elmnt_count; i++)
memcpy((char *)vc + i*len, currentconf->other_bvds[i-1],
len);
append_metadata_update(st, vc, tlen);
return 0;
} else {
struct dl *d;
if (!currentconf)
for (d = ddf->dlist; d; d=d->next)
while (Kill(d->devname, NULL, 0, -1, 1) == 0);
/* Note: we don't close the fd's now, but a subsequent
* ->free_super() will
*/
return __write_init_super_ddf(st);
}
}
static __u64 avail_size_ddf(struct supertype *st, __u64 devsize,
unsigned long long data_offset)
{
/* We must reserve the last 32Meg */
if (devsize <= 32*1024*2)
return 0;
return devsize - 32*1024*2;
}
static int reserve_space(struct supertype *st, int raiddisks,
unsigned long long size, int chunk,
unsigned long long data_offset,
unsigned long long *freesize)
{
/* Find 'raiddisks' spare extents at least 'size' big (but
* only caring about multiples of 'chunk') and remember
* them. If size==0, find the largest size possible.
* Report available size in *freesize
* If space cannot be found, fail.
*/
struct dl *dl;
struct ddf_super *ddf = st->sb;
int cnt = 0;
for (dl = ddf->dlist; dl ; dl=dl->next) {
dl->raiddisk = -1;
dl->esize = 0;
}
/* Now find largest extent on each device */
for (dl = ddf->dlist ; dl ; dl=dl->next) {
unsigned long long minsize = ULLONG_MAX;
find_space(ddf, dl, data_offset, &minsize);
if (minsize >= size && minsize >= (unsigned)chunk) {
cnt++;
dl->esize = minsize;
}
}
if (cnt < raiddisks) {
pr_err("not enough devices with space to create array.\n");
return 0; /* No enough free spaces large enough */
}
if (size == 0) {
/* choose the largest size of which there are at least 'raiddisk' */
for (dl = ddf->dlist ; dl ; dl=dl->next) {
struct dl *dl2;
if (dl->esize <= size)
continue;
/* This is bigger than 'size', see if there are enough */
cnt = 0;
for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
if (dl2->esize >= dl->esize)
cnt++;
if (cnt >= raiddisks)
size = dl->esize;
}
if (chunk) {
size = size / chunk;
size *= chunk;
}
*freesize = size;
if (size < 32) {
pr_err("not enough spare devices to create array.\n");
return 0;
}
}
/* We have a 'size' of which there are enough spaces.
* We simply do a first-fit */
cnt = 0;
for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
if (dl->esize < size)
continue;
dl->raiddisk = cnt;
cnt++;
}
return 1;
}
static int validate_geometry_ddf(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int consistency_policy, int verbose)
{
int fd;
struct mdinfo *sra;
int cfd;
/* ddf potentially supports lots of things, but it depends on
* what devices are offered (and maybe kernel version?)
* If given unused devices, we will make a container.
* If given devices in a container, we will make a BVD.
* If given BVDs, we make an SVD, changing all the GUIDs in the process.
*/
if (*chunk == UnSet)
*chunk = DEFAULT_CHUNK;
if (level == LEVEL_NONE)
level = LEVEL_CONTAINER;
if (level == LEVEL_CONTAINER) {
/* Must be a fresh device to add to a container */
return validate_geometry_ddf_container(st, level, layout,
raiddisks, *chunk,
size, data_offset, dev,
freesize,
verbose);
}
if (!dev) {
mdu_array_info_t array = {
.level = level,
.layout = layout,
.raid_disks = raiddisks
};
struct vd_config conf;
if (layout_md2ddf(&array, &conf) == -1) {
if (verbose)
pr_err("DDF does not support level %d /layout %d arrays with %d disks\n",
level, layout, raiddisks);
return 0;
}
/* Should check layout? etc */
if (st->sb && freesize) {
/* --create was given a container to create in.
* So we need to check that there are enough
* free spaces and return the amount of space.
* We may as well remember which drives were
* chosen so that add_to_super/getinfo_super
* can return them.
*/
return reserve_space(st, raiddisks, size, *chunk,
data_offset, freesize);
}
return 1;
}
if (st->sb) {
/* A container has already been opened, so we are
* creating in there. Maybe a BVD, maybe an SVD.
* Should make a distinction one day.
*/
return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
chunk, size, data_offset, dev,
freesize,
verbose);
}
/* This is the first device for the array.
* If it is a container, we read it in and do automagic allocations,
* no other devices should be given.
* Otherwise it must be a member device of a container, and we
* do manual allocation.
* Later we should check for a BVD and make an SVD.
*/
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd >= 0) {
close(fd);
/* Just a bare device, no good to us */
if (verbose)
pr_err("ddf: Cannot create this array on device %s - a container is required.\n",
dev);
return 0;
}
if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
if (verbose)
pr_err("ddf: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
/* Well, it is in use by someone, maybe a 'ddf' container. */
cfd = open_container(fd);
if (cfd < 0) {
close(fd);
if (verbose)
pr_err("ddf: Cannot use %s: %s\n",
dev, strerror(EBUSY));
return 0;
}
sra = sysfs_read(cfd, NULL, GET_VERSION);
close(fd);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "ddf") == 0) {
/* This is a member of a ddf container. Load the container
* and try to create a bvd
*/
struct ddf_super *ddf;
if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
st->sb = ddf;
strcpy(st->container_devnm, fd2devnm(cfd));
close(cfd);
return validate_geometry_ddf_bvd(st, level, layout,
raiddisks, chunk, size,
data_offset,
dev, freesize,
verbose);
}
close(cfd);
} else /* device may belong to a different container */
return 0;
return 1;
}
static int
validate_geometry_ddf_container(struct supertype *st,
int level, int layout, int raiddisks,
int chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int verbose)
{
int fd;
unsigned long long ldsize;
if (level != LEVEL_CONTAINER)
return 0;
if (!dev)
return 1;
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
pr_err("ddf: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, dev, &ldsize)) {
close(fd);
return 0;
}
close(fd);
*freesize = avail_size_ddf(st, ldsize >> 9, INVALID_SECTORS);
if (*freesize == 0)
return 0;
return 1;
}
static int validate_geometry_ddf_bvd(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int verbose)
{
dev_t rdev;
struct ddf_super *ddf = st->sb;
struct dl *dl;
unsigned long long maxsize;
/* ddf/bvd supports lots of things, but not containers */
if (level == LEVEL_CONTAINER) {
if (verbose)
pr_err("DDF cannot create a container within an container\n");
return 0;
}
/* We must have the container info already read in. */
if (!ddf)
return 0;
if (!dev) {
/* General test: make sure there is space for
* 'raiddisks' device extents of size 'size'.
