mdadm/super-intel.c

12312 lines
322 KiB
C

/*
* mdadm - Intel(R) Matrix Storage Manager Support
*
* Copyright (C) 2002-2008 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define HAVE_STDINT_H 1
#include "mdadm.h"
#include "mdmon.h"
#include "sha1.h"
#include "platform-intel.h"
#include <values.h>
#include <scsi/sg.h>
#include <ctype.h>
#include <dirent.h>
/* MPB == Metadata Parameter Block */
#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
#define MPB_VERSION_RAID0 "1.0.00"
#define MPB_VERSION_RAID1 "1.1.00"
#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
#define MPB_VERSION_RAID5 "1.2.02"
#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
#define MPB_VERSION_CNG "1.2.06"
#define MPB_VERSION_ATTRIBS "1.3.00"
#define MAX_SIGNATURE_LENGTH 32
#define MAX_RAID_SERIAL_LEN 16
/* supports RAID0 */
#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
/* supports RAID1 */
#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
/* supports RAID10 */
#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
/* supports RAID1E */
#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
/* supports RAID5 */
#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
/* supports RAID CNG */
#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
/* supports expanded stripe sizes of 256K, 512K and 1MB */
#define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
/* The OROM Support RST Caching of Volumes */
#define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
/* The OROM supports creating disks greater than 2TB */
#define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
/* The OROM supports Bad Block Management */
#define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
/* THe OROM Supports NVM Caching of Volumes */
#define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
/* The OROM supports creating volumes greater than 2TB */
#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
/* originally for PMP, now it's wasted b/c. Never use this bit! */
#define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
/* Verify MPB contents against checksum after reading MPB */
#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
/* Define all supported attributes that have to be accepted by mdadm
*/
#define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
MPB_ATTRIB_2TB | \
MPB_ATTRIB_2TB_DISK | \
MPB_ATTRIB_RAID0 | \
MPB_ATTRIB_RAID1 | \
MPB_ATTRIB_RAID10 | \
MPB_ATTRIB_RAID5 | \
MPB_ATTRIB_EXP_STRIPE_SIZE | \
MPB_ATTRIB_BBM)
/* Define attributes that are unused but not harmful */
#define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
#define MPB_SECTOR_CNT 2210
#define IMSM_RESERVED_SECTORS 8192
#define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
#define SECT_PER_MB_SHIFT 11
#define MAX_SECTOR_SIZE 4096
#define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
* mutliple PPL area
*/
/*
* This macro let's us ensure that no-one accidentally
* changes the size of a struct
*/
#define ASSERT_SIZE(_struct, size) \
static inline void __assert_size_##_struct(void) \
{ \
switch (0) { \
case 0: break; \
case (sizeof(struct _struct) == size): break; \
} \
}
/* Disk configuration info. */
#define IMSM_MAX_DEVICES 255
struct imsm_disk {
__u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
__u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
__u32 scsi_id; /* 0xEC - 0xEF scsi ID */
#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
#define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
__u32 status; /* 0xF0 - 0xF3 */
__u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
__u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
#define IMSM_DISK_FILLERS 3
__u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
};
ASSERT_SIZE(imsm_disk, 48)
/* map selector for map managment
*/
#define MAP_0 0
#define MAP_1 1
#define MAP_X -1
/* RAID map configuration infos. */
struct imsm_map {
__u32 pba_of_lba0_lo; /* start address of partition */
__u32 blocks_per_member_lo;/* blocks per member */
__u32 num_data_stripes_lo; /* number of data stripes */
__u16 blocks_per_strip;
__u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
#define IMSM_T_STATE_NORMAL 0
#define IMSM_T_STATE_UNINITIALIZED 1
#define IMSM_T_STATE_DEGRADED 2
#define IMSM_T_STATE_FAILED 3
__u8 raid_level;
#define IMSM_T_RAID0 0
#define IMSM_T_RAID1 1
#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
__u8 num_members; /* number of member disks */
__u8 num_domains; /* number of parity domains */
__u8 failed_disk_num; /* valid only when state is degraded */
__u8 ddf;
__u32 pba_of_lba0_hi;
__u32 blocks_per_member_hi;
__u32 num_data_stripes_hi;
__u32 filler[4]; /* expansion area */
#define IMSM_ORD_REBUILD (1 << 24)
__u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
* top byte contains some flags
*/
};
ASSERT_SIZE(imsm_map, 52)
struct imsm_vol {
__u32 curr_migr_unit;
__u32 checkpoint_id; /* id to access curr_migr_unit */
__u8 migr_state; /* Normal or Migrating */
#define MIGR_INIT 0
#define MIGR_REBUILD 1
#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
#define MIGR_GEN_MIGR 3
#define MIGR_STATE_CHANGE 4
#define MIGR_REPAIR 5
__u8 migr_type; /* Initializing, Rebuilding, ... */
#define RAIDVOL_CLEAN 0
#define RAIDVOL_DIRTY 1
#define RAIDVOL_DSRECORD_VALID 2
__u8 dirty;
__u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
__u16 verify_errors; /* number of mismatches */
__u16 bad_blocks; /* number of bad blocks during verify */
__u32 filler[4];
struct imsm_map map[1];
/* here comes another one if migr_state */
};
ASSERT_SIZE(imsm_vol, 84)
struct imsm_dev {
__u8 volume[MAX_RAID_SERIAL_LEN];
__u32 size_low;
__u32 size_high;
#define DEV_BOOTABLE __cpu_to_le32(0x01)
#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
#define DEV_READ_COALESCING __cpu_to_le32(0x04)
#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
__u32 status; /* Persistent RaidDev status */
__u32 reserved_blocks; /* Reserved blocks at beginning of volume */
__u8 migr_priority;
__u8 num_sub_vols;
__u8 tid;
__u8 cng_master_disk;
__u16 cache_policy;
__u8 cng_state;
__u8 cng_sub_state;
__u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
/* NVM_EN */
__u8 nv_cache_mode;
__u8 nv_cache_flags;
/* Unique Volume Id of the NvCache Volume associated with this volume */
__u32 nvc_vol_orig_family_num;
__u16 nvc_vol_raid_dev_num;
#define RWH_OFF 0
#define RWH_DISTRIBUTED 1
#define RWH_JOURNALING_DRIVE 2
#define RWH_MULTIPLE_DISTRIBUTED 3
#define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
#define RWH_MULTIPLE_OFF 5
__u8 rwh_policy; /* Raid Write Hole Policy */
__u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
__u8 filler1;
#define IMSM_DEV_FILLERS 3
__u32 filler[IMSM_DEV_FILLERS];
struct imsm_vol vol;
};
ASSERT_SIZE(imsm_dev, 164)
struct imsm_super {
__u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
__u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
__u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
__u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
__u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
__u32 error_log_size; /* 0x30 - 0x33 in bytes */
__u32 attributes; /* 0x34 - 0x37 */
__u8 num_disks; /* 0x38 Number of configured disks */
__u8 num_raid_devs; /* 0x39 Number of configured volumes */
__u8 error_log_pos; /* 0x3A */
__u8 fill[1]; /* 0x3B */
__u32 cache_size; /* 0x3c - 0x40 in mb */
__u32 orig_family_num; /* 0x40 - 0x43 original family num */
__u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
__u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
__u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
* volume IDs for raid_dev created in this array
* (starts at 1)
*/
__u16 filler1; /* 0x4E - 0x4F */
#define IMSM_FILLERS 34
__u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
/* here comes imsm_dev[num_raid_devs] */
/* here comes BBM logs */
};
ASSERT_SIZE(imsm_super, 264)
#define BBM_LOG_MAX_ENTRIES 254
#define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
#define BBM_LOG_SIGNATURE 0xabadb10c
struct bbm_log_block_addr {
__u16 w1;
__u32 dw1;
} __attribute__ ((__packed__));
struct bbm_log_entry {
__u8 marked_count; /* Number of blocks marked - 1 */
__u8 disk_ordinal; /* Disk entry within the imsm_super */
struct bbm_log_block_addr defective_block_start;
} __attribute__ ((__packed__));
struct bbm_log {
__u32 signature; /* 0xABADB10C */
__u32 entry_count;
struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
};
ASSERT_SIZE(bbm_log, 2040)
static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
#define BLOCKS_PER_KB (1024/512)
#define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
#define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
#define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
#define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
* MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
*/
#define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
* be recovered using srcMap */
#define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
* already been migrated and must
* be recovered from checkpoint area */
#define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
struct migr_record {
__u32 rec_status; /* Status used to determine how to restart
* migration in case it aborts
* in some fashion */
__u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
__u32 family_num; /* Family number of MPB
* containing the RaidDev
* that is migrating */
__u32 ascending_migr; /* True if migrating in increasing
* order of lbas */
__u32 blocks_per_unit; /* Num disk blocks per unit of operation */
__u32 dest_depth_per_unit; /* Num member blocks each destMap
* member disk
* advances per unit-of-operation */
__u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
__u32 dest_1st_member_lba_lo; /* First member lba on first
* stripe of destination */
__u32 num_migr_units_lo; /* Total num migration units-of-op */
__u32 post_migr_vol_cap; /* Size of volume after
* migration completes */
__u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
__u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
* migration ckpt record was read from
* (for recovered migrations) */
__u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
__u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
* high order 32 bits */
__u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
* destination - high order 32 bits */
__u32 num_migr_units_hi; /* Total num migration units-of-op
* high order 32 bits */
};
ASSERT_SIZE(migr_record, 64)
struct md_list {
/* usage marker:
* 1: load metadata
* 2: metadata does not match
* 4: already checked
*/
int used;
char *devname;
int found;
int container;
dev_t st_rdev;
struct md_list *next;
};
#define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
static __u8 migr_type(struct imsm_dev *dev)
{
if (dev->vol.migr_type == MIGR_VERIFY &&
dev->status & DEV_VERIFY_AND_FIX)
return MIGR_REPAIR;
else
return dev->vol.migr_type;
}
static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
{
/* for compatibility with older oroms convert MIGR_REPAIR, into
* MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
*/
if (migr_type == MIGR_REPAIR) {
dev->vol.migr_type = MIGR_VERIFY;
dev->status |= DEV_VERIFY_AND_FIX;
} else {
dev->vol.migr_type = migr_type;
dev->status &= ~DEV_VERIFY_AND_FIX;
}
}
static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
{
return ROUND_UP(bytes, sector_size) / sector_size;
}
static unsigned int mpb_sectors(struct imsm_super *mpb,
unsigned int sector_size)
{
return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
}
struct intel_dev {
struct imsm_dev *dev;
struct intel_dev *next;
unsigned index;
};
struct intel_hba {
enum sys_dev_type type;
char *path;
char *pci_id;
struct intel_hba *next;
};
enum action {
DISK_REMOVE = 1,
DISK_ADD
};
/* internal representation of IMSM metadata */
struct intel_super {
union {
void *buf; /* O_DIRECT buffer for reading/writing metadata */
struct imsm_super *anchor; /* immovable parameters */
};
union {
void *migr_rec_buf; /* buffer for I/O operations */
struct migr_record *migr_rec; /* migration record */
};
int clean_migration_record_by_mdmon; /* when reshape is switched to next
array, it indicates that mdmon is allowed to clean migration
record */
size_t len; /* size of the 'buf' allocation */
size_t extra_space; /* extra space in 'buf' that is not used yet */
void *next_buf; /* for realloc'ing buf from the manager */
size_t next_len;
int updates_pending; /* count of pending updates for mdmon */
int current_vol; /* index of raid device undergoing creation */
unsigned long long create_offset; /* common start for 'current_vol' */
__u32 random; /* random data for seeding new family numbers */
struct intel_dev *devlist;
unsigned int sector_size; /* sector size of used member drives */
struct dl {
struct dl *next;
int index;
__u8 serial[MAX_RAID_SERIAL_LEN];
int major, minor;
char *devname;
struct imsm_disk disk;
int fd;
int extent_cnt;
struct extent *e; /* for determining freespace @ create */
int raiddisk; /* slot to fill in autolayout */
enum action action;
} *disks, *current_disk;
struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
active */
struct dl *missing; /* disks removed while we weren't looking */
struct bbm_log *bbm_log;
struct intel_hba *hba; /* device path of the raid controller for this metadata */
const struct imsm_orom *orom; /* platform firmware support */
struct intel_super *next; /* (temp) list for disambiguating family_num */
struct md_bb bb; /* memory for get_bad_blocks call */
};
struct intel_disk {
struct imsm_disk disk;
#define IMSM_UNKNOWN_OWNER (-1)
int owner;
struct intel_disk *next;
};
struct extent {
unsigned long long start, size;
};
/* definitions of reshape process types */
enum imsm_reshape_type {
CH_TAKEOVER,
CH_MIGRATION,
CH_ARRAY_SIZE,
};
/* definition of messages passed to imsm_process_update */
enum imsm_update_type {
update_activate_spare,
update_create_array,
update_kill_array,
update_rename_array,
update_add_remove_disk,
update_reshape_container_disks,
update_reshape_migration,
update_takeover,
update_general_migration_checkpoint,
update_size_change,
update_prealloc_badblocks_mem,
update_rwh_policy,
};
struct imsm_update_activate_spare {
enum imsm_update_type type;
struct dl *dl;
int slot;
int array;
struct imsm_update_activate_spare *next;
};
struct geo_params {
char devnm[32];
char *dev_name;
unsigned long long size;
int level;
int layout;
int chunksize;
int raid_disks;
};
enum takeover_direction {
R10_TO_R0,
R0_TO_R10
};
struct imsm_update_takeover {
enum imsm_update_type type;
int subarray;
enum takeover_direction direction;
};
struct imsm_update_reshape {
enum imsm_update_type type;
int old_raid_disks;
int new_raid_disks;
int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
};
struct imsm_update_reshape_migration {
enum imsm_update_type type;
int old_raid_disks;
int new_raid_disks;
/* fields for array migration changes
*/
int subdev;
int new_level;
int new_layout;
int new_chunksize;
int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
};
struct imsm_update_size_change {
enum imsm_update_type type;
int subdev;
long long new_size;
};
struct imsm_update_general_migration_checkpoint {
enum imsm_update_type type;
__u32 curr_migr_unit;
};
struct disk_info {
__u8 serial[MAX_RAID_SERIAL_LEN];
};
struct imsm_update_create_array {
enum imsm_update_type type;
int dev_idx;
struct imsm_dev dev;
};
struct imsm_update_kill_array {
enum imsm_update_type type;
int dev_idx;
};
struct imsm_update_rename_array {
enum imsm_update_type type;
__u8 name[MAX_RAID_SERIAL_LEN];
int dev_idx;
};
struct imsm_update_add_remove_disk {
enum imsm_update_type type;
};
struct imsm_update_prealloc_bb_mem {
enum imsm_update_type type;
};
struct imsm_update_rwh_policy {
enum imsm_update_type type;
int new_policy;
int dev_idx;
};
static const char *_sys_dev_type[] = {
[SYS_DEV_UNKNOWN] = "Unknown",
[SYS_DEV_SAS] = "SAS",
[SYS_DEV_SATA] = "SATA",
[SYS_DEV_NVME] = "NVMe",
[SYS_DEV_VMD] = "VMD"
};
const char *get_sys_dev_type(enum sys_dev_type type)
{
if (type >= SYS_DEV_MAX)
type = SYS_DEV_UNKNOWN;
return _sys_dev_type[type];
}
static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
{
struct intel_hba *result = xmalloc(sizeof(*result));
result->type = device->type;
result->path = xstrdup(device->path);
result->next = NULL;
if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
result->pci_id++;
return result;
}
static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
{
struct intel_hba *result;
for (result = hba; result; result = result->next) {
if (result->type == device->type && strcmp(result->path, device->path) == 0)
break;
}
return result;
}
static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
{
struct intel_hba *hba;
/* check if disk attached to Intel HBA */
hba = find_intel_hba(super->hba, device);
if (hba != NULL)
return 1;
/* Check if HBA is already attached to super */
if (super->hba == NULL) {
super->hba = alloc_intel_hba(device);
return 1;
}
hba = super->hba;
/* Intel metadata allows for all disks attached to the same type HBA.
* Do not support HBA types mixing
*/
if (device->type != hba->type)
return 2;
/* Multiple same type HBAs can be used if they share the same OROM */
const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
if (device_orom != super->orom)
return 2;
while (hba->next)
hba = hba->next;
hba->next = alloc_intel_hba(device);
return 1;
}
static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
{
struct sys_dev *list, *elem;
char *disk_path;
if ((list = find_intel_devices()) == NULL)
return 0;
if (fd < 0)
disk_path = (char *) devname;
else
disk_path = diskfd_to_devpath(fd);
if (!disk_path)
return 0;
for (elem = list; elem; elem = elem->next)
if (path_attached_to_hba(disk_path, elem->path))
return elem;
if (disk_path != devname)
free(disk_path);
return NULL;
}
static int find_intel_hba_capability(int fd, struct intel_super *super,
char *devname);
static struct supertype *match_metadata_desc_imsm(char *arg)
{
struct supertype *st;
if (strcmp(arg, "imsm") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = xcalloc(1, sizeof(*st));
st->ss = &super_imsm;
st->max_devs = IMSM_MAX_DEVICES;
st->minor_version = 0;
st->sb = NULL;
return st;
}
static __u8 *get_imsm_version(struct imsm_super *mpb)
{
return &mpb->sig[MPB_SIG_LEN];
}
/* retrieve a disk directly from the anchor when the anchor is known to be
* up-to-date, currently only at load time
*/
static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
{
if (index >= mpb->num_disks)
return NULL;
return &mpb->disk[index];
}
/* retrieve the disk description based on a index of the disk
* in the sub-array
*/
static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
{
struct dl *d;
for (d = super->disks; d; d = d->next)
if (d->index == index)
return d;
return NULL;
}
/* retrieve a disk from the parsed metadata */
static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
{
struct dl *dl;
dl = get_imsm_dl_disk(super, index);
if (dl)
return &dl->disk;
return NULL;
}
/* generate a checksum directly from the anchor when the anchor is known to be
* up-to-date, currently only at load or write_super after coalescing
*/
static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
{
__u32 end = mpb->mpb_size / sizeof(end);
__u32 *p = (__u32 *) mpb;
__u32 sum = 0;
while (end--) {
sum += __le32_to_cpu(*p);
p++;
}
return sum - __le32_to_cpu(mpb->check_sum);
}
static size_t sizeof_imsm_map(struct imsm_map *map)
{
return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
}
struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
{
/* A device can have 2 maps if it is in the middle of a migration.
* If second_map is:
* MAP_0 - we return the first map
* MAP_1 - we return the second map if it exists, else NULL
* MAP_X - we return the second map if it exists, else the first
*/
struct imsm_map *map = &dev->vol.map[0];
struct imsm_map *map2 = NULL;
if (dev->vol.migr_state)
map2 = (void *)map + sizeof_imsm_map(map);
switch (second_map) {
case MAP_0:
break;
case MAP_1:
map = map2;
break;
case MAP_X:
if (map2)
map = map2;
break;
default:
map = NULL;
}
return map;
}
/* return the size of the device.