*/
unsigned long long minsize = size;
int dcnt = 0;
if (minsize == 0)
minsize = 8;
for (dl = ddf->dlist; dl ; dl = dl->next) {
if (find_space(ddf, dl, data_offset, &minsize) !=
INVALID_SECTORS)
dcnt++;
}
if (dcnt < raiddisks) {
if (verbose)
pr_err("ddf: Not enough devices with space for this array (%d < %d)\n",
dcnt, raiddisks);
return 0;
}
return 1;
}
/* This device must be a member of the set */
if (!stat_is_blkdev(dev, &rdev))
return 0;
for (dl = ddf->dlist ; dl ; dl = dl->next) {
if (dl->major == (int)major(rdev) &&
dl->minor == (int)minor(rdev))
break;
}
if (!dl) {
if (verbose)
pr_err("ddf: %s is not in the same DDF set\n",
dev);
return 0;
}
maxsize = ULLONG_MAX;
find_space(ddf, dl, data_offset, &maxsize);
*freesize = maxsize;
return 1;
}
static int load_super_ddf_all(struct supertype *st, int fd,
void **sbp, char *devname)
{
struct mdinfo *sra;
struct ddf_super *super;
struct mdinfo *sd, *best = NULL;
int bestseq = 0;
int seq;
char nm[20];
int dfd;
sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "ddf") != 0)
return 1;
if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
return 1;
memset(super, 0, sizeof(*super));
/* first, try each device, and choose the best ddf */
for (sd = sra->devs ; sd ; sd = sd->next) {
int rv;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (dfd < 0)
return 2;
rv = load_ddf_headers(dfd, super, NULL);
close(dfd);
if (rv == 0) {
seq = be32_to_cpu(super->active->seq);
if (super->active->openflag)
seq--;
if (!best || seq > bestseq) {
bestseq = seq;
best = sd;
}
}
}
if (!best)
return 1;
/* OK, load this ddf */
sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (dfd < 0)
return 1;
load_ddf_headers(dfd, super, NULL);
load_ddf_global(dfd, super, NULL);
close(dfd);
/* Now we need the device-local bits */
for (sd = sra->devs ; sd ; sd = sd->next) {
int rv;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0)
return 2;
rv = load_ddf_headers(dfd, super, NULL);
if (rv == 0)
rv = load_ddf_local(dfd, super, NULL, 1);
if (rv)
return 1;
}
*sbp = super;
if (st->ss == NULL) {
st->ss = &super_ddf;
st->minor_version = 0;
st->max_devs = 512;
}
strcpy(st->container_devnm, fd2devnm(fd));
return 0;
}
static int load_container_ddf(struct supertype *st, int fd,
char *devname)
{
return load_super_ddf_all(st, fd, &st->sb, devname);
}
static int check_secondary(const struct vcl *vc)
{
const struct vd_config *conf = &vc->conf;
int i;
/* The only DDF secondary RAID level md can support is
* RAID 10, if the stripe sizes and Basic volume sizes
* are all equal.
* Other configurations could in theory be supported by exposing
* the BVDs to user space and using device mapper for the secondary
* mapping. So far we don't support that.
*/
__u64 sec_elements[4] = {0, 0, 0, 0};
#define __set_sec_seen(n) (sec_elements[(n)>>6] |= (1<<((n)&63)))
#define __was_sec_seen(n) ((sec_elements[(n)>>6] & (1<<((n)&63))) != 0)
if (vc->other_bvds == NULL) {
pr_err("No BVDs for secondary RAID found\n");
return -1;
}
if (conf->prl != DDF_RAID1) {
pr_err("Secondary RAID level only supported for mirrored BVD\n");
return -1;
}
if (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED) {
pr_err("Secondary RAID level %d is unsupported\n",
conf->srl);
return -1;
}
__set_sec_seen(conf->sec_elmnt_seq);
for (i = 0; i < conf->sec_elmnt_count-1; i++) {
const struct vd_config *bvd = vc->other_bvds[i];
if (bvd->sec_elmnt_seq == DDF_UNUSED_BVD)
continue;
if (bvd->srl != conf->srl) {
pr_err("Inconsistent secondary RAID level across BVDs\n");
return -1;
}
if (bvd->prl != conf->prl) {
pr_err("Different RAID levels for BVDs are unsupported\n");
return -1;
}
if (!be16_eq(bvd->prim_elmnt_count, conf->prim_elmnt_count)) {
pr_err("All BVDs must have the same number of primary elements\n");
return -1;
}
if (bvd->chunk_shift != conf->chunk_shift) {
pr_err("Different strip sizes for BVDs are unsupported\n");
return -1;
}
if (!be64_eq(bvd->array_blocks, conf->array_blocks)) {
pr_err("Different BVD sizes are unsupported\n");
return -1;
}
__set_sec_seen(bvd->sec_elmnt_seq);
}
for (i = 0; i < conf->sec_elmnt_count; i++) {
if (!__was_sec_seen(i)) {
/* pr_err("BVD %d is missing\n", i); */
return -1;
}
}
return 0;
}
static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
be32 refnum, unsigned int nmax,
const struct vd_config **bvd,
unsigned int *idx)
{
unsigned int i, j, n, sec, cnt;
cnt = be16_to_cpu(vc->conf.prim_elmnt_count);
sec = (vc->conf.sec_elmnt_count == 1 ? 0 : vc->conf.sec_elmnt_seq);
for (i = 0, j = 0 ; i < nmax ; i++) {
/* j counts valid entries for this BVD */
if (be32_eq(vc->conf.phys_refnum[i], refnum)) {
*bvd = &vc->conf;
*idx = i;
return sec * cnt + j;
}
if (be32_to_cpu(vc->conf.phys_refnum[i]) != 0xffffffff)
j++;
}
if (vc->other_bvds == NULL)
goto bad;
for (n = 1; n < vc->conf.sec_elmnt_count; n++) {
struct vd_config *vd = vc->other_bvds[n-1];
sec = vd->sec_elmnt_seq;
if (sec == DDF_UNUSED_BVD)
continue;
for (i = 0, j = 0 ; i < nmax ; i++) {
if (be32_eq(vd->phys_refnum[i], refnum)) {
*bvd = vd;
*idx = i;
return sec * cnt + j;
}
if (be32_to_cpu(vd->phys_refnum[i]) != 0xffffffff)
j++;
}
}
bad:
*bvd = NULL;
return DDF_NOTFOUND;
}
static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
{
/* Given a container loaded by load_super_ddf_all,
* extract information about all the arrays into
* an mdinfo tree.
*
* For each vcl in conflist: create an mdinfo, fill it in,
* then look for matching devices (phys_refnum) in dlist
* and create appropriate device mdinfo.