* migr_state increases the returned size if map[0] were to be duplicated
*/
static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
{
size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
sizeof_imsm_map(get_imsm_map(dev, MAP_0));
/* migrating means an additional map */
if (dev->vol.migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
else if (migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
return size;
}
/* retrieve disk serial number list from a metadata update */
static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
{
void *u = update;
struct disk_info *inf;
inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
sizeof_imsm_dev(&update->dev, 0);
return inf;
}
static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
{
int offset;
int i;
void *_mpb = mpb;
if (index >= mpb->num_raid_devs)
return NULL;
/* devices start after all disks */
offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
for (i = 0; i <= index; i++)
if (i == index)
return _mpb + offset;
else
offset += sizeof_imsm_dev(_mpb + offset, 0);
return NULL;
}
static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
{
struct intel_dev *dv;
if (index >= super->anchor->num_raid_devs)
return NULL;
for (dv = super->devlist; dv; dv = dv->next)
if (dv->index == index)
return dv->dev;
return NULL;
}
static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
*addr)
{
return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
__le16_to_cpu(addr->w1));
}
static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
{
struct bbm_log_block_addr addr;
addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
return addr;
}
/* get size of the bbm log */
static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
{
if (!log || log->entry_count == 0)
return 0;
return sizeof(log->signature) +
sizeof(log->entry_count) +
log->entry_count * sizeof(struct bbm_log_entry);
}
/* check if bad block is not partially stored in bbm log */
static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
long long sector, const int length, __u32 *pos)
{
__u32 i;
for (i = *pos; i < log->entry_count; i++) {
struct bbm_log_entry *entry = &log->marked_block_entries[i];
unsigned long long bb_start;
unsigned long long bb_end;
bb_start = __le48_to_cpu(&entry->defective_block_start);
bb_end = bb_start + (entry->marked_count + 1);
if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
(bb_end <= sector + length)) {
*pos = i;
return 1;
}
}
return 0;
}
/* record new bad block in bbm log */
static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
long long sector, int length)
{
int new_bb = 0;
__u32 pos = 0;
struct bbm_log_entry *entry = NULL;
while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
struct bbm_log_entry *e = &log->marked_block_entries[pos];
if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
(__le48_to_cpu(&e->defective_block_start) == sector)) {
sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
pos = pos + 1;
continue;
}
entry = e;
break;
}
if (entry) {
int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
BBM_LOG_MAX_LBA_ENTRY_VAL;
entry->defective_block_start = __cpu_to_le48(sector);
entry->marked_count = cnt - 1;
if (cnt == length)
return 1;
sector += cnt;
length -= cnt;
}
new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
BBM_LOG_MAX_LBA_ENTRY_VAL;
if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
return 0;
while (length > 0) {
int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
BBM_LOG_MAX_LBA_ENTRY_VAL;
struct bbm_log_entry *entry =
&log->marked_block_entries[log->entry_count];
entry->defective_block_start = __cpu_to_le48(sector);
entry->marked_count = cnt - 1;
entry->disk_ordinal = idx;
sector += cnt;
length -= cnt;
log->entry_count++;
}
return new_bb;
}
/* clear all bad blocks for given disk */
static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
{
__u32 i = 0;
while (i < log->entry_count) {
struct bbm_log_entry *entries = log->marked_block_entries;
if (entries[i].disk_ordinal == idx) {
if (i < log->entry_count - 1)
entries[i] = entries[log->entry_count - 1];
log->entry_count--;
} else {
i++;
}
}
}
/* clear given bad block */
static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
long long sector, const int length) {
__u32 i = 0;
while (i < log->entry_count) {
struct bbm_log_entry *entries = log->marked_block_entries;
if ((entries[i].disk_ordinal == idx) &&
(__le48_to_cpu(&entries[i].defective_block_start) ==
sector) && (entries[i].marked_count + 1 == length)) {
if (i < log->entry_count - 1)
entries[i] = entries[log->entry_count - 1];
log->entry_count--;
break;
}
i++;
}
return 1;
}
/* allocate and load BBM log from metadata */
static int load_bbm_log(struct intel_super *super)
{
struct imsm_super *mpb = super->anchor;
__u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
if (!super->bbm_log)
return 1;
if (bbm_log_size) {
struct bbm_log *log = (void *)mpb +
__le32_to_cpu(mpb->mpb_size) - bbm_log_size;
__u32 entry_count;
if (bbm_log_size < sizeof(log->signature) +
sizeof(log->entry_count))
return 2;
entry_count = __le32_to_cpu(log->entry_count);
if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
(entry_count > BBM_LOG_MAX_ENTRIES))
return 3;
if (bbm_log_size !=
sizeof(log->signature) + sizeof(log->entry_count) +
entry_count * sizeof(struct bbm_log_entry))
return 4;
memcpy(super->bbm_log, log, bbm_log_size);
} else {
super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
super->bbm_log->entry_count = 0;
}
return 0;
}
/* checks if bad block is within volume boundaries */
static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
const unsigned long long start_sector,
const unsigned long long size)
{
unsigned long long bb_start;
unsigned long long bb_end;
bb_start = __le48_to_cpu(&entry->defective_block_start);
bb_end = bb_start + (entry->marked_count + 1);
if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
((bb_end >= start_sector) && (bb_end <= start_sector + size)))
return 1;
return 0;
}
/* get list of bad blocks on a drive for a volume */
static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
const unsigned long long start_sector,
const unsigned long long size,
struct md_bb *bbs)
{
__u32 count = 0;
__u32 i;
for (i = 0; i < log->entry_count; i++) {
const struct bbm_log_entry *ent =
&log->marked_block_entries[i];
struct md_bb_entry *bb;
if ((ent->disk_ordinal == idx) &&
is_bad_block_in_volume(ent, start_sector, size)) {
if (!bbs->entries) {
bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
sizeof(*bb));
if (!bbs->entries)
break;
}
bb = &bbs->entries[count++];
bb->sector = __le48_to_cpu(&ent->defective_block_start);
bb->length = ent->marked_count + 1;
}
}
bbs->count = count;
}
/*
* for second_map:
* == MAP_0 get first map
* == MAP_1 get second map
* == MAP_X than get map according to the current migr_state
*/
static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
int slot,
int second_map)
{
struct imsm_map *map;
map = get_imsm_map(dev, second_map);
/* top byte identifies disk under rebuild */
return __le32_to_cpu(map->disk_ord_tbl[slot]);
}
#define ord_to_idx(ord) (((ord) << 8) >> 8)
static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
{
__u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
return ord_to_idx(ord);
}
static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
{
map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
}
static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
{
int slot;
__u32 ord;
for (slot = 0; slot < map->num_members; slot++) {
ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
if (ord_to_idx(ord) == idx)
return slot;
}
return -1;
}
static int get_imsm_raid_level(struct imsm_map *map)
{
if (map->raid_level == 1) {
if (map->num_members == 2)
return 1;
else
return 10;
}
return map->raid_level;
}
static int cmp_extent(const void *av, const void *bv)
{
const struct extent *a = av;
const struct extent *b = bv;
if (a->start < b->start)
return -1;
if (a->start > b->start)
return 1;
return 0;
}
static int count_memberships(struct dl *dl, struct intel_super *super)
{
int memberships = 0;
int i;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
if (get_imsm_disk_slot(map, dl->index) >= 0)
memberships++;
}
return memberships;
}
static __u32 imsm_min_reserved_sectors(struct intel_super *super);
static int split_ull(unsigned long long n, void *lo, void *hi)
{
if (lo == 0 || hi == 0)
return 1;
__put_unaligned32(__cpu_to_le32((__u32)n), lo);
__put_unaligned32(__cpu_to_le32((n >> 32)), hi);
return 0;
}
static unsigned long long join_u32(__u32 lo, __u32 hi)
{
return (unsigned long long)__le32_to_cpu(lo) |
(((unsigned long long)__le32_to_cpu(hi)) << 32);
}
static unsigned long long total_blocks(struct imsm_disk *disk)
{
if (disk == NULL)
return 0;
return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
}
static unsigned long long pba_of_lba0(struct imsm_map *map)
{
if (map == NULL)
return 0;
return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
}
static unsigned long long blocks_per_member(struct imsm_map *map)
{
if (map == NULL)
return 0;
return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
}
static unsigned long long num_data_stripes(struct imsm_map *map)
{
if (map == NULL)
return 0;
return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
}
static unsigned long long imsm_dev_size(struct imsm_dev *dev)
{
if (dev == NULL)
return 0;
return join_u32(dev->size_low, dev->size_high);
}
static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
{
if (migr_rec == NULL)
return 0;
return join_u32(migr_rec->ckpt_area_pba_lo,
migr_rec->ckpt_area_pba_hi);
}
static unsigned long long current_migr_unit(struct migr_record *migr_rec)
{
if (migr_rec == NULL)
return 0;
return join_u32(migr_rec->curr_migr_unit_lo,
migr_rec->curr_migr_unit_hi);
}
static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
{
if (migr_rec == NULL)
return 0;
return join_u32(migr_rec->dest_1st_member_lba_lo,
migr_rec->dest_1st_member_lba_hi);
}
static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
{
if (migr_rec == NULL)
return 0;
return join_u32(migr_rec->num_migr_units_lo,
migr_rec->num_migr_units_hi);
}
static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
{
split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
}
static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
{
split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
}
static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
{
split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
}
static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
{
split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
}
static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
{
split_ull(n, &dev->size_low, &dev->size_high);
}
static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
unsigned long long n)
{
split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
}
static void set_current_migr_unit(struct migr_record *migr_rec,
unsigned long long n)
{
split_ull(n, &migr_rec->curr_migr_unit_lo,
&migr_rec->curr_migr_unit_hi);
}
static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
unsigned long long n)
{
split_ull(n, &migr_rec->dest_1st_member_lba_lo,
&migr_rec->dest_1st_member_lba_hi);
}
static void set_num_migr_units(struct migr_record *migr_rec,
unsigned long long n)
{
split_ull(n, &migr_rec->num_migr_units_lo,
&migr_rec->num_migr_units_hi);
}
static unsigned long long per_dev_array_size(struct imsm_map *map)
{
unsigned long long array_size = 0;
if (map == NULL)
return array_size;
array_size = num_data_stripes(map) * map->blocks_per_strip;
if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
array_size *= 2;
return array_size;
}
static struct extent *get_extents(struct intel_super *super, struct dl *dl,
int get_minimal_reservation)
{
/* find a list of used extents on the given physical device */
struct extent *rv, *e;
int i;
int memberships = count_memberships(dl, super);
__u32 reservation;
/* trim the reserved area for spares, so they can join any array
* regardless of whether the OROM has assigned sectors from the
* IMSM_RESERVED_SECTORS region
*/
if (dl->index == -1 || get_minimal_reservation)
reservation = imsm_min_reserved_sectors(super);
else
reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
rv = xcalloc(sizeof(struct extent), (memberships + 1));
e = rv;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
if (get_imsm_disk_slot(map, dl->index) >= 0) {
e->start = pba_of_lba0(map);
e->size = per_dev_array_size(map);
e++;
}
}
qsort(rv, memberships, sizeof(*rv), cmp_extent);
/* determine the start of the metadata
* when no raid devices are defined use the default
* ...otherwise allow the metadata to truncate the value
* as is the case with older versions of imsm
*/
if (memberships) {
struct extent *last = &rv[memberships - 1];
unsigned long long remainder;
remainder = total_blocks(&dl->disk) - (last->start + last->size);
/* round down to 1k block to satisfy precision of the kernel
* 'size' interface
*/
remainder &= ~1UL;
/* make sure remainder is still sane */
if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
remainder = ROUND_UP(super->len, 512) >> 9;
if (reservation > remainder)
reservation = remainder;
}
e->start = total_blocks(&dl->disk) - reservation;
e->size = 0;
return rv;
}
/* try to determine how much space is reserved for metadata from
* the last get_extents() entry, otherwise fallback to the
* default
*/
static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
{
struct extent *e;
int i;
__u32 rv;
/* for spares just return a minimal reservation which will grow
* once the spare is picked up by an array
*/
if (dl->index == -1)
return MPB_SECTOR_CNT;
e = get_extents(super, dl, 0);
if (!e)
return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
/* scroll to last entry */
for (i = 0; e[i].size; i++)
continue;
rv = total_blocks(&dl->disk) - e[i].start;
free(e);
return rv;
}
static int is_spare(struct imsm_disk *disk)
{
return (disk->status & SPARE_DISK) == SPARE_DISK;
}
static int is_configured(struct imsm_disk *disk)
{
return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
}
static int is_failed(struct imsm_disk *disk)
{
return (disk->status & FAILED_DISK) == FAILED_DISK;
}
static int is_journal(struct imsm_disk *disk)
{
return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
}
/* round array size down to closest MB and ensure it splits evenly
* between members
*/
static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
disk_count)
{
size /= disk_count;
size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
size *= disk_count;
return size;
}
static int able_to_resync(int raid_level, int missing_disks)
{
int max_missing_disks = 0;
switch (raid_level) {
case 10:
max_missing_disks = 1;
break;
default:
max_missing_disks = 0;
}
return missing_disks <= max_missing_disks;
}
/* try to determine how much space is reserved for metadata from
* the last get_extents() entry on the smallest active disk,
* otherwise fallback to the default
*/
static __u32 imsm_min_reserved_sectors(struct intel_super *super)
{
struct extent *e;
int i;
unsigned long long min_active;
__u32 remainder;
__u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
struct dl *dl, *dl_min = NULL;
if (!super)
return rv;
min_active = 0;
for (dl = super->disks; dl; dl = dl->next) {
if (dl->index < 0)
continue;
unsigned long long blocks = total_blocks(&dl->disk);
if (blocks < min_active || min_active == 0) {
dl_min = dl;
min_active = blocks;
}
}
if (!dl_min)
return rv;
/* find last lba used by subarrays on the smallest active disk */
e = get_extents(super, dl_min, 0);
if (!e)
return rv;
for (i = 0; e[i].size; i++)
continue;
remainder = min_active - e[i].start;
free(e);
/* to give priority to recovery we should not require full
IMSM_RESERVED_SECTORS from the spare */
rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
/* if real reservation is smaller use that value */
return (remainder < rv) ? remainder : rv;
}
/*
* Return minimum size of a spare and sector size
* that can be used in this array
*/
int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
{
struct intel_super *super = st->sb;
struct dl *dl;
struct extent *e;
int i;
unsigned long long size = 0;
c->min_size = 0;
c->sector_size = 0;
if (!super)
return -EINVAL;
/* find first active disk in array */
dl = super->disks;
while (dl && (is_failed(&dl->disk) || dl->index == -1))
dl = dl->next;
if (!dl)
return -EINVAL;
/* find last lba used by subarrays */
e = get_extents(super, dl, 0);
if (!e)
return -EINVAL;
for (i = 0; e[i].size; i++)
continue;
if (i > 0)
size = e[i-1].start + e[i-1].size;
free(e);
/* add the amount of space needed for metadata */
size += imsm_min_reserved_sectors(super);
c->min_size = size * 512;
c->sector_size = super->sector_size;
return 0;
}
static int is_gen_migration(struct imsm_dev *dev);
#define IMSM_4K_DIV 8
static __u64 blocks_per_migr_unit(struct intel_super *super,
struct imsm_dev *dev);
static void print_imsm_dev(struct intel_super *super,
struct imsm_dev *dev,
char *uuid,
int disk_idx)
{
__u64 sz;
int slot, i;
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
__u32 ord;
printf("\n");
printf("[%.16s]:\n", dev->volume);
printf(" UUID : %s\n", uuid);
printf(" RAID Level : %d", get_imsm_raid_level(map));
if (map2)
printf(" <-- %d", get_imsm_raid_level(map2));
printf("\n");
printf(" Members : %d", map->num_members);
if (map2)
printf(" <-- %d", map2->num_members);
printf("\n");
printf(" Slots : [");
for (i = 0; i < map->num_members; i++) {
ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
}
printf("]");
if (map2) {
printf(" <-- [");
for (i = 0; i < map2->num_members; i++) {
ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
}
printf("]");
}
printf("\n");
printf(" Failed disk : ");
if (map->failed_disk_num == 0xff)
printf("none");
else
printf("%i", map->failed_disk_num);
printf("\n");
slot = get_imsm_disk_slot(map, disk_idx);
if (slot >= 0) {
ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
printf(" This Slot : %d%s\n", slot,
ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
} else
printf(" This Slot : ?\n");
printf(" Sector Size : %u\n", super->sector_size);
sz = imsm_dev_size(dev);
printf(" Array Size : %llu%s\n",
(unsigned long long)sz * 512 / super->sector_size,
human_size(sz * 512));
sz = blocks_per_member(map);
printf(" Per Dev Size : %llu%s\n",
(unsigned long long)sz * 512 / super->sector_size,
human_size(sz * 512));
printf(" Sector Offset : %llu\n",
pba_of_lba0(map));
printf(" Num Stripes : %llu\n",
num_data_stripes(map));
printf(" Chunk Size : %u KiB",
__le16_to_cpu(map->blocks_per_strip) / 2);
if (map2)
printf(" <-- %u KiB",
__le16_to_cpu(map2->blocks_per_strip) / 2);
printf("\n");
printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
printf(" Migrate State : ");
if (dev->vol.migr_state) {
if (migr_type(dev) == MIGR_INIT)
printf("initialize\n");
else if (migr_type(dev) == MIGR_REBUILD)
printf("rebuild\n");
else if (migr_type(dev) == MIGR_VERIFY)
printf("check\n");
else if (migr_type(dev) == MIGR_GEN_MIGR)
printf("general migration\n");
else if (migr_type(dev) == MIGR_STATE_CHANGE)
printf("state change\n");
else if (migr_type(dev) == MIGR_REPAIR)
printf("repair\n");
else
printf("<unknown:%d>\n", migr_type(dev));
} else
printf("idle\n");
printf(" Map State : %s", map_state_str[map->map_state]);
if (dev->vol.migr_state) {
struct imsm_map *map = get_imsm_map(dev, MAP_1);
printf(" <-- %s", map_state_str[map->map_state]);
printf("\n Checkpoint : %u ",
__le32_to_cpu(dev->vol.curr_migr_unit));
if (is_gen_migration(dev) && (slot > 1 || slot < 0))
printf("(N/A)");
else
printf("(%llu)", (unsigned long long)
blocks_per_migr_unit(super, dev));
}
printf("\n");
printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
"dirty" : "clean");
printf(" RWH Policy : ");
if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
printf("off\n");
else if (dev->rwh_policy == RWH_DISTRIBUTED)
printf("PPL distributed\n");
else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
printf("PPL journaling drive\n");
else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
printf("Multiple distributed PPLs\n");
else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
printf("Multiple PPLs on journaling drive\n");
else
printf("<unknown:%d>\n", dev->rwh_policy);
}
static void print_imsm_disk(struct imsm_disk *disk,
int index,
__u32 reserved,
unsigned int sector_size) {
char str[MAX_RAID_SERIAL_LEN + 1];
__u64 sz;
if (index < -1 || !disk)
return;
printf("\n");
snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
if (index >= 0)
printf(" Disk%02d Serial : %s\n", index, str);
else
printf(" Disk Serial : %s\n", str);
printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
is_configured(disk) ? " active" : "",
is_failed(disk) ? " failed" : "",
is_journal(disk) ? " journal" : "");
printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
sz = total_blocks(disk) - reserved;
printf(" Usable Size : %llu%s\n",
(unsigned long long)sz * 512 / sector_size,
human_size(sz * 512));
}
void convert_to_4k_imsm_migr_rec(struct intel_super *super)
{
struct migr_record *migr_rec = super->migr_rec;
migr_rec->blocks_per_unit /= IMSM_4K_DIV;
migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
split_ull((join_u32(migr_rec->post_migr_vol_cap,
migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
&migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
set_migr_chkp_area_pba(migr_rec,
migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
set_migr_dest_1st_member_lba(migr_rec,
migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
}
void convert_to_4k_imsm_disk(struct imsm_disk *disk)
{
set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
}
void convert_to_4k(struct intel_super *super)
{
struct imsm_super *mpb = super->anchor;
struct imsm_disk *disk;
int i;
__u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
for (i = 0; i < mpb->num_disks ; i++) {
disk = __get_imsm_disk(mpb, i);
/* disk */
convert_to_4k_imsm_disk(disk);
}
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
/* dev */
set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
dev->vol.curr_migr_unit /= IMSM_4K_DIV;
/* map0 */
set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
map->blocks_per_strip /= IMSM_4K_DIV;
set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
if (dev->vol.migr_state) {
/* map1 */
map = get_imsm_map(dev, MAP_1);
set_blocks_per_member(map,
blocks_per_member(map)/IMSM_4K_DIV);
map->blocks_per_strip /= IMSM_4K_DIV;
set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
}
}
if (bbm_log_size) {
struct bbm_log *log = (void *)mpb +
__le32_to_cpu(mpb->mpb_size) - bbm_log_size;
__u32 i;
for (i = 0; i < log->entry_count; i++) {
struct bbm_log_entry *entry =
&log->marked_block_entries[i];
__u8 count = entry->marked_count + 1;
unsigned long long sector =
__le48_to_cpu(&entry->defective_block_start);
entry->defective_block_start =
__cpu_to_le48(sector/IMSM_4K_DIV);
entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
}
}
mpb->check_sum = __gen_imsm_checksum(mpb);
}
void examine_migr_rec_imsm(struct intel_super *super)
{
struct migr_record *migr_rec = super->migr_rec;
struct imsm_super *mpb = super->anchor;
int i;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
struct imsm_map *map;
int slot = -1;
if (is_gen_migration(dev) == 0)
continue;
printf("\nMigration Record Information:");
/* first map under migration */
map = get_imsm_map(dev, MAP_0);
if (map)
slot = get_imsm_disk_slot(map, super->disks->index);
if (map == NULL || slot > 1 || slot < 0) {
printf(" Empty\n ");
printf("Examine one of first two disks in array\n");
break;
}
printf("\n Status : ");
if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
printf("Normal\n");
else
printf("Contains Data\n");
printf(" Current Unit : %llu\n",
current_migr_unit(migr_rec));
printf(" Family : %u\n",
__le32_to_cpu(migr_rec->family_num));
printf(" Ascending : %u\n",
__le32_to_cpu(migr_rec->ascending_migr));
printf(" Blocks Per Unit : %u\n",
__le32_to_cpu(migr_rec->blocks_per_unit));
printf(" Dest. Depth Per Unit : %u\n",
__le32_to_cpu(migr_rec->dest_depth_per_unit));
printf(" Checkpoint Area pba : %llu\n",
migr_chkp_area_pba(migr_rec));
printf(" First member lba : %llu\n",
migr_dest_1st_member_lba(migr_rec));
printf(" Total Number of Units : %llu\n",
get_num_migr_units(migr_rec));
printf(" Size of volume : %llu\n",
join_u32(migr_rec->post_migr_vol_cap,
migr_rec->post_migr_vol_cap_hi));
printf(" Record was read from : %u\n",
__le32_to_cpu(migr_rec->ckpt_read_disk_num));
break;
}
}
void convert_from_4k_imsm_migr_rec(struct intel_super *super)
{
struct migr_record *migr_rec = super->migr_rec;
migr_rec->blocks_per_unit *= IMSM_4K_DIV;
migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
split_ull((join_u32(migr_rec->post_migr_vol_cap,
migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
&migr_rec->post_migr_vol_cap,
&migr_rec->post_migr_vol_cap_hi);
set_migr_chkp_area_pba(migr_rec,
migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
set_migr_dest_1st_member_lba(migr_rec,
migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
}
void convert_from_4k(struct intel_super *super)
{
struct imsm_super *mpb = super->anchor;
struct imsm_disk *disk;
int i;
__u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
for (i = 0; i < mpb->num_disks ; i++) {
disk = __get_imsm_disk(mpb, i);
/* disk */
set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
}
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
/* dev */
set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
dev->vol.curr_migr_unit *= IMSM_4K_DIV;
/* map0 */
set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
map->blocks_per_strip *= IMSM_4K_DIV;
set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
if (dev->vol.migr_state) {
/* map1 */
map = get_imsm_map(dev, MAP_1);
set_blocks_per_member(map,
blocks_per_member(map)*IMSM_4K_DIV);
map->blocks_per_strip *= IMSM_4K_DIV;
set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
}
}
if (bbm_log_size) {
struct bbm_log *log = (void *)mpb +
__le32_to_cpu(mpb->mpb_size) - bbm_log_size;
__u32 i;
for (i = 0; i < log->entry_count; i++) {
struct bbm_log_entry *entry =
&log->marked_block_entries[i];
__u8 count = entry->marked_count + 1;
unsigned long long sector =
__le48_to_cpu(&entry->defective_block_start);
entry->defective_block_start =
__cpu_to_le48(sector*IMSM_4K_DIV);
entry->marked_count = count*IMSM_4K_DIV - 1;
}
}
mpb->check_sum = __gen_imsm_checksum(mpb);
}
/*******************************************************************************
* function: imsm_check_attributes
* Description: Function checks if features represented by attributes flags
* are supported by mdadm.
* Parameters:
* attributes - Attributes read from metadata
* Returns:
* 0 - passed attributes contains unsupported features flags
* 1 - all features are supported
******************************************************************************/
static int imsm_check_attributes(__u32 attributes)
{
int ret_val = 1;
__u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
not_supported &= ~MPB_ATTRIB_IGNORED;
not_supported &= attributes;
if (not_supported) {
pr_err("(IMSM): Unsupported attributes : %x\n",
(unsigned)__le32_to_cpu(not_supported));
if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
}
if (not_supported & MPB_ATTRIB_2TB) {
dprintf("\t\tMPB_ATTRIB_2TB\n");
not_supported ^= MPB_ATTRIB_2TB;
}
if (not_supported & MPB_ATTRIB_RAID0) {
dprintf("\t\tMPB_ATTRIB_RAID0\n");
not_supported ^= MPB_ATTRIB_RAID0;
}
if (not_supported & MPB_ATTRIB_RAID1) {
dprintf("\t\tMPB_ATTRIB_RAID1\n");
not_supported ^= MPB_ATTRIB_RAID1;
}
if (not_supported & MPB_ATTRIB_RAID10) {
dprintf("\t\tMPB_ATTRIB_RAID10\n");
not_supported ^= MPB_ATTRIB_RAID10;
}
if (not_supported & MPB_ATTRIB_RAID1E) {
dprintf("\t\tMPB_ATTRIB_RAID1E\n");
not_supported ^= MPB_ATTRIB_RAID1E;
}
if (not_supported & MPB_ATTRIB_RAID5) {
dprintf("\t\tMPB_ATTRIB_RAID5\n");
not_supported ^= MPB_ATTRIB_RAID5;
}
if (not_supported & MPB_ATTRIB_RAIDCNG) {
dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
not_supported ^= MPB_ATTRIB_RAIDCNG;
}
if (not_supported & MPB_ATTRIB_BBM) {
dprintf("\t\tMPB_ATTRIB_BBM\n");
not_supported ^= MPB_ATTRIB_BBM;
}
if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
}
if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
}
if (not_supported & MPB_ATTRIB_2TB_DISK) {
dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
not_supported ^= MPB_ATTRIB_2TB_DISK;
}
if (not_supported & MPB_ATTRIB_NEVER_USE2) {
dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
not_supported ^= MPB_ATTRIB_NEVER_USE2;
}
if (not_supported & MPB_ATTRIB_NEVER_USE) {
dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
not_supported ^= MPB_ATTRIB_NEVER_USE;
}
if (not_supported)
dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
ret_val = 0;
}
return ret_val;
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
static void examine_super_imsm(struct supertype *st, char *homehost)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
char str[MAX_SIGNATURE_LENGTH];
int i;
struct mdinfo info;
char nbuf[64];
__u32 sum;
__u32 reserved = imsm_reserved_sectors(super, super->disks);
struct dl *dl;
strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
str[MPB_SIG_LEN-1] = '\0';
printf(" Magic : %s\n", str);
printf(" Version : %s\n", get_imsm_version(mpb));
printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
printf(" Attributes : ");
if (imsm_check_attributes(mpb->attributes))
printf("All supported\n");
else
printf("not supported\n");
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf(" UUID : %s\n", nbuf + 5);
sum = __le32_to_cpu(mpb->check_sum);
printf(" Checksum : %08x %s\n", sum,
__gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
printf(" Disks : %d\n", mpb->num_disks);
printf(" RAID Devices : %d\n", mpb->num_raid_devs);
print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
super->disks->index, reserved, super->sector_size);
if (get_imsm_bbm_log_size(super->bbm_log)) {
struct bbm_log *log = super->bbm_log;
printf("\n");
printf("Bad Block Management Log:\n");
printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
printf(" Signature : %x\n", __le32_to_cpu(log->signature));
printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
}
for (i = 0; i < mpb->num_raid_devs; i++) {
struct mdinfo info;
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
super->current_vol = i;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
}
for (i = 0; i < mpb->num_disks; i++) {
if (i == super->disks->index)
continue;
print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
super->sector_size);
}
for (dl = super->disks; dl; dl = dl->next)
if (dl->index == -1)
print_imsm_disk(&dl->disk, -1, reserved,
super->sector_size);
examine_migr_rec_imsm(super);
}
static void brief_examine_super_imsm(struct supertype *st, int verbose)
{
/* We just write a generic IMSM ARRAY entry */
struct mdinfo info;
char nbuf[64];
struct intel_super *super = st->sb;
if (!super->anchor->num_raid_devs) {
printf("ARRAY metadata=imsm\n");
return;
}
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
}
static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
{
/* We just write a generic IMSM ARRAY entry */
struct mdinfo info;
char nbuf[64];
char nbuf1[64];
struct intel_super *super = st->sb;
int i;
if (!super->anchor->num_raid_devs)
return;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
super->current_vol = i;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf1, ':');
printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
dev->volume, nbuf + 5, i, nbuf1 + 5);
}
}
static void export_examine_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct mdinfo info;
char nbuf[64];
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("MD_METADATA=imsm\n");
printf("MD_LEVEL=container\n");
printf("MD_UUID=%s\n", nbuf+5);
printf("MD_DEVICES=%u\n", mpb->num_disks);
}
static int copy_metadata_imsm(struct supertype *st, int from, int to)
{
/* The second last sector of the device contains
* the "struct imsm_super" metadata.
* This contains mpb_size which is the size in bytes of the
* extended metadata. This is located immediately before
* the imsm_super.
* We want to read all that, plus the last sector which
* may contain a migration record, and write it all
* to the target.
*/
void *buf;
unsigned long long dsize, offset;
int sectors;
struct imsm_super *sb;
struct intel_super *super = st->sb;
unsigned int sector_size = super->sector_size;
unsigned int written = 0;
if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
return 1;
if (!get_dev_size(from, NULL, &dsize))
goto err;
if (lseek64(from, dsize-(2*sector_size), 0) < 0)
goto err;
if ((unsigned int)read(from, buf, sector_size) != sector_size)
goto err;
sb = buf;
if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
goto err;
sectors = mpb_sectors(sb, sector_size) + 2;
offset = dsize - sectors * sector_size;
if (lseek64(from, offset, 0) < 0 ||
lseek64(to, offset, 0) < 0)
goto err;
while (written < sectors * sector_size) {
int n = sectors*sector_size - written;
if (n > 4096)
n = 4096;
if (read(from, buf, n) != n)
goto err;
if (write(to, buf, n) != n)
goto err;
written += n;
}
free(buf);
return 0;
err:
free(buf);
return 1;
}
static void detail_super_imsm(struct supertype *st, char *homehost,
char *subarray)
{
struct mdinfo info;
char nbuf[64];
struct intel_super *super = st->sb;
int temp_vol = super->current_vol;
if (subarray)
super->current_vol = strtoul(subarray, NULL, 10);
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("\n UUID : %s\n", nbuf + 5);
super->current_vol = temp_vol;
}
static void brief_detail_super_imsm(struct supertype *st, char *subarray)
{
struct mdinfo info;
char nbuf[64];
struct intel_super *super = st->sb;
int temp_vol = super->current_vol;
if (subarray)
super->current_vol = strtoul(subarray, NULL, 10);
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf(" UUID=%s", nbuf + 5);
super->current_vol = temp_vol;
}
static int imsm_read_serial(int fd, char *devname, __u8 *serial,
size_t serial_buf_len);
static void fd2devname(int fd, char *name);
static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
{
/* dump an unsorted list of devices attached to AHCI Intel storage
* controller, as well as non-connected ports
*/
int hba_len = strlen(hba_path) + 1;
struct dirent *ent;
DIR *dir;
char *path = NULL;
int err = 0;
unsigned long port_mask = (1 << port_count) - 1;
if (port_count > (int)sizeof(port_mask) * 8) {
if (verbose > 0)
pr_err("port_count %d out of range\n", port_count);
return 2;
}
/* scroll through /sys/dev/block looking for devices attached to
* this hba
*/
dir = opendir("/sys/dev/block");
if (!dir)
return 1;
for (ent = readdir(dir); ent; ent = readdir(dir)) {
int fd;
char model[64];
char vendor[64];
char buf[1024];
int major, minor;
char *device;
char *c;
int port;
int type;
if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
continue;
path = devt_to_devpath(makedev(major, minor));
if (!path)
continue;
if (!path_attached_to_hba(path, hba_path)) {
free(path);
path = NULL;
continue;
}
/* retrieve the scsi device type */
if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
if (verbose > 0)
pr_err("failed to allocate 'device'\n");
err = 2;
break;
}
sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
if (load_sys(device, buf, sizeof(buf)) != 0) {
if (verbose > 0)
pr_err("failed to read device type for %s\n",
path);
err = 2;
free(device);
break;
}
type = strtoul(buf, NULL, 10);
/* if it's not a disk print the vendor and model */
if (!(type == 0 || type == 7 || type == 14)) {
vendor[0] = '\0';
model[0] = '\0';
sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
if (load_sys(device, buf, sizeof(buf)) == 0) {
strncpy(vendor, buf, sizeof(vendor));
vendor[sizeof(vendor) - 1] = '\0';
c = (char *) &vendor[sizeof(vendor) - 1];
while (isspace(*c) || *c == '\0')
*c-- = '\0';
}
sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
if (load_sys(device, buf, sizeof(buf)) == 0) {
strncpy(model, buf, sizeof(model));
model[sizeof(model) - 1] = '\0';
c = (char *) &model[sizeof(model) - 1];
while (isspace(*c) || *c == '\0')
*c-- = '\0';
}
if (vendor[0] && model[0])
sprintf(buf, "%.64s %.64s", vendor, model);
else
switch (type) { /* numbers from hald/linux/device.c */
case 1: sprintf(buf, "tape"); break;
case 2: sprintf(buf, "printer"); break;
case 3: sprintf(buf, "processor"); break;
case 4:
case 5: sprintf(buf, "cdrom"); break;
case 6: sprintf(buf, "scanner"); break;
case 8: sprintf(buf, "media_changer"); break;
case 9: sprintf(buf, "comm"); break;
case 12: sprintf(buf, "raid"); break;
default: sprintf(buf, "unknown");
}
} else
buf[0] = '\0';
free(device);
/* chop device path to 'host%d' and calculate the port number */
c = strchr(&path[hba_len], '/');
if (!c) {
if (verbose > 0)
pr_err("%s - invalid path name\n", path + hba_len);
err = 2;
break;
}
*c = '\0';
if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
((sscanf(&path[hba_len], "host%d", &port) == 1)))
port -= host_base;
else {
if (verbose > 0) {
*c = '/'; /* repair the full string */
pr_err("failed to determine port number for %s\n",
path);
}
err = 2;
break;
}
/* mark this port as used */
port_mask &= ~(1 << port);
/* print out the device information */
if (buf[0]) {
printf(" Port%d : - non-disk device (%s) -\n", port, buf);
continue;
}
fd = dev_open(ent->d_name, O_RDONLY);
if (fd < 0)
printf(" Port%d : - disk info unavailable -\n", port);
else {
fd2devname(fd, buf);
printf(" Port%d : %s", port, buf);
if (imsm_read_serial(fd, NULL, (__u8 *)buf,
sizeof(buf)) == 0)
printf(" (%s)\n", buf);
else
printf(" ()\n");
close(fd);
}
free(path);
path = NULL;
}
if (path)
free(path);
if (dir)
closedir(dir);
if (err == 0) {
int i;
for (i = 0; i < port_count; i++)
if (port_mask & (1 << i))
printf(" Port%d : - no device attached -\n", i);
}
return err;
}
static int print_nvme_info(struct sys_dev *hba)
{
char buf[1024];
struct dirent *ent;
DIR *dir;
char *rp;
int fd;
dir = opendir("/sys/block/");
if (!dir)
return 1;
for (ent = readdir(dir); ent; ent = readdir(dir)) {
if (strstr(ent->d_name, "nvme")) {
sprintf(buf, "/sys/block/%s", ent->d_name);
rp = realpath(buf, NULL);
if (!rp)
continue;
if (path_attached_to_hba(rp, hba->path)) {
fd = open_dev(ent->d_name);
if (fd < 0) {
free(rp);
continue;
}
fd2devname(fd, buf);
if (hba->type == SYS_DEV_VMD)
printf(" NVMe under VMD : %s", buf);
else if (hba->type == SYS_DEV_NVME)
printf(" NVMe Device : %s", buf);
if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
sizeof(buf)))
printf(" (%s)\n", buf);
else
printf("()\n");
close(fd);
}
free(rp);
}
}
closedir(dir);
return 0;
}
static void print_found_intel_controllers(struct sys_dev *elem)
{
for (; elem; elem = elem->next) {
pr_err("found Intel(R) ");
if (elem->type == SYS_DEV_SATA)
fprintf(stderr, "SATA ");
else if (elem->type == SYS_DEV_SAS)
fprintf(stderr, "SAS ");
else if (elem->type == SYS_DEV_NVME)
fprintf(stderr, "NVMe ");
if (elem->type == SYS_DEV_VMD)
fprintf(stderr, "VMD domain");
else
fprintf(stderr, "RAID controller");
if (elem->pci_id)
fprintf(stderr, " at %s", elem->pci_id);
fprintf(stderr, ".\n");
}
fflush(stderr);
}
static int ahci_get_port_count(const char *hba_path, int *port_count)
{
struct dirent *ent;
DIR *dir;
int host_base = -1;
*port_count = 0;
if ((dir = opendir(hba_path)) == NULL)
return -1;
for (ent = readdir(dir); ent; ent = readdir(dir)) {
int host;
if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
((sscanf(ent->d_name, "host%d", &host) != 1)))
continue;
if (*port_count == 0)
host_base = host;
else if (host < host_base)
host_base = host;
if (host + 1 > *port_count + host_base)
*port_count = host + 1 - host_base;
}
closedir(dir);
return host_base;
}
static void print_imsm_capability(const struct imsm_orom *orom)
{
printf(" Platform : Intel(R) ");
if (orom->capabilities == 0 && orom->driver_features == 0)
printf("Matrix Storage Manager\n");
else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
printf("Virtual RAID on CPU\n");
else
printf("Rapid Storage Technology%s\n",
imsm_orom_is_enterprise(orom) ? " enterprise" : "");
if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
orom->minor_ver, orom->hotfix_ver, orom->build);
printf(" RAID Levels :%s%s%s%s%s\n",
imsm_orom_has_raid0(orom) ? " raid0" : "",
imsm_orom_has_raid1(orom) ? " raid1" : "",
imsm_orom_has_raid1e(orom) ? " raid1e" : "",
imsm_orom_has_raid10(orom) ? " raid10" : "",
imsm_orom_has_raid5(orom) ? " raid5" : "");
printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
printf(" 2TB volumes :%s supported\n",
(orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
printf(" 2TB disks :%s supported\n",
(orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
printf(" Max Disks : %d\n", orom->tds);
printf(" Max Volumes : %d per array, %d per %s\n",
orom->vpa, orom->vphba,
imsm_orom_is_nvme(orom) ? "platform" : "controller");
return;
}
static void print_imsm_capability_export(const struct imsm_orom *orom)
{
printf("MD_FIRMWARE_TYPE=imsm\n");
if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
orom->hotfix_ver, orom->build);
printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
imsm_orom_has_raid0(orom) ? "raid0 " : "",
imsm_orom_has_raid1(orom) ? "raid1 " : "",
imsm_orom_has_raid1e(orom) ? "raid1e " : "",
imsm_orom_has_raid5(orom) ? "raid10 " : "",
imsm_orom_has_raid10(orom) ? "raid5 " : "");
printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
imsm_orom_has_chunk(orom, 2) ? "2k " : "",
imsm_orom_has_chunk(orom, 4) ? "4k " : "",
imsm_orom_has_chunk(orom, 8) ? "8k " : "",
imsm_orom_has_chunk(orom, 16) ? "16k " : "",
imsm_orom_has_chunk(orom, 32) ? "32k " : "",
imsm_orom_has_chunk(orom, 64) ? "64k " : "",
imsm_orom_has_chunk(orom, 128) ? "128k " : "",
imsm_orom_has_chunk(orom, 256) ? "256k " : "",
imsm_orom_has_chunk(orom, 512) ? "512k " : "",
imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
printf("IMSM_MAX_DISKS=%d\n",orom->tds);
printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
}
static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
{
/* There are two components to imsm platform support, the ahci SATA
* controller and the option-rom. To find the SATA controller we
* simply look in /sys/bus/pci/drivers/ahci to see if an ahci
* controller with the Intel vendor id is present. This approach
* allows mdadm to leverage the kernel's ahci detection logic, with the
* caveat that if ahci.ko is not loaded mdadm will not be able to
* detect platform raid capabilities. The option-rom resides in a
* platform "Adapter ROM". We scan for its signature to retrieve the
* platform capabilities. If raid support is disabled in the BIOS the
* option-rom capability structure will not be available.
*/
struct sys_dev *list, *hba;
int host_base = 0;
int port_count = 0;
int result=1;
if (enumerate_only) {
if (check_env("IMSM_NO_PLATFORM"))
return 0;
list = find_intel_devices();
if (!list)
return 2;
for (hba = list; hba; hba = hba->next) {
if (find_imsm_capability(hba)) {
result = 0;
break;
}
else
result = 2;
}
return result;
}
list = find_intel_devices();
if (!list) {
if (verbose > 0)
pr_err("no active Intel(R) RAID controller found.\n");
return 2;
} else if (verbose > 0)
print_found_intel_controllers(list);
for (hba = list; hba; hba = hba->next) {
if (controller_path && (compare_paths(hba->path, controller_path) != 0))
continue;
if (!find_imsm_capability(hba)) {
char buf[PATH_MAX];
pr_err("imsm capabilities not found for controller: %s (type %s)\n",
hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
get_sys_dev_type(hba->type));
continue;
}
result = 0;
}
if (controller_path && result == 1) {
pr_err("no active Intel(R) RAID controller found under %s\n",
controller_path);
return result;
}
const struct orom_entry *entry;
for (entry = orom_entries; entry; entry = entry->next) {
if (entry->type == SYS_DEV_VMD) {
print_imsm_capability(&entry->orom);
printf(" 3rd party NVMe :%s supported\n",
imsm_orom_has_tpv_support(&entry->orom)?"":" not");
for (hba = list; hba; hba = hba->next) {
if (hba->type == SYS_DEV_VMD) {
char buf[PATH_MAX];
printf(" I/O Controller : %s (%s)\n",
vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
if (print_nvme_info(hba)) {
if (verbose > 0)
pr_err("failed to get devices attached to VMD domain.\n");
result |= 2;
}
}
}
printf("\n");
continue;
}
print_imsm_capability(&entry->orom);
if (entry->type == SYS_DEV_NVME) {
for (hba = list; hba; hba = hba->next) {
if (hba->type == SYS_DEV_NVME)
print_nvme_info(hba);
}
printf("\n");
continue;
}
struct devid_list *devid;
for (devid = entry->devid_list; devid; devid = devid->next) {
hba = device_by_id(devid->devid);
if (!hba)
continue;
printf(" I/O Controller : %s (%s)\n",
hba->path, get_sys_dev_type(hba->type));
if (hba->type == SYS_DEV_SATA) {
host_base = ahci_get_port_count(hba->path, &port_count);
if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
if (verbose > 0)
pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
result |= 2;
}
}
}
printf("\n");
}
return result;
}
static int export_detail_platform_imsm(int verbose, char *controller_path)
{
struct sys_dev *list, *hba;
int result=1;
list = find_intel_devices();
if (!list) {
if (verbose > 0)
pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
result = 2;
return result;
}
for (hba = list; hba; hba = hba->next) {
if (controller_path && (compare_paths(hba->path,controller_path) != 0))
continue;
if (!find_imsm_capability(hba) && verbose > 0) {
char buf[PATH_MAX];
pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
}
else
result = 0;
}
const struct orom_entry *entry;
for (entry = orom_entries; entry; entry = entry->next) {
if (entry->type == SYS_DEV_VMD) {
for (hba = list; hba; hba = hba->next)
print_imsm_capability_export(&entry->orom);
continue;
}
print_imsm_capability_export(&entry->orom);
}
return result;
}
static int match_home_imsm(struct supertype *st, char *homehost)
{
/* the imsm metadata format does not specify any host
* identification information. We return -1 since we can never
* confirm nor deny whether a given array is "meant" for this
* host. We rely on compare_super and the 'family_num' fields to
* exclude member disks that do not belong, and we rely on
* mdadm.conf to specify the arrays that should be assembled.
* Auto-assembly may still pick up "foreign" arrays.
*/
return -1;
}
static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
{
/* The uuid returned here is used for:
* uuid to put into bitmap file (Create, Grow)
* uuid for backup header when saving critical section (Grow)
* comparing uuids when re-adding a device into an array
* In these cases the uuid required is that of the data-array,
* not the device-set.
* uuid to recognise same set when adding a missing device back
* to an array. This is a uuid for the device-set.
*
* For each of these we can make do with a truncated
* or hashed uuid rather than the original, as long as
* everyone agrees.
* In each case the uuid required is that of the data-array,
* not the device-set.
*/
/* imsm does not track uuid's so we synthesis one using sha1 on
* - The signature (Which is constant for all imsm array, but no matter)
* - the orig_family_num of the container
* - the index number of the volume
* - the 'serial' number of the volume.
* Hopefully these are all constant.
*/
struct intel_super *super = st->sb;
char buf[20];
struct sha1_ctx ctx;
struct imsm_dev *dev = NULL;
__u32 family_num;
/* some mdadm versions failed to set ->orig_family_num, in which
* case fall back to ->family_num. orig_family_num will be
* fixed up with the first metadata update.
*/
family_num = super->anchor->orig_family_num;
if (family_num == 0)
family_num = super->anchor->family_num;
sha1_init_ctx(&ctx);
sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
if (super->current_vol >= 0)
dev = get_imsm_dev(super, super->current_vol);
if (dev) {
__u32 vol = super->current_vol;
sha1_process_bytes(&vol, sizeof(vol), &ctx);
sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
}
sha1_finish_ctx(&ctx, buf);
memcpy(uuid, buf, 4*4);
}
#if 0
static void
get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
{
__u8 *v = get_imsm_version(mpb);
__u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
char major[] = { 0, 0, 0 };
char minor[] = { 0 ,0, 0 };
char patch[] = { 0, 0, 0 };
char *ver_parse[] = { major, minor, patch };
int i, j;
i = j = 0;
while (*v != '\0' && v < end) {
if (*v != '.' && j < 2)
ver_parse[i][j++] = *v;
else {
i++;
j = 0;
}
v++;
}
*m = strtol(minor, NULL, 0);
*p = strtol(patch, NULL, 0);
}
#endif
static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
{
/* migr_strip_size when repairing or initializing parity */
struct imsm_map *map = get_imsm_map(dev, MAP_0);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch (get_imsm_raid_level(map)) {
case 5:
case 10:
return chunk;
default:
return 128*1024 >> 9;
}
}
static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
{
/* migr_strip_size when rebuilding a degraded disk, no idea why
* this is different than migr_strip_size_resync(), but it's good
* to be compatible
*/
struct imsm_map *map = get_imsm_map(dev, MAP_1);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch (get_imsm_raid_level(map)) {
case 1:
case 10:
if (map->num_members % map->num_domains == 0)
return 128*1024 >> 9;
else
return chunk;
case 5:
return max((__u32) 64*1024 >> 9, chunk);
default:
return 128*1024 >> 9;
}
}
static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
{
struct imsm_map *lo = get_imsm_map(dev, MAP_0);
struct imsm_map *hi = get_imsm_map(dev, MAP_1);
__u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
__u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
return max((__u32) 1, hi_chunk / lo_chunk);
}
static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
{
struct imsm_map *lo = get_imsm_map(dev, MAP_0);
int level = get_imsm_raid_level(lo);
if (level == 1 || level == 10) {
struct imsm_map *hi = get_imsm_map(dev, MAP_1);
return hi->num_domains;
} else
return num_stripes_per_unit_resync(dev);
}
static __u8 imsm_num_data_members(struct imsm_map *map)
{
/* named 'imsm_' because raid0, raid1 and raid10
* counter-intuitively have the same number of data disks
*/
switch (get_imsm_raid_level(map)) {
case 0:
return map->num_members;
break;
case 1:
case 10:
return map->num_members/2;
case 5:
return map->num_members - 1;
default:
dprintf("unsupported raid level\n");
return 0;
}
}
static unsigned long long calc_component_size(struct imsm_map *map,
struct imsm_dev *dev)
{
unsigned long long component_size;
unsigned long long dev_size = imsm_dev_size(dev);
long long calc_dev_size = 0;
unsigned int member_disks = imsm_num_data_members(map);
if (member_disks == 0)
return 0;
component_size = per_dev_array_size(map);
calc_dev_size = component_size * member_disks;
/* Component size is rounded to 1MB so difference between size from
* metadata and size calculated from num_data_stripes equals up to
* 2048 blocks per each device. If the difference is higher it means
* that array size was expanded and num_data_stripes was not updated.