*/
struct ddf_super *ddf = st->sb;
struct mdinfo *rest = NULL;
struct vcl *vc;
for (vc = ddf->conflist ; vc ; vc=vc->next) {
unsigned int i;
struct mdinfo *this;
char *ep;
__u32 *cptr;
unsigned int pd;
if (subarray &&
(strtoul(subarray, &ep, 10) != vc->vcnum ||
*ep != '\0'))
continue;
if (vc->conf.sec_elmnt_count > 1) {
if (check_secondary(vc) != 0)
continue;
}
this = xcalloc(1, sizeof(*this));
this->next = rest;
rest = this;
if (layout_ddf2md(&vc->conf, &this->array))
continue;
this->array.md_minor = -1;
this->array.major_version = -1;
this->array.minor_version = -2;
this->safe_mode_delay = DDF_SAFE_MODE_DELAY;
cptr = (__u32 *)(vc->conf.guid + 16);
this->array.ctime = DECADE + __be32_to_cpu(*cptr);
this->array.utime = DECADE +
be32_to_cpu(vc->conf.timestamp);
this->array.chunk_size = 512 << vc->conf.chunk_shift;
i = vc->vcnum;
if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
(ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
DDF_init_full) {
this->array.state = 0;
this->resync_start = 0;
} else {
this->array.state = 1;
this->resync_start = MaxSector;
}
_ddf_array_name(this->name, ddf, i);
memset(this->uuid, 0, sizeof(this->uuid));
this->component_size = be64_to_cpu(vc->conf.blocks);
this->array.size = this->component_size / 2;
this->container_member = i;
ddf->currentconf = vc;
uuid_from_super_ddf(st, this->uuid);
if (!subarray)
ddf->currentconf = NULL;
sprintf(this->text_version, "/%s/%d",
st->container_devnm, this->container_member);
for (pd = 0; pd < be16_to_cpu(ddf->phys->max_pdes); pd++) {
struct mdinfo *dev;
struct dl *d;
const struct vd_config *bvd;
unsigned int iphys;
int stt;
if (be32_to_cpu(ddf->phys->entries[pd].refnum) ==
0xffffffff)
continue;
stt = be16_to_cpu(ddf->phys->entries[pd].state);
if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding)) !=
DDF_Online)
continue;
i = get_pd_index_from_refnum(
vc, ddf->phys->entries[pd].refnum,
ddf->mppe, &bvd, &iphys);
if (i == DDF_NOTFOUND)
continue;
this->array.working_disks++;
for (d = ddf->dlist; d ; d=d->next)
if (be32_eq(d->disk.refnum,
ddf->phys->entries[pd].refnum))
break;
if (d == NULL)
/* Haven't found that one yet, maybe there are others */
continue;
dev = xcalloc(1, sizeof(*dev));
dev->next = this->devs;
this->devs = dev;
dev->disk.number = be32_to_cpu(d->disk.refnum);
dev->disk.major = d->major;
dev->disk.minor = d->minor;
dev->disk.raid_disk = i;
dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
dev->recovery_start = MaxSector;
dev->events = be32_to_cpu(ddf->active->seq);
dev->data_offset =
be64_to_cpu(LBA_OFFSET(ddf, bvd)[iphys]);
dev->component_size = be64_to_cpu(bvd->blocks);
if (d->devname)
strcpy(dev->name, d->devname);
}
}
return rest;
}
static int store_super_ddf(struct supertype *st, int fd)
{
struct ddf_super *ddf = st->sb;
unsigned long long dsize;
void *buf;
int rc;
if (!ddf)
return 1;
if (!get_dev_size(fd, NULL, &dsize))
return 1;
if (ddf->dlist || ddf->conflist) {
struct stat sta;
struct dl *dl;
int ofd, ret;
if (fstat(fd, &sta) == -1 || !S_ISBLK(sta.st_mode)) {
pr_err("file descriptor for invalid device\n");
return 1;
}
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->major == (int)major(sta.st_rdev) &&
dl->minor == (int)minor(sta.st_rdev))
break;
if (!dl) {
pr_err("couldn't find disk %d/%d\n",
(int)major(sta.st_rdev),
(int)minor(sta.st_rdev));
return 1;
}
ofd = dl->fd;
dl->fd = fd;
ret = (_write_super_to_disk(ddf, dl) != 1);
dl->fd = ofd;
return ret;
}
if (posix_memalign(&buf, 512, 512) != 0)
return 1;
memset(buf, 0, 512);
lseek64(fd, dsize-512, 0);
rc = write(fd, buf, 512);
free(buf);
if (rc < 0)
return 1;
return 0;
}
static int compare_super_ddf(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong magic number - but that isn't possible
* 2 wrong uuid
* 3 wrong other info
*/
struct ddf_super *first = st->sb;
struct ddf_super *second = tst->sb;
struct dl *dl1, *dl2;
struct vcl *vl1, *vl2;
unsigned int max_vds, max_pds, pd, vd;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
return 2;
/* It is only OK to compare info in the anchor. Anything else
* could be changing due to a reconfig so must be ignored.
* guid really should be enough anyway.
*/
if (!be32_eq(first->active->seq, second->active->seq)) {
dprintf("sequence number mismatch %u<->%u\n",
be32_to_cpu(first->active->seq),
be32_to_cpu(second->active->seq));
return 0;
}
/*
* At this point we are fairly sure that the meta data matches.
* But the new disk may contain additional local data.
* Add it to the super block.
*/
max_vds = be16_to_cpu(first->active->max_vd_entries);
max_pds = be16_to_cpu(first->phys->max_pdes);
for (vl2 = second->conflist; vl2; vl2 = vl2->next) {
for (vl1 = first->conflist; vl1; vl1 = vl1->next)
if (!memcmp(vl1->conf.guid, vl2->conf.guid,
DDF_GUID_LEN))
break;
if (vl1) {
if (vl1->other_bvds != NULL &&
vl1->conf.sec_elmnt_seq !=
vl2->conf.sec_elmnt_seq) {
dprintf("adding BVD %u\n",
vl2->conf.sec_elmnt_seq);
add_other_bvd(vl1, &vl2->conf,
first->conf_rec_len*512);
}
continue;
}
if (posix_memalign((void **)&vl1, 512,
(first->conf_rec_len*512 +
offsetof(struct vcl, conf))) != 0) {
pr_err("could not allocate vcl buf\n");
return 3;
}
vl1->next = first->conflist;
vl1->block_sizes = NULL;
memcpy(&vl1->conf, &vl2->conf, first->conf_rec_len*512);
if (alloc_other_bvds(first, vl1) != 0) {
pr_err("could not allocate other bvds\n");
free(vl1);
return 3;
}
for (vd = 0; vd < max_vds; vd++)
if (!memcmp(first->virt->entries[vd].guid,
vl1->conf.guid, DDF_GUID_LEN))
break;
vl1->vcnum = vd;
dprintf("added config for VD %u\n", vl1->vcnum);
first->conflist = vl1;
}
for (dl2 = second->dlist; dl2; dl2 = dl2->next) {
for (dl1 = first->dlist; dl1; dl1 = dl1->next)
if (be32_eq(dl1->disk.refnum, dl2->disk.refnum))
break;
if (dl1)
continue;
if (posix_memalign((void **)&dl1, 512,
sizeof(*dl1) + (first->max_part) *
sizeof(dl1->vlist[0])) != 0) {
pr_err("could not allocate disk info buffer\n");
return 3;
}
memcpy(dl1, dl2, sizeof(*dl1));
dl1->mdupdate = NULL;
dl1->next = first->dlist;
dl1->fd = -1;
for (pd = 0; pd < max_pds; pd++)
if (be32_eq(first->phys->entries[pd].refnum,
dl1->disk.refnum))
break;
dl1->pdnum = pd < max_pds ? (int)pd : -1;
if (dl2->spare) {
if (posix_memalign((void **)&dl1->spare, 512,
first->conf_rec_len*512) != 0) {
pr_err("could not allocate spare info buf\n");
return 3;
}
memcpy(dl1->spare, dl2->spare, first->conf_rec_len*512);
}
for (vd = 0 ; vd < first->max_part ; vd++) {
if (!dl2->vlist[vd]) {
dl1->vlist[vd] = NULL;
continue;
}
for (vl1 = first->conflist; vl1; vl1 = vl1->next) {
if (!memcmp(vl1->conf.guid,
dl2->vlist[vd]->conf.guid,
DDF_GUID_LEN))
break;
dl1->vlist[vd] = vl1;
}
}
first->dlist = dl1;
dprintf("added disk %d: %08x\n", dl1->pdnum,
be32_to_cpu(dl1->disk.refnum));
}
return 0;
}
/*
* A new array 'a' has been started which claims to be instance 'inst'
* within container 'c'.
* We need to confirm that the array matches the metadata in 'c' so
* that we don't corrupt any metadata.