*/
if (llabs(calc_dev_size - (long long)dev_size) >
(1 << SECT_PER_MB_SHIFT) * member_disks) {
component_size = dev_size / member_disks;
dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
component_size / map->blocks_per_strip,
num_data_stripes(map));
}
return component_size;
}
static __u32 parity_segment_depth(struct imsm_dev *dev)
{
struct imsm_map *map = get_imsm_map(dev, MAP_0);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch(get_imsm_raid_level(map)) {
case 1:
case 10:
return chunk * map->num_domains;
case 5:
return chunk * map->num_members;
default:
return chunk;
}
}
static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
{
struct imsm_map *map = get_imsm_map(dev, MAP_1);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
__u32 strip = block / chunk;
switch (get_imsm_raid_level(map)) {
case 1:
case 10: {
__u32 vol_strip = (strip * map->num_domains) + 1;
__u32 vol_stripe = vol_strip / map->num_members;
return vol_stripe * chunk + block % chunk;
} case 5: {
__u32 stripe = strip / (map->num_members - 1);
return stripe * chunk + block % chunk;
}
default:
return 0;
}
}
static __u64 blocks_per_migr_unit(struct intel_super *super,
struct imsm_dev *dev)
{
/* calculate the conversion factor between per member 'blocks'
* (md/{resync,rebuild}_start) and imsm migration units, return
* 0 for the 'not migrating' and 'unsupported migration' cases
*/
if (!dev->vol.migr_state)
return 0;
switch (migr_type(dev)) {
case MIGR_GEN_MIGR: {
struct migr_record *migr_rec = super->migr_rec;
return __le32_to_cpu(migr_rec->blocks_per_unit);
}
case MIGR_VERIFY:
case MIGR_REPAIR:
case MIGR_INIT: {
struct imsm_map *map = get_imsm_map(dev, MAP_0);
__u32 stripes_per_unit;
__u32 blocks_per_unit;
__u32 parity_depth;
__u32 migr_chunk;
__u32 block_map;
__u32 block_rel;
__u32 segment;
__u32 stripe;
__u8 disks;
/* yes, this is really the translation of migr_units to
* per-member blocks in the 'resync' case
*/
stripes_per_unit = num_stripes_per_unit_resync(dev);
migr_chunk = migr_strip_blocks_resync(dev);
disks = imsm_num_data_members(map);
blocks_per_unit = stripes_per_unit * migr_chunk * disks;
stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
segment = blocks_per_unit / stripe;
block_rel = blocks_per_unit - segment * stripe;
parity_depth = parity_segment_depth(dev);
block_map = map_migr_block(dev, block_rel);
return block_map + parity_depth * segment;
}
case MIGR_REBUILD: {
__u32 stripes_per_unit;
__u32 migr_chunk;
stripes_per_unit = num_stripes_per_unit_rebuild(dev);
migr_chunk = migr_strip_blocks_rebuild(dev);
return migr_chunk * stripes_per_unit;
}
case MIGR_STATE_CHANGE:
default:
return 0;
}
}
static int imsm_level_to_layout(int level)
{
switch (level) {
case 0:
case 1:
return 0;
case 5:
case 6:
return ALGORITHM_LEFT_ASYMMETRIC;
case 10:
return 0x102;
}
return UnSet;
}
/*******************************************************************************
* Function: read_imsm_migr_rec
* Description: Function reads imsm migration record from last sector of disk
* Parameters:
* fd : disk descriptor
* super : metadata info
* Returns:
* 0 : success,
* -1 : fail
******************************************************************************/
static int read_imsm_migr_rec(int fd, struct intel_super *super)
{
int ret_val = -1;
unsigned int sector_size = super->sector_size;
unsigned long long dsize;
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
SEEK_SET) < 0) {
pr_err("Cannot seek to anchor block: %s\n",
strerror(errno));
goto out;
}
if ((unsigned int)read(fd, super->migr_rec_buf,
MIGR_REC_BUF_SECTORS*sector_size) !=
MIGR_REC_BUF_SECTORS*sector_size) {
pr_err("Cannot read migr record block: %s\n",
strerror(errno));
goto out;
}
ret_val = 0;
if (sector_size == 4096)
convert_from_4k_imsm_migr_rec(super);
out:
return ret_val;
}
static struct imsm_dev *imsm_get_device_during_migration(
struct intel_super *super)
{
struct intel_dev *dv;
for (dv = super->devlist; dv; dv = dv->next) {
if (is_gen_migration(dv->dev))
return dv->dev;
}
return NULL;
}
/*******************************************************************************
* Function: load_imsm_migr_rec
* Description: Function reads imsm migration record (it is stored at the last
* sector of disk)
* Parameters:
* super : imsm internal array info
* info : general array info
* Returns:
* 0 : success
* -1 : fail
* -2 : no migration in progress
******************************************************************************/
static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
{
struct mdinfo *sd;
struct dl *dl;
char nm[30];
int retval = -1;
int fd = -1;
struct imsm_dev *dev;
struct imsm_map *map;
int slot = -1;
/* find map under migration */
dev = imsm_get_device_during_migration(super);
/* nothing to load,no migration in progress?
*/
if (dev == NULL)
return -2;
if (info) {
for (sd = info->devs ; sd ; sd = sd->next) {
/* read only from one of the first two slots */
if ((sd->disk.raid_disk < 0) ||
(sd->disk.raid_disk > 1))
continue;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
fd = dev_open(nm, O_RDONLY);
if (fd >= 0)
break;
}
}
if (fd < 0) {
map = get_imsm_map(dev, MAP_0);
for (dl = super->disks; dl; dl = dl->next) {
/* skip spare and failed disks
*/
if (dl->index < 0)
continue;
/* read only from one of the first two slots */
if (map)
slot = get_imsm_disk_slot(map, dl->index);
if (map == NULL || slot > 1 || slot < 0)
continue;
sprintf(nm, "%d:%d", dl->major, dl->minor);
fd = dev_open(nm, O_RDONLY);
if (fd >= 0)
break;
}
}
if (fd < 0)
goto out;
retval = read_imsm_migr_rec(fd, super);
out:
if (fd >= 0)
close(fd);
return retval;
}
/*******************************************************************************
* function: imsm_create_metadata_checkpoint_update
* Description: It creates update for checkpoint change.
* Parameters:
* super : imsm internal array info
* u : pointer to prepared update
* Returns:
* Uptate length.
* If length is equal to 0, input pointer u contains no update
******************************************************************************/
static int imsm_create_metadata_checkpoint_update(
struct intel_super *super,
struct imsm_update_general_migration_checkpoint **u)
{
int update_memory_size = 0;
dprintf("(enter)\n");
if (u == NULL)
return 0;
*u = NULL;
/* size of all update data without anchor */
update_memory_size =
sizeof(struct imsm_update_general_migration_checkpoint);
*u = xcalloc(1, update_memory_size);
if (*u == NULL) {
dprintf("error: cannot get memory\n");
return 0;
}
(*u)->type = update_general_migration_checkpoint;
(*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
dprintf("prepared for %u\n", (*u)->curr_migr_unit);
return update_memory_size;
}
static void imsm_update_metadata_locally(struct supertype *st,
void *buf, int len);
/*******************************************************************************
* Function: write_imsm_migr_rec
* Description: Function writes imsm migration record
* (at the last sector of disk)
* Parameters:
* super : imsm internal array info
* Returns:
* 0 : success
* -1 : if fail
******************************************************************************/
static int write_imsm_migr_rec(struct supertype *st)
{
struct intel_super *super = st->sb;
unsigned int sector_size = super->sector_size;
unsigned long long dsize;
char nm[30];
int fd = -1;
int retval = -1;
struct dl *sd;
int len;
struct imsm_update_general_migration_checkpoint *u;
struct imsm_dev *dev;
struct imsm_map *map;
/* find map under migration */
dev = imsm_get_device_during_migration(super);
/* if no migration, write buffer anyway to clear migr_record
* on disk based on first available device
*/
if (dev == NULL)
dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
super->current_vol);
map = get_imsm_map(dev, MAP_0);
if (sector_size == 4096)
convert_to_4k_imsm_migr_rec(super);
for (sd = super->disks ; sd ; sd = sd->next) {
int slot = -1;
/* skip failed and spare devices */
if (sd->index < 0)
continue;
/* write to 2 first slots only */
if (map)
slot = get_imsm_disk_slot(map, sd->index);
if (map == NULL || slot > 1 || slot < 0)
continue;
sprintf(nm, "%d:%d", sd->major, sd->minor);
fd = dev_open(nm, O_RDWR);
if (fd < 0)
continue;
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
SEEK_SET) < 0) {
pr_err("Cannot seek to anchor block: %s\n",
strerror(errno));
goto out;
}
if ((unsigned int)write(fd, super->migr_rec_buf,
MIGR_REC_BUF_SECTORS*sector_size) !=
MIGR_REC_BUF_SECTORS*sector_size) {
pr_err("Cannot write migr record block: %s\n",
strerror(errno));
goto out;
}
close(fd);
fd = -1;
}
if (sector_size == 4096)
convert_from_4k_imsm_migr_rec(super);
/* update checkpoint information in metadata */
len = imsm_create_metadata_checkpoint_update(super, &u);
if (len <= 0) {
dprintf("imsm: Cannot prepare update\n");
goto out;
}
/* update metadata locally */
imsm_update_metadata_locally(st, u, len);
/* and possibly remotely */
if (st->update_tail) {
append_metadata_update(st, u, len);
/* during reshape we do all work inside metadata handler
* manage_reshape(), so metadata update has to be triggered
* insida it
*/
flush_metadata_updates(st);
st->update_tail = &st->updates;
} else
free(u);
retval = 0;
out:
if (fd >= 0)
close(fd);
return retval;
}
/* spare/missing disks activations are not allowe when
* array/container performs reshape operation, because
* all arrays in container works on the same disks set
*/
int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
{
int rv = 0;
struct intel_dev *i_dev;
struct imsm_dev *dev;
/* check whole container
*/
for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
dev = i_dev->dev;
if (is_gen_migration(dev)) {
/* No repair during any migration in container
*/
rv = 1;
break;
}
}
return rv;
}
static unsigned long long imsm_component_size_alignment_check(int level,
int chunk_size,
unsigned int sector_size,
unsigned long long component_size)
{
unsigned int component_size_alignment;
/* check component size alignment
*/
component_size_alignment = component_size % (chunk_size/sector_size);
dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
level, chunk_size, component_size,
component_size_alignment);
if (component_size_alignment && (level != 1) && (level != UnSet)) {
dprintf("imsm: reported component size aligned from %llu ",
component_size);
component_size -= component_size_alignment;
dprintf_cont("to %llu (%i).\n",
component_size, component_size_alignment);
}
return component_size;
}
static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
{
struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
return pba_of_lba0(map) +
(num_data_stripes(map) * map->blocks_per_strip);
}
static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
{
struct intel_super *super = st->sb;
struct migr_record *migr_rec = super->migr_rec;
struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
struct imsm_map *map_to_analyse = map;
struct dl *dl;
int map_disks = info->array.raid_disks;
memset(info, 0, sizeof(*info));
if (prev_map)
map_to_analyse = prev_map;
dl = super->current_disk;
info->container_member = super->current_vol;
info->array.raid_disks = map->num_members;
info->array.level = get_imsm_raid_level(map_to_analyse);
info->array.layout = imsm_level_to_layout(info->array.level);
info->array.md_minor = -1;
info->array.ctime = 0;
info->array.utime = 0;
info->array.chunk_size =
__le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
info->custom_array_size = imsm_dev_size(dev);
info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
if (is_gen_migration(dev)) {
info->reshape_active = 1;
info->new_level = get_imsm_raid_level(map);
info->new_layout = imsm_level_to_layout(info->new_level);
info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
info->delta_disks = map->num_members - prev_map->num_members;
if (info->delta_disks) {
/* this needs to be applied to every array
* in the container.
*/
info->reshape_active = CONTAINER_RESHAPE;
}
/* We shape information that we give to md might have to be
* modify to cope with md's requirement for reshaping arrays.
* For example, when reshaping a RAID0, md requires it to be
* presented as a degraded RAID4.
* Also if a RAID0 is migrating to a RAID5 we need to specify
* the array as already being RAID5, but the 'before' layout
* is a RAID4-like layout.
*/
switch (info->array.level) {
case 0:
switch(info->new_level) {
case 0:
/* conversion is happening as RAID4 */
info->array.level = 4;
info->array.raid_disks += 1;
break;
case 5:
/* conversion is happening as RAID5 */
info->array.level = 5;
info->array.layout = ALGORITHM_PARITY_N;
info->delta_disks -= 1;
break;
default:
/* FIXME error message */
info->array.level = UnSet;
break;
}
break;
}
} else {
info->new_level = UnSet;
info->new_layout = UnSet;
info->new_chunk = info->array.chunk_size;
info->delta_disks = 0;
}
if (dl) {
info->disk.major = dl->major;
info->disk.minor = dl->minor;
info->disk.number = dl->index;
info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
dl->index);
}
info->data_offset = pba_of_lba0(map_to_analyse);
info->component_size = calc_component_size(map, dev);
info->component_size = imsm_component_size_alignment_check(
info->array.level,
info->array.chunk_size,
super->sector_size,
info->component_size);
info->bb.supported = 1;
memset(info->uuid, 0, sizeof(info->uuid));
info->recovery_start = MaxSector;
if (info->array.level == 5 &&
(dev->rwh_policy == RWH_DISTRIBUTED ||
dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
info->consistency_policy = CONSISTENCY_POLICY_PPL;
info->ppl_sector = get_ppl_sector(super, super->current_vol);
if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
else
info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
>> 9;
} else if (info->array.level <= 0) {
info->consistency_policy = CONSISTENCY_POLICY_NONE;
} else {
info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
}
info->reshape_progress = 0;
info->resync_start = MaxSector;
if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
!(info->array.state & 1)) &&
imsm_reshape_blocks_arrays_changes(super) == 0) {
info->resync_start = 0;
}
if (dev->vol.migr_state) {
switch (migr_type(dev)) {
case MIGR_REPAIR:
case MIGR_INIT: {
__u64 blocks_per_unit = blocks_per_migr_unit(super,
dev);
__u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
info->resync_start = blocks_per_unit * units;
break;
}
case MIGR_GEN_MIGR: {
__u64 blocks_per_unit = blocks_per_migr_unit(super,
dev);
__u64 units = current_migr_unit(migr_rec);
unsigned long long array_blocks;
int used_disks;
if (__le32_to_cpu(migr_rec->ascending_migr) &&
(units <
(get_num_migr_units(migr_rec)-1)) &&
(super->migr_rec->rec_status ==
__cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
units++;
info->reshape_progress = blocks_per_unit * units;
dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
(unsigned long long)units,
(unsigned long long)blocks_per_unit,
info->reshape_progress);
used_disks = imsm_num_data_members(prev_map);
if (used_disks > 0) {
array_blocks = per_dev_array_size(map) *
used_disks;
info->custom_array_size =
round_size_to_mb(array_blocks,
used_disks);
}
}
case MIGR_VERIFY:
/* we could emulate the checkpointing of
* 'sync_action=check' migrations, but for now
* we just immediately complete them
*/
case MIGR_REBUILD:
/* this is handled by container_content_imsm() */
case MIGR_STATE_CHANGE:
/* FIXME handle other migrations */
default:
/* we are not dirty, so... */
info->resync_start = MaxSector;
}
}
strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
info->name[MAX_RAID_SERIAL_LEN] = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
uuid_from_super_imsm(st, info->uuid);
if (dmap) {
int i, j;
for (i=0; i<map_disks; i++) {
dmap[i] = 0;
if (i < info->array.raid_disks) {
struct imsm_disk *dsk;
j = get_imsm_disk_idx(dev, i, MAP_X);
dsk = get_imsm_disk(super, j);
if (dsk && (dsk->status & CONFIGURED_DISK))
dmap[i] = 1;
}
}
}
}
static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
int failed, int look_in_map);
static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
int look_in_map);
static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
{
if (is_gen_migration(dev)) {
int failed;
__u8 map_state;
struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
failed = imsm_count_failed(super, dev, MAP_1);
map_state = imsm_check_degraded(super, dev, failed, MAP_1);
if (map2->map_state != map_state) {
map2->map_state = map_state;
super->updates_pending++;
}
}
}
static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
{
struct dl *d;
for (d = super->missing; d; d = d->next)
if (d->index == index)
return &d->disk;
return NULL;
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
{
struct intel_super *super = st->sb;
struct imsm_disk *disk;
int map_disks = info->array.raid_disks;
int max_enough = -1;
int i;
struct imsm_super *mpb;
if (super->current_vol >= 0) {
getinfo_super_imsm_volume(st, info, map);
return;
}
memset(info, 0, sizeof(*info));
/* Set raid_disks to zero so that Assemble will always pull in valid
* spares
*/
info->array.raid_disks = 0;
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
info->array.ctime = 0; /* N/A for imsm */
info->array.utime = 0;
info->array.chunk_size = 0;
info->disk.major = 0;
info->disk.minor = 0;
info->disk.raid_disk = -1;
info->reshape_active = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
strcpy(info->text_version, "imsm");
info->safe_mode_delay = 0;
info->disk.number = -1;
info->disk.state = 0;
info->name[0] = 0;
info->recovery_start = MaxSector;
info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
info->bb.supported = 1;
/* do we have the all the insync disks that we expect? */
mpb = super->anchor;
info->events = __le32_to_cpu(mpb->generation_num);
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
int failed, enough, j, missing = 0;
struct imsm_map *map;
__u8 state;
failed = imsm_count_failed(super, dev, MAP_0);
state = imsm_check_degraded(super, dev, failed, MAP_0);
map = get_imsm_map(dev, MAP_0);
/* any newly missing disks?
* (catches single-degraded vs double-degraded)
*/
for (j = 0; j < map->num_members; j++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
__u32 idx = ord_to_idx(ord);
if (super->disks && super->disks->index == (int)idx)
info->disk.raid_disk = j;
if (!(ord & IMSM_ORD_REBUILD) &&
get_imsm_missing(super, idx)) {
missing = 1;
break;
}
}
if (state == IMSM_T_STATE_FAILED)
enough = -1;
else if (state == IMSM_T_STATE_DEGRADED &&
(state != map->map_state || missing))
enough = 0;
else /* we're normal, or already degraded */
enough = 1;
if (is_gen_migration(dev) && missing) {
/* during general migration we need all disks
* that process is running on.
* No new missing disk is allowed.
*/
max_enough = -1;
enough = -1;
/* no more checks necessary
*/
break;
}
/* in the missing/failed disk case check to see
* if at least one array is runnable
*/
max_enough = max(max_enough, enough);
}
dprintf("enough: %d\n", max_enough);
info->container_enough = max_enough;
if (super->disks) {
__u32 reserved = imsm_reserved_sectors(super, super->disks);
disk = &super->disks->disk;
info->data_offset = total_blocks(&super->disks->disk) - reserved;
info->component_size = reserved;
info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
/* we don't change info->disk.raid_disk here because
* this state will be finalized in mdmon after we have
* found the 'most fresh' version of the metadata
*/
info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
0 : (1 << MD_DISK_SYNC);
}
/* only call uuid_from_super_imsm when this disk is part of a populated container,
* ->compare_super may have updated the 'num_raid_devs' field for spares
*/
if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
uuid_from_super_imsm(st, info->uuid);
else
memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
/* I don't know how to compute 'map' on imsm, so use safe default */
if (map) {
int i;
for (i = 0; i < map_disks; i++)
map[i] = 1;
}
}
/* allocates memory and fills disk in mdinfo structure
* for each disk in array */
struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
{
struct mdinfo *mddev;
struct intel_super *super = st->sb;
struct imsm_disk *disk;
int count = 0;
struct dl *dl;
if (!super || !super->disks)
return NULL;
dl = super->disks;
mddev = xcalloc(1, sizeof(*mddev));
while (dl) {
struct mdinfo *tmp;
disk = &dl->disk;
tmp = xcalloc(1, sizeof(*tmp));
if (mddev->devs)
tmp->next = mddev->devs;
mddev->devs = tmp;
tmp->disk.number = count++;
tmp->disk.major = dl->major;
tmp->disk.minor = dl->minor;
tmp->disk.state = is_configured(disk) ?
(1 << MD_DISK_ACTIVE) : 0;
tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
tmp->disk.raid_disk = -1;
dl = dl->next;
}
return mddev;
}
static int update_super_imsm(struct supertype *st, struct mdinfo *info,
char *update, char *devname, int verbose,
int uuid_set, char *homehost)
{
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* name: update the name - preserving the homehost
* uuid: Change the uuid of the array to match watch is given
*
* Following are not relevant for this imsm:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
* homehost: update the recorded homehost
* _reshape_progress: record new reshape_progress position.
*/
int rv = 1;
struct intel_super *super = st->sb;
struct imsm_super *mpb;
/* we can only update container info */
if (!super || super->current_vol >= 0 || !super->anchor)
return 1;
mpb = super->anchor;
if (strcmp(update, "uuid") == 0) {
/* We take this to mean that the family_num should be updated.
* However that is much smaller than the uuid so we cannot really
* allow an explicit uuid to be given. And it is hard to reliably
* know if one was.
* So if !uuid_set we know the current uuid is random and just used
* the first 'int' and copy it to the other 3 positions.
* Otherwise we require the 4 'int's to be the same as would be the
* case if we are using a random uuid. So an explicit uuid will be
* accepted as long as all for ints are the same... which shouldn't hurt
*/
if (!uuid_set) {
info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
rv = 0;
} else {
if (info->uuid[0] != info->uuid[1] ||
info->uuid[1] != info->uuid[2] ||
info->uuid[2] != info->uuid[3])
rv = -1;
else
rv = 0;
}
if (rv == 0)
mpb->orig_family_num = info->uuid[0];
} else if (strcmp(update, "assemble") == 0)
rv = 0;
else
rv = -1;
/* successful update? recompute checksum */
if (rv == 0)
mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
return rv;
}
static size_t disks_to_mpb_size(int disks)
{
size_t size;
size = sizeof(struct imsm_super);
size += (disks - 1) * sizeof(struct imsm_disk);
size += 2 * sizeof(struct imsm_dev);
/* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
size += (4 - 2) * sizeof(struct imsm_map);
/* 4 possible disk_ord_tbl's */
size += 4 * (disks - 1) * sizeof(__u32);
/* maximum bbm log */
size += sizeof(struct bbm_log);
return size;
}
static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
unsigned long long data_offset)
{
if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
return 0;
return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
}
static void free_devlist(struct intel_super *super)
{
struct intel_dev *dv;
while (super->devlist) {
dv = super->devlist->next;
free(super->devlist->dev);
free(super->devlist);
super->devlist = dv;
}
}
static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
{
memcpy(dest, src, sizeof_imsm_dev(src, 0));
}
static int compare_super_imsm(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct intel_super *first = st->sb;
struct intel_super *sec = tst->sb;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
/* in platform dependent environment test if the disks
* use the same Intel hba
* If not on Intel hba at all, allow anything.
*/
if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
if (first->hba->type != sec->hba->type) {
fprintf(stderr,
"HBAs of devices do not match %s != %s\n",
get_sys_dev_type(first->hba->type),
get_sys_dev_type(sec->hba->type));
return 3;
}
if (first->orom != sec->orom) {
fprintf(stderr,
"HBAs of devices do not match %s != %s\n",
first->hba->pci_id, sec->hba->pci_id);
return 3;
}
}
/* if an anchor does not have num_raid_devs set then it is a free
* floating spare
*/
if (first->anchor->num_raid_devs > 0 &&
sec->anchor->num_raid_devs > 0) {
/* Determine if these disks might ever have been
* related. Further disambiguation can only take place
* in load_super_imsm_all
*/
__u32 first_family = first->anchor->orig_family_num;
__u32 sec_family = sec->anchor->orig_family_num;
if (memcmp(first->anchor->sig, sec->anchor->sig,
MAX_SIGNATURE_LENGTH) != 0)
return 3;
if (first_family == 0)
first_family = first->anchor->family_num;
if (sec_family == 0)
sec_family = sec->anchor->family_num;
if (first_family != sec_family)
return 3;
}
/* if 'first' is a spare promote it to a populated mpb with sec's
* family number
*/
if (first->anchor->num_raid_devs == 0 &&
sec->anchor->num_raid_devs > 0) {
int i;
struct intel_dev *dv;
struct imsm_dev *dev;
/* we need to copy raid device info from sec if an allocation
* fails here we don't associate the spare
*/
for (i = 0; i < sec->anchor->num_raid_devs; i++) {
dv = xmalloc(sizeof(*dv));
dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
dv->dev = dev;
dv->index = i;
dv->next = first->devlist;
first->devlist = dv;
}
if (i < sec->anchor->num_raid_devs) {
/* allocation failure */
free_devlist(first);
pr_err("imsm: failed to associate spare\n");
return 3;
}
first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
first->anchor->orig_family_num = sec->anchor->orig_family_num;
first->anchor->family_num = sec->anchor->family_num;
memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
for (i = 0; i < sec->anchor->num_raid_devs; i++)
imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
}
return 0;
}
static void fd2devname(int fd, char *name)
{
struct stat st;
char path[256];
char dname[PATH_MAX];
char *nm;
int rv;
name[0] = '\0';
if (fstat(fd, &st) != 0)
return;
sprintf(path, "/sys/dev/block/%d:%d",
major(st.st_rdev), minor(st.st_rdev));
rv = readlink(path, dname, sizeof(dname)-1);
if (rv <= 0)
return;
dname[rv] = '\0';
nm = strrchr(dname, '/');
if (nm) {
nm++;
snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
}
}
static int nvme_get_serial(int fd, void *buf, size_t buf_len)
{
char path[60];
char *name = fd2kname(fd);
if (!name)
return 1;
if (strncmp(name, "nvme", 4) != 0)
return 1;
snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
return load_sys(path, buf, buf_len);
}
extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
static int imsm_read_serial(int fd, char *devname,
__u8 *serial, size_t serial_buf_len)
{
char buf[50];
int rv;
size_t len;
char *dest;
char *src;
unsigned int i;
memset(buf, 0, sizeof(buf));
rv = nvme_get_serial(fd, buf, sizeof(buf));
if (rv)
rv = scsi_get_serial(fd, buf, sizeof(buf));
if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
memset(serial, 0, MAX_RAID_SERIAL_LEN);
fd2devname(fd, (char *) serial);
return 0;
}
if (rv != 0) {
if (devname)
pr_err("Failed to retrieve serial for %s\n",
devname);
return rv;
}
/* trim all whitespace and non-printable characters and convert
* ':' to ';'
*/
for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
src = &buf[i];
if (*src > 0x20) {
/* ':' is reserved for use in placeholder serial
* numbers for missing disks
*/
if (*src == ':')
*dest++ = ';';
else
*dest++ = *src;
}
}
len = dest - buf;
dest = buf;
if (len > serial_buf_len) {
/* truncate leading characters */
dest += len - serial_buf_len;
len = serial_buf_len;
}
memset(serial, 0, serial_buf_len);
memcpy(serial, dest, len);
return 0;
}
static int serialcmp(__u8 *s1, __u8 *s2)
{
return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
}
static void serialcpy(__u8 *dest, __u8 *src)
{
strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
}
static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
{
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (serialcmp(dl->serial, serial) == 0)
break;
return dl;
}
static struct imsm_disk *
__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
{
int i;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, i);
if (serialcmp(disk->serial, serial) == 0) {
if (idx)
*idx = i;
return disk;
}
}
return NULL;
}
static int
load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
{
struct imsm_disk *disk;
struct dl *dl;
struct stat stb;
int rv;
char name[40];
__u8 serial[MAX_RAID_SERIAL_LEN];
rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
if (rv != 0)
return 2;
dl = xcalloc(1, sizeof(*dl));
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->disks;
dl->fd = keep_fd ? fd : -1;
assert(super->disks == NULL);
super->disks = dl;
serialcpy(dl->serial, serial);
dl->index = -2;
dl->e = NULL;
fd2devname(fd, name);
if (devname)
dl->devname = xstrdup(devname);
else
dl->devname = xstrdup(name);
/* look up this disk's index in the current anchor */
disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
if (disk) {
dl->disk = *disk;
/* only set index on disks that are a member of a
* populated contianer, i.e. one with raid_devs
*/
if (is_failed(&dl->disk))
dl->index = -2;
else if (is_spare(&dl->disk) || is_journal(&dl->disk))
dl->index = -1;
}
return 0;
}
/* When migrating map0 contains the 'destination' state while map1
* contains the current state. When not migrating map0 contains the
* current state. This routine assumes that map[0].map_state is set to
* the current array state before being called.
*
* Migration is indicated by one of the following states
* 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
* 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
* map1state=unitialized)
* 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
* map1state=normal)
* 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
* map1state=degraded)
* 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
* map1state=normal)
*/
static void migrate(struct imsm_dev *dev, struct intel_super *super,
__u8 to_state, int migr_type)
{
struct imsm_map *dest;
struct imsm_map *src = get_imsm_map(dev, MAP_0);
dev->vol.migr_state = 1;
set_migr_type(dev, migr_type);
dev->vol.curr_migr_unit = 0;
dest = get_imsm_map(dev, MAP_1);
/* duplicate and then set the target end state in map[0] */
memcpy(dest, src, sizeof_imsm_map(src));
if (migr_type == MIGR_GEN_MIGR) {
__u32 ord;
int i;
for (i = 0; i < src->num_members; i++) {
ord = __le32_to_cpu(src->disk_ord_tbl[i]);
set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
}
}
if (migr_type == MIGR_GEN_MIGR)
/* Clear migration record */
memset(super->migr_rec, 0, sizeof(struct migr_record));
src->map_state = to_state;
}
static void end_migration(struct imsm_dev *dev, struct intel_super *super,
__u8 map_state)
{
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
MAP_0 : MAP_1);
int i, j;
/* merge any IMSM_ORD_REBUILD bits that were not successfully
* completed in the last migration.
*
* FIXME add support for raid-level-migration
*/
if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
/* when final map state is other than expected
* merge maps (not for migration)
*/
int failed;
for (i = 0; i < prev->num_members; i++)
for (j = 0; j < map->num_members; j++)
/* during online capacity expansion
* disks position can be changed
* if takeover is used
*/
if (ord_to_idx(map->disk_ord_tbl[j]) ==
ord_to_idx(prev->disk_ord_tbl[i])) {
map->disk_ord_tbl[j] |=
prev->disk_ord_tbl[i];
break;
}
failed = imsm_count_failed(super, dev, MAP_0);
map_state = imsm_check_degraded(super, dev, failed, MAP_0);
}
dev->vol.migr_state = 0;
set_migr_type(dev, 0);
dev->vol.curr_migr_unit = 0;
map->map_state = map_state;
}
static int parse_raid_devices(struct intel_super *super)
{
int i;
struct imsm_dev *dev_new;
size_t len, len_migr;
size_t max_len = 0;
size_t space_needed = 0;
struct imsm_super *mpb = super->anchor;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
struct intel_dev *dv;
len = sizeof_imsm_dev(dev_iter, 0);
len_migr = sizeof_imsm_dev(dev_iter, 1);
if (len_migr > len)
space_needed += len_migr - len;
dv = xmalloc(sizeof(*dv));
if (max_len < len_migr)
max_len = len_migr;
if (max_len > len_migr)
space_needed += max_len - len_migr;
dev_new = xmalloc(max_len);
imsm_copy_dev(dev_new, dev_iter);
dv->dev = dev_new;
dv->index = i;
dv->next = super->devlist;
super->devlist = dv;
}
/* ensure that super->buf is large enough when all raid devices
* are migrating
*/
if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
void *buf;
len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
super->sector_size);
if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
return 1;
memcpy(buf, super->buf, super->len);
memset(buf + super->len, 0, len - super->len);
free(super->buf);
super->buf = buf;
super->len = len;
}
super->extra_space += space_needed;
return 0;
}
/*******************************************************************************
* Function: check_mpb_migr_compatibility
* Description: Function checks for unsupported migration features:
* - migration optimization area (pba_of_lba0)
* - descending reshape (ascending_migr)
* Parameters:
* super : imsm metadata information
* Returns:
* 0 : migration is compatible
* -1 : migration is not compatible
******************************************************************************/
int check_mpb_migr_compatibility(struct intel_super *super)
{
struct imsm_map *map0, *map1;
struct migr_record *migr_rec = super->migr_rec;
int i;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
if (dev_iter &&
dev_iter->vol.migr_state == 1 &&
dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
/* This device is migrating */
map0 = get_imsm_map(dev_iter, MAP_0);
map1 = get_imsm_map(dev_iter, MAP_1);
if (pba_of_lba0(map0) != pba_of_lba0(map1))
/* migration optimization area was used */
return -1;
if (migr_rec->ascending_migr == 0 &&
migr_rec->dest_depth_per_unit > 0)
/* descending reshape not supported yet */
return -1;
}
}
return 0;
}
static void __free_imsm(struct intel_super *super, int free_disks);
/* load_imsm_mpb - read matrix metadata
* allocates super->mpb to be freed by free_imsm
*/
static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
{
unsigned long long dsize;
unsigned long long sectors;
unsigned int sector_size = super->sector_size;
struct stat;
struct imsm_super *anchor;
__u32 check_sum;
get_dev_size(fd, NULL, &dsize);
if (dsize < 2*sector_size) {
if (devname)
pr_err("%s: device to small for imsm\n",
devname);
return 1;
}
if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
if (devname)
pr_err("Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
if (devname)
pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
return 1;
}
if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
if (devname)
pr_err("Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
free(anchor);
return 1;
}
if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
if (devname)
pr_err("no IMSM anchor on %s\n", devname);
free(anchor);
return 2;
}
__free_imsm(super, 0);
/* reload capability and hba */
/* capability and hba must be updated with new super allocation */
find_intel_hba_capability(fd, super, devname);
super->len = ROUND_UP(anchor->mpb_size, sector_size);
if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
if (devname)
pr_err("unable to allocate %zu byte mpb buffer\n",
super->len);
free(anchor);
return 2;
}
memcpy(super->buf, anchor, sector_size);
sectors = mpb_sectors(anchor, sector_size) - 1;
free(anchor);
if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
pr_err("could not allocate migr_rec buffer\n");
free(super->buf);
return 2;
}
super->clean_migration_record_by_mdmon = 0;
if (!sectors) {
check_sum = __gen_imsm_checksum(super->anchor);
if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
if (devname)
pr_err("IMSM checksum %x != %x on %s\n",
check_sum,
__le32_to_cpu(super->anchor->check_sum),
devname);
return 2;
}
return 0;
}
/* read the extended mpb */
if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
if (devname)
pr_err("Cannot seek to extended mpb on %s: %s\n",
devname, strerror(errno));
return 1;
}
if ((unsigned int)read(fd, super->buf + sector_size,
super->len - sector_size) != super->len - sector_size) {
if (devname)
pr_err("Cannot read extended mpb on %s: %s\n",
devname, strerror(errno));
return 2;
}
check_sum = __gen_imsm_checksum(super->anchor);
if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
if (devname)
pr_err("IMSM checksum %x != %x on %s\n",
check_sum, __le32_to_cpu(super->anchor->check_sum),
devname);
return 3;
}
return 0;
}
static int read_imsm_migr_rec(int fd, struct intel_super *super);
/* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
static void clear_hi(struct intel_super *super)
{
struct imsm_super *mpb = super->anchor;
int i, n;
if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
return;
for (i = 0; i < mpb->num_disks; ++i) {
struct imsm_disk *disk = &mpb->disk[i];
disk->total_blocks_hi = 0;
}
for (i = 0; i < mpb->num_raid_devs; ++i) {
struct imsm_dev *dev = get_imsm_dev(super, i);
if (!dev)
return;
for (n = 0; n < 2; ++n) {
struct imsm_map *map = get_imsm_map(dev, n);
if (!map)
continue;
map->pba_of_lba0_hi = 0;
map->blocks_per_member_hi = 0;
map->num_data_stripes_hi = 0;
}
}
}
static int
load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
{
int err;
err = load_imsm_mpb(fd, super, devname);
if (err)
return err;
if (super->sector_size == 4096)
convert_from_4k(super);
err = load_imsm_disk(fd, super, devname, keep_fd);
if (err)
return err;
err = parse_raid_devices(super);
if (err)
return err;
err = load_bbm_log(super);
clear_hi(super);
return err;
}
static void __free_imsm_disk(struct dl *d)
{
if (d->fd >= 0)
close(d->fd);
if (d->devname)
free(d->devname);
if (d->e)
free(d->e);
free(d);
}
static void free_imsm_disks(struct intel_super *super)
{
struct dl *d;
while (super->disks) {
d = super->disks;
super->disks = d->next;
__free_imsm_disk(d);
}
while (super->disk_mgmt_list) {
d = super->disk_mgmt_list;
super->disk_mgmt_list = d->next;
__free_imsm_disk(d);
}
while (super->missing) {
d = super->missing;
super->missing = d->next;
__free_imsm_disk(d);
}
}
/* free all the pieces hanging off of a super pointer */
static void __free_imsm(struct intel_super *super, int free_disks)
{
struct intel_hba *elem, *next;
if (super->buf) {
free(super->buf);
super->buf = NULL;
}
/* unlink capability description */
super->orom = NULL;
if (super->migr_rec_buf) {
free(super->migr_rec_buf);
super->migr_rec_buf = NULL;
}
if (free_disks)
free_imsm_disks(super);
free_devlist(super);
elem = super->hba;
while (elem) {
if (elem->path)
free((void *)elem->path);
next = elem->next;
free(elem);
elem = next;
}
if (super->bbm_log)
free(super->bbm_log);
super->hba = NULL;
}
static void free_imsm(struct intel_super *super)
{
__free_imsm(super, 1);
free(super->bb.entries);
free(super);
}
static void free_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
if (!super)
return;
free_imsm(super);
st->sb = NULL;
}
static struct intel_super *alloc_super(void)
{
struct intel_super *super = xcalloc(1, sizeof(*super));
super->current_vol = -1;
super->create_offset = ~((unsigned long long) 0);
super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
sizeof(struct md_bb_entry));
if (!super->bb.entries) {
free(super);
return NULL;
}
return super;
}
/*
* find and allocate hba and OROM/EFI based on valid fd of RAID component device
*/
static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
{
struct sys_dev *hba_name;
int rv = 0;
if (fd >= 0 && test_partition(fd)) {
pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
devname);
return 1;
}
if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
super->orom = NULL;
super->hba = NULL;
return 0;
}
hba_name = find_disk_attached_hba(fd, NULL);
if (!hba_name) {
if (devname)
pr_err("%s is not attached to Intel(R) RAID controller.\n",
devname);
return 1;
}
rv = attach_hba_to_super(super, hba_name);
if (rv == 2) {
if (devname) {
struct intel_hba *hba = super->hba;
pr_err("%s is attached to Intel(R) %s %s (%s),\n"
" but the container is assigned to Intel(R) %s %s (",
devname,
get_sys_dev_type(hba_name->type),
hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
hba_name->pci_id ? : "Err!",
get_sys_dev_type(super->hba->type),
hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
while (hba) {
fprintf(stderr, "%s", hba->pci_id ? : "Err!");
if (hba->next)
fprintf(stderr, ", ");
hba = hba->next;
}
fprintf(stderr, ").\n"
" Mixing devices attached to different controllers is not allowed.\n");
}
return 2;
}
super->orom = find_imsm_capability(hba_name);
if (!super->orom)
return 3;
return 0;
}
/* find_missing - helper routine for load_super_imsm_all that identifies
* disks that have disappeared from the system. This routine relies on
* the mpb being uptodate, which it is at load time.
*/
static int find_missing(struct intel_super *super)
{
int i;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
struct imsm_disk *disk;
for (i = 0; i < mpb->num_disks; i++) {
disk = __get_imsm_disk(mpb, i);
dl = serial_to_dl(disk->serial, super);
if (dl)
continue;
dl = xmalloc(sizeof(*dl));
dl->major = 0;
dl->minor = 0;
dl->fd = -1;
dl->devname = xstrdup("missing");
dl->index = i;
serialcpy(dl->serial, disk->serial);
dl->disk = *disk;
dl->e = NULL;
dl->next = super->missing;
super->missing = dl;
}
return 0;
}
static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
{
struct intel_disk *idisk = disk_list;
while (idisk) {
if (serialcmp(idisk->disk.serial, serial) == 0)
break;
idisk = idisk->next;
}
return idisk;
}
static int __prep_thunderdome(struct intel_super **table, int tbl_size,
struct intel_super *super,
struct intel_disk **disk_list)
{
struct imsm_disk *d = &super->disks->disk;
struct imsm_super *mpb = super->anchor;
int i, j;
for (i = 0; i < tbl_size; i++) {
struct imsm_super *tbl_mpb = table[i]->anchor;
struct imsm_disk *tbl_d = &table[i]->disks->disk;
if (tbl_mpb->family_num == mpb->family_num) {
if (tbl_mpb->check_sum == mpb->check_sum) {
dprintf("mpb from %d:%d matches %d:%d\n",
super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
break;
}
if (((is_configured(d) && !is_configured(tbl_d)) ||
is_configured(d) == is_configured(tbl_d)) &&
tbl_mpb->generation_num < mpb->generation_num) {
/* current version of the mpb is a
* better candidate than the one in
* super_table, but copy over "cross
* generational" status
*/
struct intel_disk *idisk;
dprintf("mpb from %d:%d replaces %d:%d\n",
super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
idisk = disk_list_get(tbl_d->serial, *disk_list);
if (idisk && is_failed(&idisk->disk))
tbl_d->status |= FAILED_DISK;
break;
} else {
struct intel_disk *idisk;
struct imsm_disk *disk;
/* tbl_mpb is more up to date, but copy
* over cross generational status before
* returning
*/
disk = __serial_to_disk(d->serial, mpb, NULL);
if (disk && is_failed(disk))
d->status |= FAILED_DISK;
idisk = disk_list_get(d->serial, *disk_list);
if (idisk) {
idisk->owner = i;
if (disk && is_configured(disk))
idisk->disk.status |= CONFIGURED_DISK;
}
dprintf("mpb from %d:%d prefer %d:%d\n",
super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
return tbl_size;
}
}
}
if (i >= tbl_size)
table[tbl_size++] = super;
else
table[i] = super;
/* update/extend the merged list of imsm_disk records */
for (j = 0; j < mpb->num_disks; j++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, j);
struct intel_disk *idisk;
idisk = disk_list_get(disk->serial, *disk_list);
if (idisk) {
idisk->disk.status |= disk->status;
if (is_configured(&idisk->disk) ||
is_failed(&idisk->disk))
idisk->disk.status &= ~(SPARE_DISK);
} else {
idisk = xcalloc(1, sizeof(*idisk));
idisk->owner = IMSM_UNKNOWN_OWNER;
idisk->disk = *disk;
idisk->next = *disk_list;
*disk_list = idisk;
}
if (serialcmp(idisk->disk.serial, d->serial) == 0)
idisk->owner = i;
}
return tbl_size;
}
static struct intel_super *
validate_members(struct intel_super *super, struct intel_disk *disk_list,
const int owner)
{
struct imsm_super *mpb = super->anchor;
int ok_count = 0;
int i;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, i);
struct intel_disk *idisk;
idisk = disk_list_get(disk->serial, disk_list);
if (idisk) {
if (idisk->owner == owner ||
idisk->owner == IMSM_UNKNOWN_OWNER)
ok_count++;
else
dprintf("'%.16s' owner %d != %d\n",
disk->serial, idisk->owner,
owner);
} else {
dprintf("unknown disk %x [%d]: %.16s\n",
__le32_to_cpu(mpb->family_num), i,
disk->serial);
break;
}
}
if (ok_count == mpb->num_disks)
return super;
return NULL;
}
static void show_conflicts(__u32 family_num, struct intel_super *super_list)
{
struct intel_super *s;
for (s = super_list; s; s = s->next) {
if (family_num != s->anchor->family_num)
continue;
pr_err("Conflict, offlining family %#x on '%s'\n",
__le32_to_cpu(family_num), s->disks->devname);
}
}
static struct intel_super *
imsm_thunderdome(struct intel_super **super_list, int len)
{
struct intel_super *super_table[len];
struct intel_disk *disk_list = NULL;
struct intel_super *champion, *spare;
struct intel_super *s, **del;
int tbl_size = 0;
int conflict;
int i;
memset(super_table, 0, sizeof(super_table));
for (s = *super_list; s; s = s->next)
tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
for (i = 0; i < tbl_size; i++) {
struct imsm_disk *d;
struct intel_disk *idisk;
struct imsm_super *mpb = super_table[i]->anchor;
s = super_table[i];
d = &s->disks->disk;
/* 'd' must appear in merged disk list for its
* configuration to be valid
*/
idisk = disk_list_get(d->serial, disk_list);
if (idisk && idisk->owner == i)
s = validate_members(s, disk_list, i);
else
s = NULL;
if (!s)
dprintf("marking family: %#x from %d:%d offline\n",
mpb->family_num,
super_table[i]->disks->major,
super_table[i]->disks->minor);
super_table[i] = s;
}
/* This is where the mdadm implementation differs from the Windows
* driver which has no strict concept of a container. We can only
* assemble one family from a container, so when returning a prodigal
* array member to this system the code will not be able to disambiguate
* the container contents that should be assembled ("foreign" versus
* "local"). It requires user intervention to set the orig_family_num
* to a new value to establish a new container. The Windows driver in
* this situation fixes up the volume name in place and manages the
* foreign array as an independent entity.