*/
static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
{
struct ddf_super *ddf = c->sb;
int n = atoi(inst);
struct mdinfo *dev;
struct dl *dl;
static const char faulty[] = "faulty";
if (all_ff(ddf->virt->entries[n].guid)) {
pr_err("subarray %d doesn't exist\n", n);
return -ENODEV;
}
dprintf("new subarray %d, GUID: %s\n", n,
guid_str(ddf->virt->entries[n].guid));
for (dev = a->info.devs; dev; dev = dev->next) {
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->major == dev->disk.major &&
dl->minor == dev->disk.minor)
break;
if (!dl || dl->pdnum < 0) {
pr_err("device %d/%d of subarray %d not found in meta data\n",
dev->disk.major, dev->disk.minor, n);
return -1;
}
if ((be16_to_cpu(ddf->phys->entries[dl->pdnum].state) &
(DDF_Online|DDF_Missing|DDF_Failed)) != DDF_Online) {
pr_err("new subarray %d contains broken device %d/%d (%02x)\n",
n, dl->major, dl->minor,
be16_to_cpu(ddf->phys->entries[dl->pdnum].state));
if (write(dev->state_fd, faulty, sizeof(faulty)-1) !=
sizeof(faulty) - 1)
pr_err("Write to state_fd failed\n");
dev->curr_state = DS_FAULTY;
}
}
a->info.container_member = n;
return 0;
}
static void handle_missing(struct ddf_super *ddf, struct active_array *a, int inst)
{
/* This member array is being activated. If any devices
* are missing they must now be marked as failed.
*/
struct vd_config *vc;
unsigned int n_bvd;
struct vcl *vcl;
struct dl *dl;
int pd;
int n;
int state;
for (n = 0; ; n++) {
vc = find_vdcr(ddf, inst, n, &n_bvd, &vcl);
if (!vc)
break;
for (dl = ddf->dlist; dl; dl = dl->next)
if (be32_eq(dl->disk.refnum, vc->phys_refnum[n_bvd]))
break;
if (dl)
/* Found this disk, so not missing */
continue;
/* Mark the device as failed/missing. */
pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
if (pd >= 0 && be16_and(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Online))) {
be16_clear(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Online));
be16_set(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Failed|DDF_Missing));
vc->phys_refnum[n_bvd] = cpu_to_be32(0);
ddf_set_updates_pending(ddf, vc);
}
/* Mark the array as Degraded */
state = get_svd_state(ddf, vcl);
if (ddf->virt->entries[inst].state !=
((ddf->virt->entries[inst].state & ~DDF_state_mask)
| state)) {
ddf->virt->entries[inst].state =
(ddf->virt->entries[inst].state & ~DDF_state_mask)
| state;
a->check_degraded = 1;
ddf_set_updates_pending(ddf, vc);
}
}
}
/*
* The array 'a' is to be marked clean in the metadata.
* If '->resync_start' is not ~(unsigned long long)0, then the array is only
* clean up to the point (in sectors). If that cannot be recorded in the
* metadata, then leave it as dirty.
*
* For DDF, we need to clear the DDF_state_inconsistent bit in the
* !global! virtual_disk.virtual_entry structure.
*/
static int ddf_set_array_state(struct active_array *a, int consistent)
{
struct ddf_super *ddf = a->container->sb;
int inst = a->info.container_member;
int old = ddf->virt->entries[inst].state;
if (consistent == 2) {
handle_missing(ddf, a, inst);
consistent = 1;
if (!is_resync_complete(&a->info))
consistent = 0;
}
if (consistent)
ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
else
ddf->virt->entries[inst].state |= DDF_state_inconsistent;
if (old != ddf->virt->entries[inst].state)
ddf_set_updates_pending(ddf, NULL);
old = ddf->virt->entries[inst].init_state;
ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
if (is_resync_complete(&a->info))
ddf->virt->entries[inst].init_state |= DDF_init_full;
else if (a->info.resync_start == 0)
ddf->virt->entries[inst].init_state |= DDF_init_not;
else
ddf->virt->entries[inst].init_state |= DDF_init_quick;
if (old != ddf->virt->entries[inst].init_state)
ddf_set_updates_pending(ddf, NULL);
dprintf("ddf mark %d/%s (%d) %s %llu\n", inst,
guid_str(ddf->virt->entries[inst].guid), a->curr_state,
consistent?"clean":"dirty",
a->info.resync_start);
return consistent;
}
static int get_bvd_state(const struct ddf_super *ddf,
const struct vd_config *vc)
{
unsigned int i, n_bvd, working = 0;
unsigned int n_prim = be16_to_cpu(vc->prim_elmnt_count);
int pd, st, state;
char *avail = xcalloc(1, n_prim);
mdu_array_info_t array;
layout_ddf2md(vc, &array);
for (i = 0; i < n_prim; i++) {
if (!find_index_in_bvd(ddf, vc, i, &n_bvd))
continue;
pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
if (pd < 0)
continue;
st = be16_to_cpu(ddf->phys->entries[pd].state);
if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding)) ==
DDF_Online) {
working++;
avail[i] = 1;
}
}
state = DDF_state_degraded;
if (working == n_prim)
state = DDF_state_optimal;
else
switch (vc->prl) {
case DDF_RAID0:
case DDF_CONCAT:
case DDF_JBOD:
state = DDF_state_failed;
break;
case DDF_RAID1:
if (working == 0)
state = DDF_state_failed;
else if (working >= 2)
state = DDF_state_part_optimal;
break;
case DDF_RAID1E:
if (!enough(10, n_prim, array.layout, 1, avail))
state = DDF_state_failed;
break;
case DDF_RAID4:
case DDF_RAID5:
if (working < n_prim - 1)
state = DDF_state_failed;
break;
case DDF_RAID6:
if (working < n_prim - 2)
state = DDF_state_failed;
else if (working == n_prim - 1)
state = DDF_state_part_optimal;
break;
}
return state;
}
static int secondary_state(int state, int other, int seclevel)
{
if (state == DDF_state_optimal && other == DDF_state_optimal)
return DDF_state_optimal;
if (seclevel == DDF_2MIRRORED) {
if (state == DDF_state_optimal || other == DDF_state_optimal)
return DDF_state_part_optimal;
if (state == DDF_state_failed && other == DDF_state_failed)
return DDF_state_failed;
return DDF_state_degraded;
} else {
if (state == DDF_state_failed || other == DDF_state_failed)
return DDF_state_failed;
if (state == DDF_state_degraded || other == DDF_state_degraded)
return DDF_state_degraded;
return DDF_state_part_optimal;
}
}
static int get_svd_state(const struct ddf_super *ddf, const struct vcl *vcl)
{
int state = get_bvd_state(ddf, &vcl->conf);
unsigned int i;
for (i = 1; i < vcl->conf.sec_elmnt_count; i++) {
state = secondary_state(
state,
get_bvd_state(ddf, vcl->other_bvds[i-1]),
vcl->conf.srl);
}
return state;
}
/*
* The state of each disk is stored in the global phys_disk structure
* in phys_disk.entries[n].state.
* This makes various combinations awkward.
* - When a device fails in any array, it must be failed in all arrays
* that include a part of this device.
* - When a component is rebuilding, we cannot include it officially in the
* array unless this is the only array that uses the device.
*
* So: when transitioning:
* Online -> failed, just set failed flag. monitor will propagate
* spare -> online, the device might need to be added to the array.
* spare -> failed, just set failed. Don't worry if in array or not.
*/
static void ddf_set_disk(struct active_array *a, int n, int state)
{
struct ddf_super *ddf = a->container->sb;
unsigned int inst = a->info.container_member, n_bvd;
struct vcl *vcl;
struct vd_config *vc = find_vdcr(ddf, inst, (unsigned int)n,
&n_bvd, &vcl);
int pd;
struct mdinfo *mdi;
struct dl *dl;
int update = 0;
dprintf("%d to %x\n", n, state);
if (vc == NULL) {
dprintf("ddf: cannot find instance %d!!\n", inst);
return;
}
/* Find the matching slot in 'info'. */
for (mdi = a->info.devs; mdi; mdi = mdi->next)
if (mdi->disk.raid_disk == n)
break;
if (!mdi) {
pr_err("cannot find raid disk %d\n", n);
return;
}
/* and find the 'dl' entry corresponding to that. */
for (dl = ddf->dlist; dl; dl = dl->next)
if (mdi->state_fd >= 0 &&
mdi->disk.major == dl->major &&
mdi->disk.minor == dl->minor)
break;
if (!dl) {
pr_err("cannot find raid disk %d (%d/%d)\n",
n, mdi->disk.major, mdi->disk.minor);
return;
}
pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
if (pd < 0 || pd != dl->pdnum) {
/* disk doesn't currently exist or has changed.
* If it is now in_sync, insert it. */
dprintf("phys disk not found for %d: %d/%d ref %08x\n",
dl->pdnum, dl->major, dl->minor,
be32_to_cpu(dl->disk.refnum));
dprintf("array %u disk %u ref %08x pd %d\n",
inst, n_bvd,
be32_to_cpu(vc->phys_refnum[n_bvd]), pd);
if ((state & DS_INSYNC) && ! (state & DS_FAULTY) &&
dl->pdnum >= 0) {
pd = dl->pdnum;
vc->phys_refnum[n_bvd] = dl->disk.refnum;
LBA_OFFSET(ddf, vc)[n_bvd] =
cpu_to_be64(mdi->data_offset);
be16_clear(ddf->phys->entries[pd].type,
cpu_to_be16(DDF_Global_Spare));
be16_set(ddf->phys->entries[pd].type,
cpu_to_be16(DDF_Active_in_VD));
update = 1;
}
} else {
be16 old = ddf->phys->entries[pd].state;
if (state & DS_FAULTY)
be16_set(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Failed));
if (state & DS_INSYNC) {
be16_set(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Online));
be16_clear(ddf->phys->entries[pd].state,
cpu_to_be16(DDF_Rebuilding));
}
if (!be16_eq(old, ddf->phys->entries[pd].state))
update = 1;
}
dprintf("ddf: set_disk %d (%08x) to %x->%02x\n", n,
be32_to_cpu(dl->disk.refnum), state,
be16_to_cpu(ddf->phys->entries[pd].state));
/* Now we need to check the state of the array and update
* virtual_disk.entries[n].state.
* It needs to be one of "optimal", "degraded", "failed".
* I don't understand 'deleted' or 'missing'.
*/
state = get_svd_state(ddf, vcl);
if (ddf->virt->entries[inst].state !=
((ddf->virt->entries[inst].state & ~DDF_state_mask)
| state)) {
ddf->virt->entries[inst].state =
(ddf->virt->entries[inst].state & ~DDF_state_mask)
| state;
update = 1;
}
if (update)
ddf_set_updates_pending(ddf, vc);
}
static void ddf_sync_metadata(struct supertype *st)
{
/*
* Write all data to all devices.
* Later, we might be able to track whether only local changes
* have been made, or whether any global data has been changed,
* but ddf is sufficiently weird that it probably always
* changes global data ....
*/
struct ddf_super *ddf = st->sb;
if (!ddf->updates_pending)
return;
ddf->updates_pending = 0;
__write_init_super_ddf(st);
dprintf("ddf: sync_metadata\n");
}
static int del_from_conflist(struct vcl **list, const char *guid)
{
struct vcl **p;
int found = 0;
for (p = list; p && *p; p = &((*p)->next))
if (!memcmp((*p)->conf.guid, guid, DDF_GUID_LEN)) {
found = 1;
*p = (*p)->next;
}
return found;
}
static int _kill_subarray_ddf(struct ddf_super *ddf, const char *guid)
{
struct dl *dl;
unsigned int vdnum, i;
vdnum = find_vde_by_guid(ddf, guid);
if (vdnum == DDF_NOTFOUND) {
pr_err("could not find VD %s\n", guid_str(guid));
return -1;
}
if (del_from_conflist(&ddf->conflist, guid) == 0) {
pr_err("could not find conf %s\n", guid_str(guid));
return -1;
}
for (dl = ddf->dlist; dl; dl = dl->next)
for (i = 0; i < ddf->max_part; i++)
if (dl->vlist[i] != NULL &&
!memcmp(dl->vlist[i]->conf.guid, guid,
DDF_GUID_LEN))
dl->vlist[i] = NULL;
memset(ddf->virt->entries[vdnum].guid, 0xff, DDF_GUID_LEN);
dprintf("deleted %s\n", guid_str(guid));
return 0;
}
static int kill_subarray_ddf(struct supertype *st, char *subarray_id)
{
struct ddf_super *ddf = st->sb;
/*
* currentconf is set in container_content_ddf,
* called with subarray arg
*/
struct vcl *victim = ddf->currentconf;
struct vd_config *conf;
unsigned int vdnum;
ddf->currentconf = NULL;
if (!victim) {
pr_err("nothing to kill\n");
return -1;
}
conf = &victim->conf;
vdnum = find_vde_by_guid(ddf, conf->guid);
if (vdnum == DDF_NOTFOUND) {
pr_err("could not find VD %s\n", guid_str(conf->guid));
return -1;
}
if (st->update_tail) {
struct virtual_disk *vd;
int len = sizeof(struct virtual_disk)
+ sizeof(struct virtual_entry);
vd = xmalloc(len);
if (vd == NULL) {
pr_err("failed to allocate %d bytes\n", len);
return -1;
}
memset(vd, 0 , len);
vd->magic = DDF_VIRT_RECORDS_MAGIC;
vd->populated_vdes = cpu_to_be16(0);
memcpy(vd->entries[0].guid, conf->guid, DDF_GUID_LEN);
/* we use DDF_state_deleted as marker */
vd->entries[0].state = DDF_state_deleted;
append_metadata_update(st, vd, len);
} else {
_kill_subarray_ddf(ddf, conf->guid);
ddf_set_updates_pending(ddf, NULL);
ddf_sync_metadata(st);
}
return 0;
}
static void copy_matching_bvd(struct ddf_super *ddf,
struct vd_config *conf,
const struct metadata_update *update)
{
unsigned int mppe =
be16_to_cpu(ddf->anchor.max_primary_element_entries);
unsigned int len = ddf->conf_rec_len * 512;
char *p;
struct vd_config *vc;
for (p = update->buf; p < update->buf + update->len; p += len) {
vc = (struct vd_config *) p;
if (vc->sec_elmnt_seq == conf->sec_elmnt_seq) {
memcpy(conf->phys_refnum, vc->phys_refnum,
mppe * (sizeof(__u32) + sizeof(__u64)));
return;
}
}
pr_err("no match for BVD %d of %s in update\n",
conf->sec_elmnt_seq, guid_str(conf->guid));
}
static void ddf_process_phys_update(struct supertype *st,
struct metadata_update *update)
{
struct ddf_super *ddf = st->sb;
struct phys_disk *pd;
unsigned int ent;
pd = (struct phys_disk*)update->buf;
ent = be16_to_cpu(pd->used_pdes);
if (ent >= be16_to_cpu(ddf->phys->max_pdes))
return;
if (be16_and(pd->entries[0].state, cpu_to_be16(DDF_Missing))) {
struct dl **dlp;
/* removing this disk. */
be16_set(ddf->phys->entries[ent].state,
cpu_to_be16(DDF_Missing));
for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
struct dl *dl = *dlp;
if (dl->pdnum == (signed)ent) {
close(dl->fd);
dl->fd = -1;
*dlp = dl->next;
update->space = dl->devname;
*(void**)dl = update->space_list;
update->space_list = (void**)dl;