*/
s = NULL;
spare = NULL;
conflict = 0;
for (i = 0; i < tbl_size; i++) {
struct intel_super *tbl_ent = super_table[i];
int is_spare = 0;
if (!tbl_ent)
continue;
if (tbl_ent->anchor->num_raid_devs == 0) {
spare = tbl_ent;
is_spare = 1;
}
if (s && !is_spare) {
show_conflicts(tbl_ent->anchor->family_num, *super_list);
conflict++;
} else if (!s && !is_spare)
s = tbl_ent;
}
if (!s)
s = spare;
if (!s) {
champion = NULL;
goto out;
}
champion = s;
if (conflict)
pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
__le32_to_cpu(s->anchor->family_num), s->disks->devname);
/* collect all dl's onto 'champion', and update them to
* champion's version of the status
*/
for (s = *super_list; s; s = s->next) {
struct imsm_super *mpb = champion->anchor;
struct dl *dl = s->disks;
if (s == champion)
continue;
mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk;
disk = __serial_to_disk(dl->serial, mpb, &dl->index);
if (disk) {
dl->disk = *disk;
/* only set index on disks that are a member of
* a populated contianer, i.e. one with
* raid_devs
*/
if (is_failed(&dl->disk))
dl->index = -2;
else if (is_spare(&dl->disk))
dl->index = -1;
break;
}
}
if (i >= mpb->num_disks) {
struct intel_disk *idisk;
idisk = disk_list_get(dl->serial, disk_list);
if (idisk && is_spare(&idisk->disk) &&
!is_failed(&idisk->disk) && !is_configured(&idisk->disk))
dl->index = -1;
else {
dl->index = -2;
continue;
}
}
dl->next = champion->disks;
champion->disks = dl;
s->disks = NULL;
}
/* delete 'champion' from super_list */
for (del = super_list; *del; ) {
if (*del == champion) {
*del = (*del)->next;
break;
} else
del = &(*del)->next;
}
champion->next = NULL;
out:
while (disk_list) {
struct intel_disk *idisk = disk_list;
disk_list = disk_list->next;
free(idisk);
}
return champion;
}
static int
get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
int major, int minor, int keep_fd);
static int
get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
int *max, int keep_fd);
static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
char *devname, struct md_list *devlist,
int keep_fd)
{
struct intel_super *super_list = NULL;
struct intel_super *super = NULL;
int err = 0;
int i = 0;
if (fd >= 0)
/* 'fd' is an opened container */
err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
else
/* get super block from devlist devices */
err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
if (err)
goto error;
/* all mpbs enter, maybe one leaves */
super = imsm_thunderdome(&super_list, i);
if (!super) {
err = 1;
goto error;
}
if (find_missing(super) != 0) {
free_imsm(super);
err = 2;
goto error;
}
/* load migration record */
err = load_imsm_migr_rec(super, NULL);
if (err == -1) {
/* migration is in progress,
* but migr_rec cannot be loaded,
*/
err = 4;
goto error;
}
/* Check migration compatibility */
if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
pr_err("Unsupported migration detected");
if (devname)
fprintf(stderr, " on %s\n", devname);
else
fprintf(stderr, " (IMSM).\n");
err = 5;
goto error;
}
err = 0;
error:
while (super_list) {
struct intel_super *s = super_list;
super_list = super_list->next;
free_imsm(s);
}
if (err)
return err;
*sbp = super;
if (fd >= 0)
strcpy(st->container_devnm, fd2devnm(fd));
else
st->container_devnm[0] = 0;
if (err == 0 && st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
return 0;
}
static int
get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
int *max, int keep_fd)
{
struct md_list *tmpdev;
int err = 0;
int i = 0;
for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
if (tmpdev->used != 1)
continue;
if (tmpdev->container == 1) {
int lmax = 0;
int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
if (fd < 0) {
pr_err("cannot open device %s: %s\n",
tmpdev->devname, strerror(errno));
err = 8;
goto error;
}
err = get_sra_super_block(fd, super_list,
tmpdev->devname, &lmax,
keep_fd);
i += lmax;
close(fd);
if (err) {
err = 7;
goto error;
}
} else {
int major = major(tmpdev->st_rdev);
int minor = minor(tmpdev->st_rdev);
err = get_super_block(super_list,
NULL,
tmpdev->devname,
major, minor,
keep_fd);
i++;
if (err) {
err = 6;
goto error;
}
}
}
error:
*max = i;
return err;
}
static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
int major, int minor, int keep_fd)
{
struct intel_super *s;
char nm[32];
int dfd = -1;
int err = 0;
int retry;
s = alloc_super();
if (!s) {
err = 1;
goto error;
}
sprintf(nm, "%d:%d", major, minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0) {
err = 2;
goto error;
}
get_dev_sector_size(dfd, NULL, &s->sector_size);
find_intel_hba_capability(dfd, s, devname);
err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
/* retry the load if we might have raced against mdmon */
if (err == 3 && devnm && mdmon_running(devnm))
for (retry = 0; retry < 3; retry++) {
usleep(3000);
err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
if (err != 3)
break;
}
error:
if (!err) {
s->next = *super_list;
*super_list = s;
} else {
if (s)
free_imsm(s);
if (dfd >= 0)
close(dfd);
}
if (dfd >= 0 && !keep_fd)
close(dfd);
return err;
}
static int
get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
{
struct mdinfo *sra;
char *devnm;
struct mdinfo *sd;
int err = 0;
int i = 0;
sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "imsm") != 0) {
err = 1;
goto error;
}
/* load all mpbs */
devnm = fd2devnm(fd);
for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
if (get_super_block(super_list, devnm, devname,
sd->disk.major, sd->disk.minor, keep_fd) != 0) {
err = 7;
goto error;
}
}
error:
sysfs_free(sra);
*max = i;
return err;
}
static int load_container_imsm(struct supertype *st, int fd, char *devname)
{
return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
}
static int load_super_imsm(struct supertype *st, int fd, char *devname)
{
struct intel_super *super;
int rv;
int retry;
if (test_partition(fd))
/* IMSM not allowed on partitions */
return 1;
free_super_imsm(st);
super = alloc_super();
get_dev_sector_size(fd, NULL, &super->sector_size);
if (!super)
return 1;
/* Load hba and capabilities if they exist.
* But do not preclude loading metadata in case capabilities or hba are
* non-compliant and ignore_hw_compat is set.
*/
rv = find_intel_hba_capability(fd, super, devname);
/* no orom/efi or non-intel hba of the disk */
if (rv != 0 && st->ignore_hw_compat == 0) {
if (devname)
pr_err("No OROM/EFI properties for %s\n", devname);
free_imsm(super);
return 2;
}
rv = load_and_parse_mpb(fd, super, devname, 0);
/* retry the load if we might have raced against mdmon */
if (rv == 3) {
struct mdstat_ent *mdstat = NULL;
char *name = fd2kname(fd);
if (name)
mdstat = mdstat_by_component(name);
if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
for (retry = 0; retry < 3; retry++) {
usleep(3000);
rv = load_and_parse_mpb(fd, super, devname, 0);
if (rv != 3)
break;
}
}
free_mdstat(mdstat);
}
if (rv) {
if (devname)
pr_err("Failed to load all information sections on %s\n", devname);
free_imsm(super);
return rv;
}
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
/* load migration record */
if (load_imsm_migr_rec(super, NULL) == 0) {
/* Check for unsupported migration features */
if (check_mpb_migr_compatibility(super) != 0) {
pr_err("Unsupported migration detected");
if (devname)
fprintf(stderr, " on %s\n", devname);
else
fprintf(stderr, " (IMSM).\n");
return 3;
}
}
return 0;
}
static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
{
if (info->level == 1)
return 128;
return info->chunk_size >> 9;
}
static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
unsigned long long size)
{
if (info->level == 1)
return size * 2;
else
return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
}
static void imsm_update_version_info(struct intel_super *super)
{
/* update the version and attributes */
struct imsm_super *mpb = super->anchor;
char *version;
struct imsm_dev *dev;
struct imsm_map *map;
int i;
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, MAP_0);
if (__le32_to_cpu(dev->size_high) > 0)
mpb->attributes |= MPB_ATTRIB_2TB;
/* FIXME detect when an array spans a port multiplier */
#if 0
mpb->attributes |= MPB_ATTRIB_PM;
#endif
if (mpb->num_raid_devs > 1 ||
mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
version = MPB_VERSION_ATTRIBS;
switch (get_imsm_raid_level(map)) {
case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
}
} else {
if (map->num_members >= 5)
version = MPB_VERSION_5OR6_DISK_ARRAY;
else if (dev->status == DEV_CLONE_N_GO)
version = MPB_VERSION_CNG;
else if (get_imsm_raid_level(map) == 5)
version = MPB_VERSION_RAID5;
else if (map->num_members >= 3)
version = MPB_VERSION_3OR4_DISK_ARRAY;
else if (get_imsm_raid_level(map) == 1)
version = MPB_VERSION_RAID1;
else
version = MPB_VERSION_RAID0;
}
strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
}
}
static int check_name(struct intel_super *super, char *name, int quiet)
{
struct imsm_super *mpb = super->anchor;
char *reason = NULL;
char *start = name;
size_t len = strlen(name);
int i;
if (len > 0) {
while (isspace(start[len - 1]))
start[--len] = 0;
while (*start && isspace(*start))
++start, --len;
memmove(name, start, len + 1);
}
if (len > MAX_RAID_SERIAL_LEN)
reason = "must be 16 characters or less";
else if (len == 0)
reason = "must be a non-empty string";
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
reason = "already exists";
break;
}
}
if (reason && !quiet)
pr_err("imsm volume name %s\n", reason);
return !reason;
}
static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
struct shape *s, char *name,
char *homehost, int *uuid,
long long data_offset)
{
/* We are creating a volume inside a pre-existing container.
* so st->sb is already set.
*/
struct intel_super *super = st->sb;
unsigned int sector_size = super->sector_size;
struct imsm_super *mpb = super->anchor;
struct intel_dev *dv;
struct imsm_dev *dev;
struct imsm_vol *vol;
struct imsm_map *map;
int idx = mpb->num_raid_devs;
int i;
int namelen;
unsigned long long array_blocks;
size_t size_old, size_new;
unsigned long long num_data_stripes;
unsigned int data_disks;
unsigned long long size_per_member;
if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
return 0;
}
/* ensure the mpb is large enough for the new data */
size_old = __le32_to_cpu(mpb->mpb_size);
size_new = disks_to_mpb_size(info->nr_disks);
if (size_new > size_old) {
void *mpb_new;
size_t size_round = ROUND_UP(size_new, sector_size);
if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
pr_err("could not allocate new mpb\n");
return 0;
}
if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
MIGR_REC_BUF_SECTORS*
MAX_SECTOR_SIZE) != 0) {
pr_err("could not allocate migr_rec buffer\n");
free(super->buf);
free(super);
free(mpb_new);
return 0;
}
memcpy(mpb_new, mpb, size_old);
free(mpb);
mpb = mpb_new;
super->anchor = mpb_new;
mpb->mpb_size = __cpu_to_le32(size_new);
memset(mpb_new + size_old, 0, size_round - size_old);
super->len = size_round;
}
super->current_vol = idx;
/* handle 'failed_disks' by either:
* a) create dummy disk entries in the table if this the first
* volume in the array. We add them here as this is the only
* opportunity to add them. add_to_super_imsm_volume()
* handles the non-failed disks and continues incrementing
* mpb->num_disks.
* b) validate that 'failed_disks' matches the current number
* of missing disks if the container is populated
*/
if (super->current_vol == 0) {
mpb->num_disks = 0;
for (i = 0; i < info->failed_disks; i++) {
struct imsm_disk *disk;
mpb->num_disks++;
disk = __get_imsm_disk(mpb, i);
disk->status = CONFIGURED_DISK | FAILED_DISK;
disk->scsi_id = __cpu_to_le32(~(__u32)0);
snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
"missing:%d", (__u8)i);
}
find_missing(super);
} else {
int missing = 0;
struct dl *d;
for (d = super->missing; d; d = d->next)
missing++;
if (info->failed_disks > missing) {
pr_err("unable to add 'missing' disk to container\n");
return 0;
}
}
if (!check_name(super, name, 0))
return 0;
dv = xmalloc(sizeof(*dv));
dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
/*
* Explicitly allow truncating to not confuse gcc's
* -Werror=stringop-truncation
*/
namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
memcpy(dev->volume, name, namelen);
array_blocks = calc_array_size(info->level, info->raid_disks,
info->layout, info->chunk_size,
s->size * BLOCKS_PER_KB);
data_disks = get_data_disks(info->level, info->layout,
info->raid_disks);
array_blocks = round_size_to_mb(array_blocks, data_disks);
size_per_member = array_blocks / data_disks;
set_imsm_dev_size(dev, array_blocks);
dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
vol = &dev->vol;
vol->migr_state = 0;
set_migr_type(dev, MIGR_INIT);
vol->dirty = !info->state;
vol->curr_migr_unit = 0;
map = get_imsm_map(dev, MAP_0);
set_pba_of_lba0(map, super->create_offset);
map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
map->failed_disk_num = ~0;
if (info->level > 0)
map->map_state = (info->state ? IMSM_T_STATE_NORMAL
: IMSM_T_STATE_UNINITIALIZED);
else
map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
IMSM_T_STATE_NORMAL;
map->ddf = 1;
if (info->level == 1 && info->raid_disks > 2) {
free(dev);
free(dv);
pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
return 0;
}
map->raid_level = info->level;
if (info->level == 10) {
map->raid_level = 1;
map->num_domains = info->raid_disks / 2;
} else if (info->level == 1)
map->num_domains = info->raid_disks;
else
map->num_domains = 1;
/* info->size is only int so use the 'size' parameter instead */
num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
num_data_stripes /= map->num_domains;
set_num_data_stripes(map, num_data_stripes);
size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
set_blocks_per_member(map, info_to_blocks_per_member(info,
size_per_member /
BLOCKS_PER_KB));
map->num_members = info->raid_disks;
for (i = 0; i < map->num_members; i++) {
/* initialized in add_to_super */
set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
}
mpb->num_raid_devs++;
mpb->num_raid_devs_created++;
dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
dev->rwh_policy = RWH_MULTIPLE_OFF;
} else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
} else {
free(dev);
free(dv);
pr_err("imsm does not support consistency policy %s\n",
map_num(consistency_policies, s->consistency_policy));
return 0;
}
dv->dev = dev;
dv->index = super->current_vol;
dv->next = super->devlist;
super->devlist = dv;
imsm_update_version_info(super);
return 1;
}
static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
struct shape *s, char *name,
char *homehost, int *uuid,
unsigned long long data_offset)
{
/* This is primarily called by Create when creating a new array.
* We will then get add_to_super called for each component, and then
* write_init_super called to write it out to each device.
* For IMSM, Create can create on fresh devices or on a pre-existing
* array.
* To create on a pre-existing array a different method will be called.
* This one is just for fresh drives.
*/
struct intel_super *super;
struct imsm_super *mpb;
size_t mpb_size;
char *version;
if (data_offset != INVALID_SECTORS) {
pr_err("data-offset not supported by imsm\n");
return 0;
}
if (st->sb)
return init_super_imsm_volume(st, info, s, name, homehost, uuid,
data_offset);
if (info)
mpb_size = disks_to_mpb_size(info->nr_disks);
else
mpb_size = MAX_SECTOR_SIZE;
super = alloc_super();
if (super &&
posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
free_imsm(super);
super = NULL;
}
if (!super) {
pr_err("could not allocate superblock\n");
return 0;
}
if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
pr_err("could not allocate migr_rec buffer\n");
free(super->buf);
free_imsm(super);
return 0;
}
memset(super->buf, 0, mpb_size);
mpb = super->buf;
mpb->mpb_size = __cpu_to_le32(mpb_size);
st->sb = super;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
version = (char *) mpb->sig;
strcpy(version, MPB_SIGNATURE);
version += strlen(MPB_SIGNATURE);
strcpy(version, MPB_VERSION_RAID0);
return 1;
}
static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
{
unsigned int member_sector_size;
if (dl->fd < 0) {
pr_err("Invalid file descriptor for %s\n", dl->devname);
return 0;
}
if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
return 0;
if (member_sector_size != super->sector_size)
return 0;
return 1;
}
static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct imsm_disk *_disk;
struct imsm_dev *dev;
struct imsm_map *map;
struct dl *dl, *df;
int slot;
dev = get_imsm_dev(super, super->current_vol);
map = get_imsm_map(dev, MAP_0);
if (! (dk->state & (1<<MD_DISK_SYNC))) {
pr_err("%s: Cannot add spare devices to IMSM volume\n",
devname);
return 1;
}
if (fd == -1) {
/* we're doing autolayout so grab the pre-marked (in
* validate_geometry) raid_disk
*/
for (dl = super->disks; dl; dl = dl->next)
if (dl->raiddisk == dk->raid_disk)
break;
} else {
for (dl = super->disks; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
}
if (!dl) {
pr_err("%s is not a member of the same container\n", devname);
return 1;
}
if (mpb->num_disks == 0)
if (!get_dev_sector_size(dl->fd, dl->devname,
&super->sector_size))
return 1;
if (!drive_validate_sector_size(super, dl)) {
pr_err("Combining drives of different sector size in one volume is not allowed\n");
return 1;
}
/* add a pristine spare to the metadata */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
/* Check the device has not already been added */
slot = get_imsm_disk_slot(map, dl->index);
if (slot >= 0 &&
(get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
pr_err("%s has been included in this array twice\n",
devname);
return 1;
}
set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
dl->disk.status = CONFIGURED_DISK;
/* update size of 'missing' disks to be at least as large as the
* largest acitve member (we only have dummy missing disks when
* creating the first volume)
*/
if (super->current_vol == 0) {
for (df = super->missing; df; df = df->next) {
if (total_blocks(&dl->disk) > total_blocks(&df->disk))
set_total_blocks(&df->disk, total_blocks(&dl->disk));
_disk = __get_imsm_disk(mpb, df->index);
*_disk = df->disk;
}
}
/* refresh unset/failed slots to point to valid 'missing' entries */
for (df = super->missing; df; df = df->next)
for (slot = 0; slot < mpb->num_disks; slot++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
if ((ord & IMSM_ORD_REBUILD) == 0)
continue;
set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
if (is_gen_migration(dev)) {
struct imsm_map *map2 = get_imsm_map(dev,
MAP_1);
int slot2 = get_imsm_disk_slot(map2, df->index);
if (slot2 < map2->num_members && slot2 >= 0) {
__u32 ord2 = get_imsm_ord_tbl_ent(dev,
slot2,
MAP_1);
if ((unsigned)df->index ==
ord_to_idx(ord2))
set_imsm_ord_tbl_ent(map2,
slot2,
df->index |
IMSM_ORD_REBUILD);
}
}
dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
break;
}
/* if we are creating the first raid device update the family number */
if (super->current_vol == 0) {
__u32 sum;
struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
_disk = __get_imsm_disk(mpb, dl->index);
if (!_dev || !_disk) {
pr_err("BUG mpb setup error\n");
return 1;
}
*_dev = *dev;
*_disk = dl->disk;
sum = random32();
sum += __gen_imsm_checksum(mpb);
mpb->family_num = __cpu_to_le32(sum);
mpb->orig_family_num = mpb->family_num;
}
super->current_disk = dl;
return 0;
}
/* mark_spare()
* Function marks disk as spare and restores disk serial
* in case it was previously marked as failed by takeover operation
* reruns:
* -1 : critical error
* 0 : disk is marked as spare but serial is not set
* 1 : success
*/
int mark_spare(struct dl *disk)
{
__u8 serial[MAX_RAID_SERIAL_LEN];
int ret_val = -1;
if (!disk)
return ret_val;
ret_val = 0;
if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
/* Restore disk serial number, because takeover marks disk
* as failed and adds to serial ':0' before it becomes
* a spare disk.
*/
serialcpy(disk->serial, serial);
serialcpy(disk->disk.serial, serial);
ret_val = 1;
}
disk->disk.status = SPARE_DISK;
disk->index = -1;
return ret_val;
}
static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname,
unsigned long long data_offset)
{
struct intel_super *super = st->sb;
struct dl *dd;
unsigned long long size;
unsigned int member_sector_size;
__u32 id;
int rv;
struct stat stb;
/* If we are on an RAID enabled platform check that the disk is
* attached to the raid controller.
* We do not need to test disks attachment for container based additions,
* they shall be already tested when container was created/assembled.
*/
rv = find_intel_hba_capability(fd, super, devname);
/* no orom/efi or non-intel hba of the disk */
if (rv != 0) {
dprintf("capability: %p fd: %d ret: %d\n",
super->orom, fd, rv);
return 1;
}
if (super->current_vol >= 0)
return add_to_super_imsm_volume(st, dk, fd, devname);
fstat(fd, &stb);
dd = xcalloc(sizeof(*dd), 1);
dd->major = major(stb.st_rdev);
dd->minor = minor(stb.st_rdev);
dd->devname = devname ? xstrdup(devname) : NULL;
dd->fd = fd;
dd->e = NULL;
dd->action = DISK_ADD;
rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
if (rv) {
pr_err("failed to retrieve scsi serial, aborting\n");
if (dd->devname)
free(dd->devname);
free(dd);
abort();
}
if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
(super->hba->type == SYS_DEV_VMD))) {
int i;
char *devpath = diskfd_to_devpath(fd);
char controller_path[PATH_MAX];
if (!devpath) {
pr_err("failed to get devpath, aborting\n");
if (dd->devname)
free(dd->devname);
free(dd);
return 1;
}
snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
free(devpath);
if (devpath_to_vendor(controller_path) == 0x8086) {
/*
* If Intel's NVMe drive has serial ended with
* "-A","-B","-1" or "-2" it means that this is "x8"
* device (double drive on single PCIe card).
* User should be warned about potential data loss.