break;
}
}
ddf_set_updates_pending(ddf, NULL);
return;
}
if (!all_ff(ddf->phys->entries[ent].guid))
return;
ddf->phys->entries[ent] = pd->entries[0];
ddf->phys->used_pdes = cpu_to_be16
(1 + be16_to_cpu(ddf->phys->used_pdes));
ddf_set_updates_pending(ddf, NULL);
if (ddf->add_list) {
struct active_array *a;
struct dl *al = ddf->add_list;
ddf->add_list = al->next;
al->next = ddf->dlist;
ddf->dlist = al;
/* As a device has been added, we should check
* for any degraded devices that might make
* use of this spare */
for (a = st->arrays ; a; a=a->next)
a->check_degraded = 1;
}
}
static void ddf_process_virt_update(struct supertype *st,
struct metadata_update *update)
{
struct ddf_super *ddf = st->sb;
struct virtual_disk *vd;
unsigned int ent;
vd = (struct virtual_disk*)update->buf;
if (vd->entries[0].state == DDF_state_deleted) {
if (_kill_subarray_ddf(ddf, vd->entries[0].guid))
return;
} else {
ent = find_vde_by_guid(ddf, vd->entries[0].guid);
if (ent != DDF_NOTFOUND) {
dprintf("VD %s exists already in slot %d\n",
guid_str(vd->entries[0].guid),
ent);
return;
}
ent = find_unused_vde(ddf);
if (ent == DDF_NOTFOUND)
return;
ddf->virt->entries[ent] = vd->entries[0];
ddf->virt->populated_vdes =
cpu_to_be16(
1 + be16_to_cpu(
ddf->virt->populated_vdes));
dprintf("added VD %s in slot %d(s=%02x i=%02x)\n",
guid_str(vd->entries[0].guid), ent,
ddf->virt->entries[ent].state,
ddf->virt->entries[ent].init_state);
}
ddf_set_updates_pending(ddf, NULL);
}
static void ddf_remove_failed(struct ddf_super *ddf)
{
/* Now remove any 'Failed' devices that are not part
* of any VD. They will have the Transition flag set.
* Once done, we need to update all dl->pdnum numbers.
*/
unsigned int pdnum;
unsigned int pd2 = 0;
struct dl *dl;
for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
pdnum++) {
if (be32_to_cpu(ddf->phys->entries[pdnum].refnum) ==
0xFFFFFFFF)
continue;
if (be16_and(ddf->phys->entries[pdnum].state,
cpu_to_be16(DDF_Failed)) &&
be16_and(ddf->phys->entries[pdnum].state,
cpu_to_be16(DDF_Transition))) {
/* skip this one unless in dlist*/
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->pdnum == (int)pdnum)
break;
if (!dl)
continue;
}
if (pdnum == pd2)
pd2++;
else {
ddf->phys->entries[pd2] =
ddf->phys->entries[pdnum];
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->pdnum == (int)pdnum)
dl->pdnum = pd2;
pd2++;
}
}
ddf->phys->used_pdes = cpu_to_be16(pd2);
while (pd2 < pdnum) {
memset(ddf->phys->entries[pd2].guid, 0xff,
DDF_GUID_LEN);
pd2++;
}
}
static void ddf_update_vlist(struct ddf_super *ddf, struct dl *dl)
{
struct vcl *vcl;
unsigned int vn = 0;
int in_degraded = 0;
if (dl->pdnum < 0)
return;
for (vcl = ddf->conflist; vcl ; vcl = vcl->next) {
unsigned int dn, ibvd;
const struct vd_config *conf;
int vstate;
dn = get_pd_index_from_refnum(vcl,
dl->disk.refnum,
ddf->mppe,
&conf, &ibvd);
if (dn == DDF_NOTFOUND)
continue;
dprintf("dev %d/%08x has %s (sec=%u) at %d\n",
dl->pdnum,
be32_to_cpu(dl->disk.refnum),
guid_str(conf->guid),
conf->sec_elmnt_seq, vn);
/* Clear the Transition flag */
if (be16_and
(ddf->phys->entries[dl->pdnum].state,
cpu_to_be16(DDF_Failed)))
be16_clear(ddf->phys
->entries[dl->pdnum].state,
cpu_to_be16(DDF_Transition));
dl->vlist[vn++] = vcl;
vstate = ddf->virt->entries[vcl->vcnum].state
& DDF_state_mask;
if (vstate == DDF_state_degraded ||
vstate == DDF_state_part_optimal)
in_degraded = 1;
}
while (vn < ddf->max_part)
dl->vlist[vn++] = NULL;
if (dl->vlist[0]) {
be16_clear(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Global_Spare));
if (!be16_and(ddf->phys
->entries[dl->pdnum].type,
cpu_to_be16(DDF_Active_in_VD))) {
be16_set(ddf->phys
->entries[dl->pdnum].type,
cpu_to_be16(DDF_Active_in_VD));
if (in_degraded)
be16_set(ddf->phys
->entries[dl->pdnum]
.state,
cpu_to_be16
(DDF_Rebuilding));
}
}
if (dl->spare) {
be16_clear(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Global_Spare));
be16_set(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Spare));
}
if (!dl->vlist[0] && !dl->spare) {
be16_set(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Global_Spare));
be16_clear(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Spare));
be16_clear(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Active_in_VD));
}
}
static void ddf_process_conf_update(struct supertype *st,
struct metadata_update *update)
{
struct ddf_super *ddf = st->sb;
struct vd_config *vc;
struct vcl *vcl;
struct dl *dl;
unsigned int ent;
unsigned int pdnum, len;
vc = (struct vd_config*)update->buf;
len = ddf->conf_rec_len * 512;
if ((unsigned int)update->len != len * vc->sec_elmnt_count) {
pr_err("%s: insufficient data (%d) for %u BVDs\n",
guid_str(vc->guid), update->len,
vc->sec_elmnt_count);
return;
}
for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
break;
dprintf("conf update for %s (%s)\n",
guid_str(vc->guid), (vcl ? "old" : "new"));
if (vcl) {
/* An update, just copy the phys_refnum and lba_offset
* fields
*/
unsigned int i;
unsigned int k;
copy_matching_bvd(ddf, &vcl->conf, update);
for (k = 0; k < be16_to_cpu(vc->prim_elmnt_count); k++)
dprintf("BVD %u has %08x at %llu\n", 0,
be32_to_cpu(vcl->conf.phys_refnum[k]),
be64_to_cpu(LBA_OFFSET(ddf,
&vcl->conf)[k]));
for (i = 1; i < vc->sec_elmnt_count; i++) {
copy_matching_bvd(ddf, vcl->other_bvds[i-1],
update);
for (k = 0; k < be16_to_cpu(
vc->prim_elmnt_count); k++)
dprintf("BVD %u has %08x at %llu\n", i,
be32_to_cpu
(vcl->other_bvds[i-1]->
phys_refnum[k]),
be64_to_cpu
(LBA_OFFSET
(ddf,
vcl->other_bvds[i-1])[k]));
}
} else {
/* A new VD_CONF */
unsigned int i;
if (!update->space)
return;
vcl = update->space;
update->space = NULL;
vcl->next = ddf->conflist;
memcpy(&vcl->conf, vc, len);
ent = find_vde_by_guid(ddf, vc->guid);
if (ent == DDF_NOTFOUND)
return;
vcl->vcnum = ent;
ddf->conflist = vcl;
for (i = 1; i < vc->sec_elmnt_count; i++)
memcpy(vcl->other_bvds[i-1],
update->buf + len * i, len);
}
/* Set DDF_Transition on all Failed devices - to help
* us detect those that are no longer in use
*/
for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
pdnum++)
if (be16_and(ddf->phys->entries[pdnum].state,
cpu_to_be16(DDF_Failed)))
be16_set(ddf->phys->entries[pdnum].state,
cpu_to_be16(DDF_Transition));
/* Now make sure vlist is correct for each dl. */
for (dl = ddf->dlist; dl; dl = dl->next)
ddf_update_vlist(ddf, dl);
ddf_remove_failed(ddf);
ddf_set_updates_pending(ddf, vc);
}
static void ddf_process_update(struct supertype *st,
struct metadata_update *update)
{
/* Apply this update to the metadata.