*/
for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
/* Skip empty character at the end */
if (dd->serial[i] == 0)
continue;
if (((dd->serial[i] == 'A') ||
(dd->serial[i] == 'B') ||
(dd->serial[i] == '1') ||
(dd->serial[i] == '2')) &&
(dd->serial[i-1] == '-'))
pr_err("\tThe action you are about to take may put your data at risk.\n"
"\tPlease note that x8 devices may consist of two separate x4 devices "
"located on a single PCIe port.\n"
"\tRAID 0 is the only supported configuration for this type of x8 device.\n");
break;
}
} else if (super->hba->type == SYS_DEV_VMD && super->orom &&
!imsm_orom_has_tpv_support(super->orom)) {
pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
"\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
free(dd->devname);
free(dd);
return 1;
}
}
get_dev_size(fd, NULL, &size);
get_dev_sector_size(fd, NULL, &member_sector_size);
if (super->sector_size == 0) {
/* this a first device, so sector_size is not set yet */
super->sector_size = member_sector_size;
}
/* clear migr_rec when adding disk to container */
memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
SEEK_SET) >= 0) {
if ((unsigned int)write(fd, super->migr_rec_buf,
MIGR_REC_BUF_SECTORS*member_sector_size) !=
MIGR_REC_BUF_SECTORS*member_sector_size)
perror("Write migr_rec failed");
}
size /= 512;
serialcpy(dd->disk.serial, dd->serial);
set_total_blocks(&dd->disk, size);
if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
struct imsm_super *mpb = super->anchor;
mpb->attributes |= MPB_ATTRIB_2TB_DISK;
}
mark_spare(dd);
if (sysfs_disk_to_scsi_id(fd, &id) == 0)
dd->disk.scsi_id = __cpu_to_le32(id);
else
dd->disk.scsi_id = __cpu_to_le32(0);
if (st->update_tail) {
dd->next = super->disk_mgmt_list;
super->disk_mgmt_list = dd;
} else {
dd->next = super->disks;
super->disks = dd;
super->updates_pending++;
}
return 0;
}
static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
{
struct intel_super *super = st->sb;
struct dl *dd;
/* remove from super works only in mdmon - for communication
* manager - monitor. Check if communication memory buffer
* is prepared.
*/
if (!st->update_tail) {
pr_err("shall be used in mdmon context only\n");
return 1;
}
dd = xcalloc(1, sizeof(*dd));
dd->major = dk->major;
dd->minor = dk->minor;
dd->fd = -1;
mark_spare(dd);
dd->action = DISK_REMOVE;
dd->next = super->disk_mgmt_list;
super->disk_mgmt_list = dd;
return 0;
}
static int store_imsm_mpb(int fd, struct imsm_super *mpb);
static union {
char buf[MAX_SECTOR_SIZE];
struct imsm_super anchor;
} spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
/* spare records have their own family number and do not have any defined raid
* devices
*/
static int write_super_imsm_spares(struct intel_super *super, int doclose)
{
struct imsm_super *mpb = super->anchor;
struct imsm_super *spare = &spare_record.anchor;
__u32 sum;
struct dl *d;
spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
spare->generation_num = __cpu_to_le32(1UL);
spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
spare->num_disks = 1;
spare->num_raid_devs = 0;
spare->cache_size = mpb->cache_size;
spare->pwr_cycle_count = __cpu_to_le32(1);
snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
MPB_SIGNATURE MPB_VERSION_RAID0);
for (d = super->disks; d; d = d->next) {
if (d->index != -1)
continue;
spare->disk[0] = d->disk;
if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
spare->attributes |= MPB_ATTRIB_2TB_DISK;
if (super->sector_size == 4096)
convert_to_4k_imsm_disk(&spare->disk[0]);
sum = __gen_imsm_checksum(spare);
spare->family_num = __cpu_to_le32(sum);
spare->orig_family_num = 0;
sum = __gen_imsm_checksum(spare);
spare->check_sum = __cpu_to_le32(sum);
if (store_imsm_mpb(d->fd, spare)) {
pr_err("failed for device %d:%d %s\n",
d->major, d->minor, strerror(errno));
return 1;
}
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
return 0;
}
static int write_super_imsm(struct supertype *st, int doclose)
{
struct intel_super *super = st->sb;
unsigned int sector_size = super->sector_size;
struct imsm_super *mpb = super->anchor;
struct dl *d;
__u32 generation;
__u32 sum;
int spares = 0;
int i;
__u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
int num_disks = 0;
int clear_migration_record = 1;
__u32 bbm_log_size;
/* 'generation' is incremented everytime the metadata is written */
generation = __le32_to_cpu(mpb->generation_num);
generation++;
mpb->generation_num = __cpu_to_le32(generation);
/* fix up cases where previous mdadm releases failed to set
* orig_family_num
*/
if (mpb->orig_family_num == 0)
mpb->orig_family_num = mpb->family_num;
for (d = super->disks; d; d = d->next) {
if (d->index == -1)
spares++;
else {
mpb->disk[d->index] = d->disk;
num_disks++;
}
}
for (d = super->missing; d; d = d->next) {
mpb->disk[d->index] = d->disk;
num_disks++;
}
mpb->num_disks = num_disks;
mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
struct imsm_dev *dev2 = get_imsm_dev(super, i);
if (dev && dev2) {
imsm_copy_dev(dev, dev2);
mpb_size += sizeof_imsm_dev(dev, 0);
}
if (is_gen_migration(dev2))
clear_migration_record = 0;
}
bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
if (bbm_log_size) {
memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
mpb->attributes |= MPB_ATTRIB_BBM;
} else
mpb->attributes &= ~MPB_ATTRIB_BBM;
super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
mpb_size += bbm_log_size;
mpb->mpb_size = __cpu_to_le32(mpb_size);
#ifdef DEBUG
assert(super->len == 0 || mpb_size <= super->len);
#endif
/* recalculate checksum */
sum = __gen_imsm_checksum(mpb);
mpb->check_sum = __cpu_to_le32(sum);
if (super->clean_migration_record_by_mdmon) {
clear_migration_record = 1;
super->clean_migration_record_by_mdmon = 0;
}
if (clear_migration_record)
memset(super->migr_rec_buf, 0,
MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
if (sector_size == 4096)
convert_to_4k(super);
/* write the mpb for disks that compose raid devices */
for (d = super->disks; d ; d = d->next) {
if (d->index < 0 || is_failed(&d->disk))
continue;
if (clear_migration_record) {
unsigned long long dsize;
get_dev_size(d->fd, NULL, &dsize);
if (lseek64(d->fd, dsize - sector_size,
SEEK_SET) >= 0) {
if ((unsigned int)write(d->fd,
super->migr_rec_buf,
MIGR_REC_BUF_SECTORS*sector_size) !=
MIGR_REC_BUF_SECTORS*sector_size)
perror("Write migr_rec failed");
}
}
if (store_imsm_mpb(d->fd, mpb))
fprintf(stderr,
"failed for device %d:%d (fd: %d)%s\n",
d->major, d->minor,
d->fd, strerror(errno));
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
if (spares)
return write_super_imsm_spares(super, doclose);
return 0;
}
static int create_array(struct supertype *st, int dev_idx)
{
size_t len;
struct imsm_update_create_array *u;
struct intel_super *super = st->sb;
struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct disk_info *inf;
struct imsm_disk *disk;
int i;
len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
sizeof(*inf) * map->num_members;
u = xmalloc(len);
u->type = update_create_array;
u->dev_idx = dev_idx;
imsm_copy_dev(&u->dev, dev);
inf = get_disk_info(u);
for (i = 0; i < map->num_members; i++) {
int idx = get_imsm_disk_idx(dev, i, MAP_X);
disk = get_imsm_disk(super, idx);
if (!disk)
disk = get_imsm_missing(super, idx);
serialcpy(inf[i].serial, disk->serial);
}
append_metadata_update(st, u, len);
return 0;
}
static int mgmt_disk(struct supertype *st)
{
struct intel_super *super = st->sb;
size_t len;
struct imsm_update_add_remove_disk *u;
if (!super->disk_mgmt_list)
return 0;
len = sizeof(*u);
u = xmalloc(len);
u->type = update_add_remove_disk;
append_metadata_update(st, u, len);
return 0;
}
__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
{
struct ppl_header *ppl_hdr = buf;
int ret;
ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
ret = -errno;
perror("Failed to seek to PPL header location");
return ret;
}
if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
ret = -errno;
perror("Write PPL header failed");
return ret;
}
fsync(fd);
return 0;
}
static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
{
struct intel_super *super = st->sb;
void *buf;
struct ppl_header *ppl_hdr;
int ret;
/* first clear entire ppl space */
ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
if (ret)
return ret;
ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
if (ret) {
pr_err("Failed to allocate PPL header buffer\n");
return -ret;
}
memset(buf, 0, PPL_HEADER_SIZE);
ppl_hdr = buf;
memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
if (info->mismatch_cnt) {
/*
* We are overwriting an invalid ppl. Make one entry with wrong
* checksum to prevent the kernel from skipping resync.
*/
ppl_hdr->entries_count = __cpu_to_le32(1);
ppl_hdr->entries[0].checksum = ~0;
}
ret = write_ppl_header(info->ppl_sector, fd, buf);
free(buf);
return ret;
}
static int is_rebuilding(struct imsm_dev *dev);
static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
struct mdinfo *disk)
{
struct intel_super *super = st->sb;
struct dl *d;
void *buf_orig, *buf, *buf_prev = NULL;
int ret = 0;
struct ppl_header *ppl_hdr = NULL;
__u32 crc;
struct imsm_dev *dev;
__u32 idx;
unsigned int i;
unsigned long long ppl_offset = 0;
unsigned long long prev_gen_num = 0;
if (disk->disk.raid_disk < 0)
return 0;
dev = get_imsm_dev(super, info->container_member);
idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
d = get_imsm_dl_disk(super, idx);
if (!d || d->index < 0 || is_failed(&d->disk))
return 0;
if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
pr_err("Failed to allocate PPL header buffer\n");
return -1;
}
buf = buf_orig;
ret = 1;
while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
void *tmp;
dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
SEEK_SET) < 0) {
perror("Failed to seek to PPL header location");
ret = -1;
break;
}
if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
perror("Read PPL header failed");
ret = -1;
break;
}
ppl_hdr = buf;
crc = __le32_to_cpu(ppl_hdr->checksum);
ppl_hdr->checksum = 0;
if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
dprintf("Wrong PPL header checksum on %s\n",
d->devname);
break;
}
if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
/* previous was newest, it was already checked */
break;
}
if ((__le32_to_cpu(ppl_hdr->signature) !=
super->anchor->orig_family_num)) {
dprintf("Wrong PPL header signature on %s\n",
d->devname);
ret = 1;
break;
}
ret = 0;
prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
ppl_offset += PPL_HEADER_SIZE;
for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
ppl_offset +=
__le32_to_cpu(ppl_hdr->entries[i].pp_size);
if (!buf_prev)
buf_prev = buf + PPL_HEADER_SIZE;
tmp = buf_prev;
buf_prev = buf;
buf = tmp;
}
if (buf_prev) {
buf = buf_prev;
ppl_hdr = buf_prev;
}
/*
* Update metadata to use mutliple PPLs area (1MB).
* This is done once for all RAID members
*/
if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
char subarray[20];
struct mdinfo *member_dev;
sprintf(subarray, "%d", info->container_member);
if (mdmon_running(st->container_devnm))
st->update_tail = &st->updates;
if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
pr_err("Failed to update subarray %s\n",
subarray);
} else {
if (st->update_tail)
flush_metadata_updates(st);
else
st->ss->sync_metadata(st);
info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
for (member_dev = info->devs; member_dev;
member_dev = member_dev->next)
member_dev->ppl_size =
(MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
}
}
if (ret == 1) {
struct imsm_map *map = get_imsm_map(dev, MAP_X);
if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
(map->map_state == IMSM_T_STATE_NORMAL &&
!(dev->vol.dirty & RAIDVOL_DIRTY)) ||
(is_rebuilding(dev) &&
dev->vol.curr_migr_unit == 0 &&
get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
ret = st->ss->write_init_ppl(st, info, d->fd);
else
info->mismatch_cnt++;
} else if (ret == 0 &&
ppl_hdr->entries_count == 0 &&
is_rebuilding(dev) &&
info->resync_start == 0) {
/*
* The header has no entries - add a single empty entry and
* rewrite the header to prevent the kernel from going into
* resync after an interrupted rebuild.
*/
ppl_hdr->entries_count = __cpu_to_le32(1);
ret = write_ppl_header(info->ppl_sector, d->fd, buf);
}
free(buf_orig);
return ret;
}
static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct dl *d;
int ret = 0;
if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
info->array.level != 5)
return 0;
for (d = super->disks; d ; d = d->next) {
if (d->index < 0 || is_failed(&d->disk))
continue;
ret = st->ss->write_init_ppl(st, info, d->fd);
if (ret)
break;
}
return ret;
}
static int write_init_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
int current_vol = super->current_vol;
int rv = 0;
struct mdinfo info;
getinfo_super_imsm(st, &info, NULL);
/* we are done with current_vol reset it to point st at the container */
super->current_vol = -1;
if (st->update_tail) {
/* queue the recently created array / added disk
* as a metadata update */
/* determine if we are creating a volume or adding a disk */
if (current_vol < 0) {
/* in the mgmt (add/remove) disk case we are running
* in mdmon context, so don't close fd's
*/
rv = mgmt_disk(st);
} else {
rv = write_init_ppl_imsm_all(st, &info);
if (!rv)
rv = create_array(st, current_vol);
}
} else {
struct dl *d;
for (d = super->disks; d; d = d->next)
Kill(d->devname, NULL, 0, -1, 1);
if (current_vol >= 0)
rv = write_init_ppl_imsm_all(st, &info);
if (!rv)
rv = write_super_imsm(st, 1);
}
return rv;
}
static int store_super_imsm(struct supertype *st, int fd)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super ? super->anchor : NULL;
if (!mpb)
return 1;
if (super->sector_size == 4096)
convert_to_4k(super);
return store_imsm_mpb(fd, mpb);
}
static int validate_geometry_imsm_container(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size,
unsigned long long data_offset,
char *dev,
unsigned long long *freesize,
int verbose)
{
int fd;
unsigned long long ldsize;
struct intel_super *super;
int rv = 0;
if (level != LEVEL_CONTAINER)
return 0;
if (!dev)
return 1;
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose > 0)
pr_err("imsm: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, dev, &ldsize)) {
close(fd);
return 0;
}
/* capabilities retrieve could be possible
* note that there is no fd for the disks in array.
*/
super = alloc_super();
if (!super) {
close(fd);
return 0;
}
if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
close(fd);
free_imsm(super);
return 0;
}
rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
if (rv != 0) {
#if DEBUG
char str[256];
fd2devname(fd, str);
dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
fd, str, super->orom, rv, raiddisks);
#endif
/* no orom/efi or non-intel hba of the disk */
close(fd);
free_imsm(super);
return 0;
}
close(fd);
if (super->orom) {
if (raiddisks > super->orom->tds) {
if (verbose)
pr_err("%d exceeds maximum number of platform supported disks: %d\n",
raiddisks, super->orom->tds);
free_imsm(super);
return 0;
}
if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
(ldsize >> 9) >> 32 > 0) {
if (verbose)
pr_err("%s exceeds maximum platform supported size\n", dev);
free_imsm(super);
return 0;
}
}
*freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
free_imsm(super);
return 1;
}
static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
{
const unsigned long long base_start = e[*idx].start;
unsigned long long end = base_start + e[*idx].size;
int i;
if (base_start == end)
return 0;
*idx = *idx + 1;
for (i = *idx; i < num_extents; i++) {
/* extend overlapping extents */
if (e[i].start >= base_start &&
e[i].start <= end) {
if (e[i].size == 0)
return 0;
if (e[i].start + e[i].size > end)
end = e[i].start + e[i].size;
} else if (e[i].start > end) {
*idx = i;
break;
}
}
return end - base_start;
}
static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
{
/* build a composite disk with all known extents and generate a new
* 'maxsize' given the "all disks in an array must share a common start
* offset" constraint
*/
struct extent *e = xcalloc(sum_extents, sizeof(*e));
struct dl *dl;
int i, j;
int start_extent;
unsigned long long pos;
unsigned long long start = 0;
unsigned long long maxsize;
unsigned long reserve;
/* coalesce and sort all extents. also, check to see if we need to
* reserve space between member arrays
*/
j = 0;
for (dl = super->disks; dl; dl = dl->next) {
if (!dl->e)
continue;
for (i = 0; i < dl->extent_cnt; i++)
e[j++] = dl->e[i];
}
qsort(e, sum_extents, sizeof(*e), cmp_extent);
/* merge extents */
i = 0;
j = 0;
while (i < sum_extents) {
e[j].start = e[i].start;
e[j].size = find_size(e, &i, sum_extents);
j++;
if (e[j-1].size == 0)
break;
}
pos = 0;
maxsize = 0;
start_extent = 0;
i = 0;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize) {
maxsize = esize;
start = pos;
start_extent = i;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
free(e);
if (maxsize == 0)
return 0;
/* FIXME assumes volume at offset 0 is the first volume in a
* container
*/
if (start_extent > 0)
reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
else
reserve = 0;
if (maxsize < reserve)
return 0;
super->create_offset = ~((unsigned long long) 0);
if (start + reserve > super->create_offset)
return 0; /* start overflows create_offset */
super->create_offset = start + reserve;
return maxsize - reserve;
}
static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
{
if (level < 0 || level == 6 || level == 4)
return 0;
/* if we have an orom prevent invalid raid levels */
if (orom)
switch (level) {
case 0: return imsm_orom_has_raid0(orom);
case 1:
if (raiddisks > 2)
return imsm_orom_has_raid1e(orom);
return imsm_orom_has_raid1(orom) && raiddisks == 2;
case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
}
else
return 1; /* not on an Intel RAID platform so anything goes */
return 0;
}
static int
active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
int dpa, int verbose)
{
struct mdstat_ent *mdstat = mdstat_read(0, 0);
struct mdstat_ent *memb;
int count = 0;
int num = 0;
struct md_list *dv;
int found;
for (memb = mdstat ; memb ; memb = memb->next) {
if (memb->metadata_version &&
(strncmp(memb->metadata_version, "external:", 9) == 0) &&
(strcmp(&memb->metadata_version[9], name) == 0) &&
!is_subarray(memb->metadata_version+9) &&
memb->members) {
struct dev_member *dev = memb->members;
int fd = -1;
while(dev && (fd < 0)) {
char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
num = sprintf(path, "%s%s", "/dev/", dev->name);
if (num > 0)
fd = open(path, O_RDONLY, 0);
if (num <= 0 || fd < 0) {
pr_vrb("Cannot open %s: %s\n",
dev->name, strerror(errno));
}
free(path);
dev = dev->next;
}
found = 0;
if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
struct mdstat_ent *vol;
for (vol = mdstat ; vol ; vol = vol->next) {
if (vol->active > 0 &&
vol->metadata_version &&
is_container_member(vol, memb->devnm)) {
found++;
count++;
}
}
if (*devlist && (found < dpa)) {
dv = xcalloc(1, sizeof(*dv));
dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
dv->found = found;
dv->used = 0;
dv->next = *devlist;
*devlist = dv;
}
}
if (fd >= 0)
close(fd);
}
}
free_mdstat(mdstat);
return count;
}
#ifdef DEBUG_LOOP
static struct md_list*
get_loop_devices(void)
{
int i;
struct md_list *devlist = NULL;
struct md_list *dv;
for(i = 0; i < 12; i++) {
dv = xcalloc(1, sizeof(*dv));
dv->devname = xmalloc(40);
sprintf(dv->devname, "/dev/loop%d", i);
dv->next = devlist;
devlist = dv;
}
return devlist;
}
#endif
static struct md_list*
get_devices(const char *hba_path)
{
struct md_list *devlist = NULL;
struct md_list *dv;
struct dirent *ent;
DIR *dir;
int err = 0;
#if DEBUG_LOOP
devlist = get_loop_devices();
return devlist;
#endif
/* scroll through /sys/dev/block looking for devices attached to
* this hba
*/
dir = opendir("/sys/dev/block");
for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
int fd;
char buf[1024];
int major, minor;
char *path = NULL;
if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
continue;
path = devt_to_devpath(makedev(major, minor));
if (!path)
continue;
if (!path_attached_to_hba(path, hba_path)) {
free(path);
path = NULL;
continue;
}
free(path);
path = NULL;
fd = dev_open(ent->d_name, O_RDONLY);
if (fd >= 0) {
fd2devname(fd, buf);
close(fd);
} else {
pr_err("cannot open device: %s\n",
ent->d_name);
continue;
}
dv = xcalloc(1, sizeof(*dv));
dv->devname = xstrdup(buf);
dv->next = devlist;
devlist = dv;
}
if (err) {
while(devlist) {
dv = devlist;
devlist = devlist->next;
free(dv->devname);
free(dv);
}
}
closedir(dir);
return devlist;
}
static int
count_volumes_list(struct md_list *devlist, char *homehost,
int verbose, int *found)
{
struct md_list *tmpdev;
int count = 0;
struct supertype *st;
/* first walk the list of devices to find a consistent set
* that match the criterea, if that is possible.
* We flag the ones we like with 'used'.
*/
*found = 0;
st = match_metadata_desc_imsm("imsm");
if (st == NULL) {
pr_vrb("cannot allocate memory for imsm supertype\n");
return 0;
}
for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
char *devname = tmpdev->devname;
dev_t rdev;
struct supertype *tst;
int dfd;
if (tmpdev->used > 1)
continue;
tst = dup_super(st);
if (tst == NULL) {
pr_vrb("cannot allocate memory for imsm supertype\n");
goto err_1;
}
tmpdev->container = 0;
dfd = dev_open(devname, O_RDONLY|O_EXCL);
if (dfd < 0) {
dprintf("cannot open device %s: %s\n",
devname, strerror(errno));
tmpdev->used = 2;
} else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
tmpdev->used = 2;
} else if (must_be_container(dfd)) {
struct supertype *cst;
cst = super_by_fd(dfd, NULL);
if (cst == NULL) {
dprintf("cannot recognize container type %s\n",
devname);
tmpdev->used = 2;
} else if (tst->ss != st->ss) {
dprintf("non-imsm container - ignore it: %s\n",
devname);
tmpdev->used = 2;
} else if (!tst->ss->load_container ||
tst->ss->load_container(tst, dfd, NULL))
tmpdev->used = 2;
else {
tmpdev->container = 1;
}
if (cst)
cst->ss->free_super(cst);
} else {
tmpdev->st_rdev = rdev;
if (tst->ss->load_super(tst,dfd, NULL)) {
dprintf("no RAID superblock on %s\n",
devname);
tmpdev->used = 2;
} else if (tst->ss->compare_super == NULL) {
dprintf("Cannot assemble %s metadata on %s\n",
tst->ss->name, devname);
tmpdev->used = 2;
}
}
if (dfd >= 0)
close(dfd);
if (tmpdev->used == 2 || tmpdev->used == 4) {
/* Ignore unrecognised devices during auto-assembly */
goto loop;
}
else {
struct mdinfo info;
tst->ss->getinfo_super(tst, &info, NULL);
if (st->minor_version == -1)
st->minor_version = tst->minor_version;
if (memcmp(info.uuid, uuid_zero,
sizeof(int[4])) == 0) {
/* this is a floating spare. It cannot define
* an array unless there are no more arrays of
* this type to be found. It can be included
* in an array of this type though.