* The first 4 bytes are a DDF_*_MAGIC which guides
* our actions.
* Possible update are:
* DDF_PHYS_RECORDS_MAGIC
* Add a new physical device or remove an old one.
* Changes to this record only happen implicitly.
* used_pdes is the device number.
* DDF_VIRT_RECORDS_MAGIC
* Add a new VD. Possibly also change the 'access' bits.
* populated_vdes is the entry number.
* DDF_VD_CONF_MAGIC
* New or updated VD. the VIRT_RECORD must already
* exist. For an update, phys_refnum and lba_offset
* (at least) are updated, and the VD_CONF must
* be written to precisely those devices listed with
* a phys_refnum.
* DDF_SPARE_ASSIGN_MAGIC
* replacement Spare Assignment Record... but for which device?
*
* So, e.g.:
* - to create a new array, we send a VIRT_RECORD and
* a VD_CONF. Then assemble and start the array.
* - to activate a spare we send a VD_CONF to add the phys_refnum
* and offset. This will also mark the spare as active with
* a spare-assignment record.
*/
be32 *magic = (be32 *)update->buf;
dprintf("Process update %x\n", be32_to_cpu(*magic));
if (be32_eq(*magic, DDF_PHYS_RECORDS_MAGIC)) {
if (update->len == (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry)))
ddf_process_phys_update(st, update);
} else if (be32_eq(*magic, DDF_VIRT_RECORDS_MAGIC)) {
if (update->len == (sizeof(struct virtual_disk) +
sizeof(struct virtual_entry)))
ddf_process_virt_update(st, update);
} else if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
ddf_process_conf_update(st, update);
}
/* case DDF_SPARE_ASSIGN_MAGIC */
}
static int ddf_prepare_update(struct supertype *st,
struct metadata_update *update)
{
/* This update arrived at managemon.
* We are about to pass it to monitor.
* If a malloc is needed, do it here.
*/
struct ddf_super *ddf = st->sb;
be32 *magic;
if (update->len < 4)
return 0;
magic = (be32 *)update->buf;
if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
struct vcl *vcl;
struct vd_config *conf;
if (update->len < (int)sizeof(*conf))
return 0;
conf = (struct vd_config *) update->buf;
if (posix_memalign(&update->space, 512,
offsetof(struct vcl, conf)
+ ddf->conf_rec_len * 512) != 0) {
update->space = NULL;
return 0;
}
vcl = update->space;
vcl->conf.sec_elmnt_count = conf->sec_elmnt_count;
if (alloc_other_bvds(ddf, vcl) != 0) {
free(update->space);
update->space = NULL;
return 0;
}
}
return 1;
}
/*
* Check degraded state of a RAID10.
* returns 2 for good, 1 for degraded, 0 for failed, and -1 for error
*/
static int raid10_degraded(struct mdinfo *info)
{
int n_prim, n_bvds;
int i;
struct mdinfo *d;
char *found;
int ret = -1;
n_prim = info->array.layout & ~0x100;
n_bvds = info->array.raid_disks / n_prim;
found = xmalloc(n_bvds);
if (found == NULL)
return ret;
memset(found, 0, n_bvds);
for (d = info->devs; d; d = d->next) {
i = d->disk.raid_disk / n_prim;
if (i >= n_bvds) {
pr_err("BUG: invalid raid disk\n");
goto out;
}
if (d->state_fd > 0)
found[i]++;
}
ret = 2;
for (i = 0; i < n_bvds; i++)
if (!found[i]) {
dprintf("BVD %d/%d failed\n", i, n_bvds);
ret = 0;
goto out;
} else if (found[i] < n_prim) {
dprintf("BVD %d/%d degraded\n", i, n_bvds);
ret = 1;
}
out:
free(found);
return ret;
}
/*
* Check if the array 'a' is degraded but not failed.
* If it is, find as many spares as are available and needed and
* arrange for their inclusion.
* We only choose devices which are not already in the array,
* and prefer those with a spare-assignment to this array.
* Otherwise we choose global spares - assuming always that
* there is enough room.
* For each spare that we assign, we return an 'mdinfo' which
* describes the position for the device in the array.
* We also add to 'updates' a DDF_VD_CONF_MAGIC update with
* the new phys_refnum and lba_offset values.
*
* Only worry about BVDs at the moment.
*/
static struct mdinfo *ddf_activate_spare(struct active_array *a,
struct metadata_update **updates)
{
int working = 0;
struct mdinfo *d;
struct ddf_super *ddf = a->container->sb;
int global_ok = 0;
struct mdinfo *rv = NULL;
struct mdinfo *di;
struct metadata_update *mu;
struct dl *dl;
int i;
unsigned int j;
struct vcl *vcl;
struct vd_config *vc;
unsigned int n_bvd;
for (d = a->info.devs ; d ; d = d->next) {
if ((d->curr_state & DS_FAULTY) &&
d->state_fd >= 0)
/* wait for Removal to happen */
return NULL;
if (d->state_fd >= 0)
working ++;
}
dprintf("working=%d (%d) level=%d\n", working,
a->info.array.raid_disks,
a->info.array.level);
if (working == a->info.array.raid_disks)
return NULL; /* array not degraded */
switch (a->info.array.level) {
case 1:
if (working == 0)
return NULL; /* failed */
break;
case 4:
case 5:
if (working < a->info.array.raid_disks - 1)
return NULL; /* failed */
break;
case 6:
if (working < a->info.array.raid_disks - 2)
return NULL; /* failed */
break;
case 10:
if (raid10_degraded(&a->info) < 1)
return NULL;
break;
default: /* concat or stripe */
return NULL; /* failed */
}
/* For each slot, if it is not working, find a spare */
dl = ddf->dlist;
for (i = 0; i < a->info.array.raid_disks; i++) {
for (d = a->info.devs ; d ; d = d->next)
if (d->disk.raid_disk == i)
break;
dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
if (d && (d->state_fd >= 0))
continue;
/* OK, this device needs recovery. Find a spare */
again:
for ( ; dl ; dl = dl->next) {
unsigned long long esize;
unsigned long long pos;
struct mdinfo *d2;
int is_global = 0;
int is_dedicated = 0;
be16 state;
if (dl->pdnum < 0)
continue;
state = ddf->phys->entries[dl->pdnum].state;
if (be16_and(state,
cpu_to_be16(DDF_Failed|DDF_Missing)) ||
!be16_and(state,
cpu_to_be16(DDF_Online)))
continue;
/* If in this array, skip */
for (d2 = a->info.devs ; d2 ; d2 = d2->next)
if (d2->state_fd >= 0 &&
d2->disk.major == dl->major &&
d2->disk.minor == dl->minor) {
dprintf("%x:%x (%08x) already in array\n",
dl->major, dl->minor,
be32_to_cpu(dl->disk.refnum));
break;
}
if (d2)
continue;
if (be16_and(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Spare))) {
/* Check spare assign record */
if (dl->spare) {
if (dl->spare->type & DDF_spare_dedicated) {
/* check spare_ents for guid */
unsigned int j;
for (j = 0 ;
j < be16_to_cpu
(dl->spare
->populated);
j++) {
if (memcmp(dl->spare->spare_ents[j].guid,
ddf->virt->entries[a->info.container_member].guid,
DDF_GUID_LEN) == 0)
is_dedicated = 1;
}
} else
is_global = 1;
}
} else if (be16_and(ddf->phys->entries[dl->pdnum].type,
cpu_to_be16(DDF_Global_Spare))) {
is_global = 1;
} else if (!be16_and(ddf->phys
->entries[dl->pdnum].state,
cpu_to_be16(DDF_Failed))) {
/* we can possibly use some of this */
is_global = 1;
}
if ( ! (is_dedicated ||
(is_global && global_ok))) {
dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
is_dedicated, is_global);
continue;
}
/* We are allowed to use this device - is there space?
* We need a->info.component_size sectors */
esize = a->info.component_size;
pos = find_space(ddf, dl, INVALID_SECTORS, &esize);
if (esize < a->info.component_size) {
dprintf("%x:%x has no room: %llu %llu\n",
dl->major, dl->minor,
esize, a->info.component_size);
/* No room */
continue;
}
/* Cool, we have a device with some space at pos */
di = xcalloc(1, sizeof(*di));
di->disk.number = i;
di->disk.raid_disk = i;
di->disk.major = dl->major;
di->disk.minor = dl->minor;
di->disk.state = 0;
di->recovery_start = 0;
di->data_offset = pos;
di->component_size = a->info.component_size;
di->next = rv;
rv = di;
dprintf("%x:%x (%08x) to be %d at %llu\n",
dl->major, dl->minor,
be32_to_cpu(dl->disk.refnum), i, pos);
break;
}
if (!dl && ! global_ok) {
/* not enough dedicated spares, try global */
global_ok = 1;
dl = ddf->dlist;
goto again;
}
}
if (!rv)
/* No spares found */
return rv;
/* Now 'rv' has a list of devices to return.
* Create a metadata_update record to update the
* phys_refnum and lba_offset values
*/
vc = find_vdcr(ddf, a->info.container_member, rv->disk.raid_disk,
&n_bvd, &vcl);
if (vc == NULL)
return NULL;
mu = xmalloc(sizeof(*mu));
if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
free(mu);
mu = NULL;
}
mu->len = ddf->conf_rec_len * 512 * vcl->conf.sec_elmnt_count;
mu->buf = xmalloc(mu->len);
mu->space = NULL;
mu->space_list = NULL;
mu->next = *updates;
memcpy(mu->buf, &vcl->conf, ddf->conf_rec_len * 512);
for (j = 1; j < vcl->conf.sec_elmnt_count; j++)
memcpy(mu->buf + j * ddf->conf_rec_len * 512,
vcl->other_bvds[j-1], ddf->conf_rec_len * 512);
vc = (struct vd_config*)mu->buf;
for (di = rv ; di ; di = di->next) {
unsigned int i_sec, i_prim;
i_sec = di->disk.raid_disk
/ be16_to_cpu(vcl->conf.prim_elmnt_count);
i_prim = di->disk.raid_disk
% be16_to_cpu(vcl->conf.prim_elmnt_count);
vc = (struct vd_config *)(mu->buf
+ i_sec * ddf->conf_rec_len * 512);
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->major == di->disk.major &&
dl->minor == di->disk.minor)
break;
if (!dl || dl->pdnum < 0) {
pr_err("BUG: can't find disk %d (%d/%d)\n",
di->disk.raid_disk,
di->disk.major, di->disk.minor);
return NULL;
}
vc->phys_refnum[i_prim] = ddf->phys->entries[dl->pdnum].refnum;
LBA_OFFSET(ddf, vc)[i_prim] = cpu_to_be64(di->data_offset);
dprintf("BVD %u gets %u: %08x at %llu\n", i_sec, i_prim,
be32_to_cpu(vc->phys_refnum[i_prim]),
be64_to_cpu(LBA_OFFSET(ddf, vc)[i_prim]));
}
*updates = mu;
return rv;
}
static int ddf_level_to_layout(int level)
{
switch(level) {
case 0:
case 1:
return 0;
case 5:
return ALGORITHM_LEFT_SYMMETRIC;
case 6:
return ALGORITHM_ROTATING_N_CONTINUE;
case 10:
return 0x102;
default:
return UnSet;
}
}
static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
{
if (level && *level == UnSet)
*level = LEVEL_CONTAINER;
if (level && layout && *layout == UnSet)
*layout = ddf_level_to_layout(*level);
}
struct superswitch super_ddf = {
.examine_super = examine_super_ddf,
.brief_examine_super = brief_examine_super_ddf,
.brief_examine_subarrays = brief_examine_subarrays_ddf,
.export_examine_super = export_examine_super_ddf,
.detail_super = detail_super_ddf,
.brief_detail_super = brief_detail_super_ddf,
.validate_geometry = validate_geometry_ddf,
.write_init_super = write_init_super_ddf,
.add_to_super = add_to_super_ddf,
.remove_from_super = remove_from_super_ddf,
.load_container = load_container_ddf,
.copy_metadata = copy_metadata_ddf,
.kill_subarray = kill_subarray_ddf,
.match_home = match_home_ddf,
.uuid_from_super= uuid_from_super_ddf,
.getinfo_super = getinfo_super_ddf,
.update_super = update_super_ddf,
.avail_size = avail_size_ddf,
.compare_super = compare_super_ddf,
.load_super = load_super_ddf,
.init_super = init_super_ddf,
.store_super = store_super_ddf,
.free_super = free_super_ddf,
.match_metadata_desc = match_metadata_desc_ddf,
.container_content = container_content_ddf,
.default_geometry = default_geometry_ddf,
.external = 1,
/* for mdmon */
.open_new = ddf_open_new,
.set_array_state= ddf_set_array_state,
.set_disk = ddf_set_disk,
.sync_metadata = ddf_sync_metadata,
.process_update = ddf_process_update,
.prepare_update = ddf_prepare_update,
.activate_spare = ddf_activate_spare,
.name = "ddf",
};