*/
tmpdev->used = 3;
goto loop;
}
if (st->ss != tst->ss ||
st->minor_version != tst->minor_version ||
st->ss->compare_super(st, tst) != 0) {
/* Some mismatch. If exactly one array matches this host,
* we can resolve on that one.
* Or, if we are auto assembling, we just ignore the second
* for now.
*/
dprintf("superblock on %s doesn't match others - assembly aborted\n",
devname);
goto loop;
}
tmpdev->used = 1;
*found = 1;
dprintf("found: devname: %s\n", devname);
}
loop:
if (tst)
tst->ss->free_super(tst);
}
if (*found != 0) {
int err;
if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
for (iter = head; iter; iter = iter->next) {
dprintf("content->text_version: %s vol\n",
iter->text_version);
if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
/* do not assemble arrays with unsupported
configurations */
dprintf("Cannot activate member %s.\n",
iter->text_version);
} else
count++;
}
sysfs_free(head);
} else {
dprintf("No valid super block on device list: err: %d %p\n",
err, st->sb);
}
} else {
dprintf("no more devices to examine\n");
}
for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
if (tmpdev->used == 1 && tmpdev->found) {
if (count) {
if (count < tmpdev->found)
count = 0;
else
count -= tmpdev->found;
}
}
if (tmpdev->used == 1)
tmpdev->used = 4;
}
err_1:
if (st)
st->ss->free_super(st);
return count;
}
static int __count_volumes(char *hba_path, int dpa, int verbose,
int cmp_hba_path)
{
struct sys_dev *idev, *intel_devices = find_intel_devices();
int count = 0;
const struct orom_entry *entry;
struct devid_list *dv, *devid_list;
if (!hba_path)
return 0;
for (idev = intel_devices; idev; idev = idev->next) {
if (strstr(idev->path, hba_path))
break;
}
if (!idev || !idev->dev_id)
return 0;
entry = get_orom_entry_by_device_id(idev->dev_id);
if (!entry || !entry->devid_list)
return 0;
devid_list = entry->devid_list;
for (dv = devid_list; dv; dv = dv->next) {
struct md_list *devlist;
struct sys_dev *device = NULL;
char *hpath;
int found = 0;
if (cmp_hba_path)
device = device_by_id_and_path(dv->devid, hba_path);
else
device = device_by_id(dv->devid);
if (device)
hpath = device->path;
else
return 0;
devlist = get_devices(hpath);
/* if no intel devices return zero volumes */
if (devlist == NULL)
return 0;
count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
verbose);
dprintf("path: %s active arrays: %d\n", hpath, count);
if (devlist == NULL)
return 0;
do {
found = 0;
count += count_volumes_list(devlist,
NULL,
verbose,
&found);
dprintf("found %d count: %d\n", found, count);
} while (found);
dprintf("path: %s total number of volumes: %d\n", hpath, count);
while (devlist) {
struct md_list *dv = devlist;
devlist = devlist->next;
free(dv->devname);
free(dv);
}
}
return count;
}
static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
{
if (!hba)
return 0;
if (hba->type == SYS_DEV_VMD) {
struct sys_dev *dev;
int count = 0;
for (dev = find_intel_devices(); dev; dev = dev->next) {
if (dev->type == SYS_DEV_VMD)
count += __count_volumes(dev->path, dpa,
verbose, 1);
}
return count;
}
return __count_volumes(hba->path, dpa, verbose, 0);
}
static int imsm_default_chunk(const struct imsm_orom *orom)
{
/* up to 512 if the plaform supports it, otherwise the platform max.
* 128 if no platform detected
*/
int fs = max(7, orom ? fls(orom->sss) : 0);
return min(512, (1 << fs));
}
static int
validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
int raiddisks, int *chunk, unsigned long long size, int verbose)
{
/* check/set platform and metadata limits/defaults */
if (super->orom && raiddisks > super->orom->dpa) {
pr_vrb("platform supports a maximum of %d disks per array\n",
super->orom->dpa);
return 0;
}
/* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
if (!is_raid_level_supported(super->orom, level, raiddisks)) {
pr_vrb("platform does not support raid%d with %d disk%s\n",
level, raiddisks, raiddisks > 1 ? "s" : "");
return 0;
}
if (*chunk == 0 || *chunk == UnSet)
*chunk = imsm_default_chunk(super->orom);
if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
return 0;
}
if (layout != imsm_level_to_layout(level)) {
if (level == 5)
pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
else if (level == 10)
pr_vrb("imsm raid 10 only supports the n2 layout\n");
else
pr_vrb("imsm unknown layout %#x for this raid level %d\n",
layout, level);
return 0;
}
if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
(calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
pr_vrb("platform does not support a volume size over 2TB\n");
return 0;
}
return 1;
}
/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
* FIX ME add ahci details
*/
static int validate_geometry_imsm_volume(struct supertype *st, int level,
int layout, int raiddisks, int *chunk,
unsigned long long size,
unsigned long long data_offset,
char *dev,
unsigned long long *freesize,
int verbose)
{
dev_t rdev;
struct intel_super *super = st->sb;
struct imsm_super *mpb;
struct dl *dl;
unsigned long long pos = 0;
unsigned long long maxsize;
struct extent *e;
int i;
/* We must have the container info already read in. */
if (!super)
return 0;
mpb = super->anchor;
if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
return 0;
}
if (!dev) {
/* General test: make sure there is space for
* 'raiddisks' device extents of size 'size' at a given
* offset
*/
unsigned long long minsize = size;
unsigned long long start_offset = MaxSector;
int dcnt = 0;
if (minsize == 0)
minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
for (dl = super->disks; dl ; dl = dl->next) {
int found = 0;
pos = 0;
i = 0;
e = get_extents(super, dl, 0);
if (!e) continue;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= minsize)
found = 1;
if (found && start_offset == MaxSector) {
start_offset = pos;
break;
} else if (found && pos != start_offset) {
found = 0;
break;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
if (found)
dcnt++;
free(e);
}
if (dcnt < raiddisks) {
if (verbose)
pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
dcnt, raiddisks);
return 0;
}
return 1;
}
/* This device must be a member of the set */
if (!stat_is_blkdev(dev, &rdev))
return 0;
for (dl = super->disks ; dl ; dl = dl->next) {
if (dl->major == (int)major(rdev) &&
dl->minor == (int)minor(rdev))
break;
}
if (!dl) {
if (verbose)
pr_err("%s is not in the same imsm set\n", dev);
return 0;
} else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
/* If a volume is present then the current creation attempt
* cannot incorporate new spares because the orom may not
* understand this configuration (all member disks must be
* members of each array in the container).
*/
pr_err("%s is a spare and a volume is already defined for this container\n", dev);
pr_err("The option-rom requires all member disks to be a member of all volumes\n");
return 0;
} else if (super->orom && mpb->num_raid_devs > 0 &&
mpb->num_disks != raiddisks) {
pr_err("The option-rom requires all member disks to be a member of all volumes\n");
return 0;
}
/* retrieve the largest free space block */
e = get_extents(super, dl, 0);
maxsize = 0;
i = 0;
if (e) {
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize)
maxsize = esize;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
dl->e = e;
dl->extent_cnt = i;
} else {
if (verbose)
pr_err("unable to determine free space for: %s\n",
dev);
return 0;
}
if (maxsize < size) {
if (verbose)
pr_err("%s not enough space (%llu < %llu)\n",
dev, maxsize, size);
return 0;
}
/* count total number of extents for merge */
i = 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl->e)
i += dl->extent_cnt;
maxsize = merge_extents(super, i);
if (mpb->num_raid_devs > 0 && size && size != maxsize)
pr_err("attempting to create a second volume with size less then remaining space.\n");
if (maxsize < size || maxsize == 0) {
if (verbose) {
if (maxsize == 0)
pr_err("no free space left on device. Aborting...\n");
else
pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
maxsize, size);
}
return 0;
}
*freesize = maxsize;
if (super->orom) {
int count = count_volumes(super->hba,
super->orom->dpa, verbose);
if (super->orom->vphba <= count) {
pr_vrb("platform does not support more than %d raid volumes.\n",
super->orom->vphba);
return 0;
}
}
return 1;
}
static int imsm_get_free_size(struct supertype *st, int raiddisks,
unsigned long long size, int chunk,
unsigned long long *freesize)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
int i;
int extent_cnt;
struct extent *e;
unsigned long long maxsize;
unsigned long long minsize;
int cnt;
int used;
/* find the largest common start free region of the possible disks */
used = 0;
extent_cnt = 0;
cnt = 0;
for (dl = super->disks; dl; dl = dl->next) {
dl->raiddisk = -1;
if (dl->index >= 0)
used++;
/* don't activate new spares if we are orom constrained
* and there is already a volume active in the container
*/
if (super->orom && dl->index < 0 && mpb->num_raid_devs)
continue;
e = get_extents(super, dl, 0);
if (!e)
continue;
for (i = 1; e[i-1].size; i++)
;
dl->e = e;
dl->extent_cnt = i;
extent_cnt += i;
cnt++;
}
maxsize = merge_extents(super, extent_cnt);
minsize = size;
if (size == 0)
/* chunk is in K */
minsize = chunk * 2;
if (cnt < raiddisks ||
(super->orom && used && used != raiddisks) ||
maxsize < minsize ||
maxsize == 0) {
pr_err("not enough devices with space to create array.\n");
return 0; /* No enough free spaces large enough */
}
if (size == 0) {
size = maxsize;
if (chunk) {
size /= 2 * chunk;
size *= 2 * chunk;
}
maxsize = size;
}
if (mpb->num_raid_devs > 0 && size && size != maxsize)
pr_err("attempting to create a second volume with size less then remaining space.\n");
cnt = 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl->e)
dl->raiddisk = cnt++;
*freesize = size;
dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
return 1;
}
static int reserve_space(struct supertype *st, int raiddisks,
unsigned long long size, int chunk,
unsigned long long *freesize)
{
struct intel_super *super = st->sb;
struct dl *dl;
int cnt;
int rv = 0;
rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
if (rv) {
cnt = 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl->e)
dl->raiddisk = cnt++;
rv = 1;
}
return rv;
}
static int validate_geometry_imsm(struct supertype *st, int level, int layout,
int raiddisks, int *chunk, unsigned long long size,
unsigned long long data_offset,
char *dev, unsigned long long *freesize,
int consistency_policy, int verbose)
{
int fd, cfd;
struct mdinfo *sra;
int is_member = 0;
/* load capability
* if given unused devices create a container
* if given given devices in a container create a member volume
*/
if (level == LEVEL_CONTAINER) {
/* Must be a fresh device to add to a container */
return validate_geometry_imsm_container(st, level, layout,
raiddisks,
*chunk,
size, data_offset,
dev, freesize,
verbose);
}
if (size && (size < 1024)) {
pr_err("Given size must be greater than 1M.\n");
/* Depends on algorithm in Create.c :
* if container was given (dev == NULL) return -1,
* if block device was given ( dev != NULL) return 0.
*/
return dev ? -1 : 0;
}
if (!dev) {
if (st->sb) {
struct intel_super *super = st->sb;
if (!validate_geometry_imsm_orom(st->sb, level, layout,
raiddisks, chunk, size,
verbose))
return 0;
/* we are being asked to automatically layout a
* new volume based on the current contents of
* the container. If the the parameters can be
* satisfied reserve_space will record the disks,
* start offset, and size of the volume to be
* created. add_to_super and getinfo_super
* detect when autolayout is in progress.
*/
/* assuming that freesize is always given when array is
created */
if (super->orom && freesize) {
int count;
count = count_volumes(super->hba,
super->orom->dpa, verbose);
if (super->orom->vphba <= count) {
pr_vrb("platform does not support more than %d raid volumes.\n",
super->orom->vphba);
return 0;
}
}
if (freesize)
return reserve_space(st, raiddisks, size,
*chunk, freesize);
}
return 1;
}
if (st->sb) {
/* creating in a given container */
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk, size,
data_offset,
dev, freesize, verbose);
}
/* This device needs to be a device in an 'imsm' container */
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd >= 0) {
if (verbose)
pr_err("Cannot create this array on device %s\n",
dev);
close(fd);
return 0;
}
if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
if (verbose)
pr_err("Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
/* Well, it is in use by someone, maybe an 'imsm' container. */
cfd = open_container(fd);
close(fd);
if (cfd < 0) {
if (verbose)
pr_err("Cannot use %s: It is busy\n",
dev);
return 0;
}
sra = sysfs_read(cfd, NULL, GET_VERSION);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "imsm") == 0)
is_member = 1;
sysfs_free(sra);
if (is_member) {
/* This is a member of a imsm container. Load the container
* and try to create a volume
*/
struct intel_super *super;
if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
st->sb = super;
strcpy(st->container_devnm, fd2devnm(cfd));
close(cfd);
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk,
size, data_offset, dev,
freesize, 1)
? 1 : -1;
}
}
if (verbose)
pr_err("failed container membership check\n");
close(cfd);
return 0;
}
static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
{
struct intel_super *super = st->sb;
if (level && *level == UnSet)
*level = LEVEL_CONTAINER;
if (level && layout && *layout == UnSet)
*layout = imsm_level_to_layout(*level);
if (chunk && (*chunk == UnSet || *chunk == 0))
*chunk = imsm_default_chunk(super->orom);
}
static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
{
/* remove the subarray currently referenced by subarray_id */
__u8 i;
struct intel_dev **dp;
struct intel_super *super = st->sb;
__u8 current_vol = strtoul(subarray_id, NULL, 10);
struct imsm_super *mpb = super->anchor;
if (mpb->num_raid_devs == 0)
return 2;
/* block deletions that would change the uuid of active subarrays
*
* FIXME when immutable ids are available, but note that we'll
* also need to fixup the invalidated/active subarray indexes in
* mdstat
*/
for (i = 0; i < mpb->num_raid_devs; i++) {
char subarray[4];
if (i < current_vol)
continue;
sprintf(subarray, "%u", i);
if (is_subarray_active(subarray, st->devnm)) {
pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
current_vol, i);
return 2;
}
}
if (st->update_tail) {
struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
u->type = update_kill_array;
u->dev_idx = current_vol;
append_metadata_update(st, u, sizeof(*u));
return 0;
}
for (dp = &super->devlist; *dp;)
if ((*dp)->index == current_vol) {
*dp = (*dp)->next;
} else {
handle_missing(super, (*dp)->dev);
if ((*dp)->index > current_vol)
(*dp)->index--;
dp = &(*dp)->next;
}
/* no more raid devices, all active components are now spares,
* but of course failed are still failed
*/
if (--mpb->num_raid_devs == 0) {
struct dl *d;
for (d = super->disks; d; d = d->next)
if (d->index > -2)
mark_spare(d);
}
super->updates_pending++;
return 0;
}
static int update_subarray_imsm(struct supertype *st, char *subarray,
char *update, struct mddev_ident *ident)
{
/* update the subarray currently referenced by ->current_vol */
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
if (strcmp(update, "name") == 0) {
char *name = ident->name;
char *ep;
int vol;
if (is_subarray_active(subarray, st->devnm)) {
pr_err("Unable to update name of active subarray\n");
return 2;
}
if (!check_name(super, name, 0))
return 2;
vol = strtoul(subarray, &ep, 10);
if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
return 2;
if (st->update_tail) {
struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
u->type = update_rename_array;
u->dev_idx = vol;
strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
append_metadata_update(st, u, sizeof(*u));
} else {
struct imsm_dev *dev;
int i, namelen;
dev = get_imsm_dev(super, vol);
memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
memcpy(dev->volume, name, namelen);
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
handle_missing(super, dev);
}
super->updates_pending++;
}
} else if (strcmp(update, "ppl") == 0 ||
strcmp(update, "no-ppl") == 0) {
int new_policy;
char *ep;
int vol = strtoul(subarray, &ep, 10);
if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
return 2;
if (strcmp(update, "ppl") == 0)
new_policy = RWH_MULTIPLE_DISTRIBUTED;
else
new_policy = RWH_MULTIPLE_OFF;
if (st->update_tail) {
struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
u->type = update_rwh_policy;
u->dev_idx = vol;
u->new_policy = new_policy;
append_metadata_update(st, u, sizeof(*u));
} else {
struct imsm_dev *dev;
dev = get_imsm_dev(super, vol);
dev->rwh_policy = new_policy;
super->updates_pending++;
}
} else
return 2;
return 0;
}
static int is_gen_migration(struct imsm_dev *dev)
{
if (dev == NULL)
return 0;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) == MIGR_GEN_MIGR)
return 1;
return 0;
}
static int is_rebuilding(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) != MIGR_REBUILD)
return 0;
migr_map = get_imsm_map(dev, MAP_1);
if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
return 1;
else
return 0;
}
static int is_initializing(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) != MIGR_INIT)
return 0;
migr_map = get_imsm_map(dev, MAP_1);
if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
return 1;
return 0;
}
static void update_recovery_start(struct intel_super *super,
struct imsm_dev *dev,
struct mdinfo *array)
{
struct mdinfo *rebuild = NULL;
struct mdinfo *d;
__u32 units;
if (!is_rebuilding(dev))
return;
/* Find the rebuild target, but punt on the dual rebuild case */
for (d = array->devs; d; d = d->next)
if (d->recovery_start == 0) {
if (rebuild)
return;
rebuild = d;
}
if (!rebuild) {
/* (?) none of the disks are marked with
* IMSM_ORD_REBUILD, so assume they are missing and the
* disk_ord_tbl was not correctly updated
*/
dprintf("failed to locate out-of-sync disk\n");
return;
}
units = __le32_to_cpu(dev->vol.curr_migr_unit);
rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
}
static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
{
/* Given a container loaded by load_super_imsm_all,
* extract information about all the arrays into
* an mdinfo tree.
* If 'subarray' is given, just extract info about that array.
*
* For each imsm_dev create an mdinfo, fill it in,
* then look for matching devices in super->disks
* and create appropriate device mdinfo.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct mdinfo *rest = NULL;
unsigned int i;
int sb_errors = 0;
struct dl *d;
int spare_disks = 0;
int current_vol = super->current_vol;
/* do not assemble arrays when not all attributes are supported */
if (imsm_check_attributes(mpb->attributes) == 0) {
sb_errors = 1;
pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
}
/* count spare devices, not used in maps
*/
for (d = super->disks; d; d = d->next)
if (d->index == -1)
spare_disks++;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev;
struct imsm_map *map;
struct imsm_map *map2;
struct mdinfo *this;
int slot;
int chunk;
char *ep;
int level;
if (subarray &&
(i != strtoul(subarray, &ep, 10) || *ep != '\0'))
continue;
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, MAP_0);
map2 = get_imsm_map(dev, MAP_1);
level = get_imsm_raid_level(map);
/* do not publish arrays that are in the middle of an
* unsupported migration
*/
if (dev->vol.migr_state &&
(migr_type(dev) == MIGR_STATE_CHANGE)) {
pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
dev->volume);
continue;
}
/* do not publish arrays that are not support by controller's
* OROM/EFI
*/
this = xmalloc(sizeof(*this));
super->current_vol = i;
getinfo_super_imsm_volume(st, this, NULL);
this->next = rest;
chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
/* mdadm does not support all metadata features- set the bit in all arrays state */
if (!validate_geometry_imsm_orom(super,
level, /* RAID level */
imsm_level_to_layout(level),
map->num_members, /* raid disks */
&chunk, imsm_dev_size(dev),
1 /* verbose */)) {
pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
dev->volume);
this->array.state |=
(1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
(1<<MD_SB_BLOCK_VOLUME);
}
/* if array has bad blocks, set suitable bit in all arrays state */
if (sb_errors)
this->array.state |=
(1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
(1<<MD_SB_BLOCK_VOLUME);
for (slot = 0 ; slot < map->num_members; slot++) {
unsigned long long recovery_start;
struct mdinfo *info_d;
struct dl *d;
int idx;
int skip;
__u32 ord;
int missing = 0;
skip = 0;
idx = get_imsm_disk_idx(dev, slot, MAP_0);
ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
for (d = super->disks; d ; d = d->next)
if (d->index == idx)
break;
recovery_start = MaxSector;
if (d == NULL)
skip = 1;
if (d && is_failed(&d->disk))
skip = 1;
if (!skip && (ord & IMSM_ORD_REBUILD))
recovery_start = 0;
if (!(ord & IMSM_ORD_REBUILD))
this->array.working_disks++;
/*
* if we skip some disks the array will be assmebled degraded;
* reset resync start to avoid a dirty-degraded
* situation when performing the intial sync
*/
if (skip)
missing++;
if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
if ((!able_to_resync(level, missing) ||
recovery_start == 0))
this->resync_start = MaxSector;
} else {
/*
* FIXME handle dirty degraded
*/
}
if (skip)
continue;
info_d = xcalloc(1, sizeof(*info_d));
info_d->next = this->devs;
this->devs = info_d;
info_d->disk.number = d->index;
info_d->disk.major = d->major;
info_d->disk.minor = d->minor;
info_d->disk.raid_disk = slot;
info_d->recovery_start = recovery_start;
if (map2) {
if (slot < map2->num_members)
info_d->disk.state = (1 << MD_DISK_ACTIVE);
else
this->array.spare_disks++;
} else {
if (slot < map->num_members)
info_d->disk.state = (1 << MD_DISK_ACTIVE);
else
this->array.spare_disks++;
}
info_d->events = __le32_to_cpu(mpb->generation_num);
info_d->data_offset = pba_of_lba0(map);
info_d->component_size = calc_component_size(map, dev);
if (map->raid_level == 5) {
info_d->ppl_sector = this->ppl_sector;
info_d->ppl_size = this->ppl_size;
if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
recovery_start == 0)
this->resync_start = 0;
}
info_d->bb.supported = 1;
get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
info_d->data_offset,
info_d->component_size,
&info_d->bb);
}
/* now that the disk list is up-to-date fixup recovery_start */
update_recovery_start(super, dev, this);
this->array.spare_disks += spare_disks;
/* check for reshape */
if (this->reshape_active == 1)
recover_backup_imsm(st, this);
rest = this;
}
super->current_vol = current_vol;
return rest;
}
static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
int failed, int look_in_map)
{
struct imsm_map *map;
map = get_imsm_map(dev, look_in_map);
if (!failed)
return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
switch (get_imsm_raid_level(map)) {
case 0:
return IMSM_T_STATE_FAILED;
break;
case 1:
if (failed < map->num_members)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
case 10:
{
/**
* check to see if any mirrors have failed, otherwise we
* are degraded. Even numbered slots are mirrored on
* slot+1
*/
int i;
/* gcc -Os complains that this is unused */
int insync = insync;
for (i = 0; i < map->num_members; i++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
int idx = ord_to_idx(ord);
struct imsm_disk *disk;
/* reset the potential in-sync count on even-numbered
* slots. num_copies is always 2 for imsm raid10
*/
if ((i & 1) == 0)
insync = 2;
disk = get_imsm_disk(super, idx);
if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
insync--;
/* no in-sync disks left in this mirror the
* array has failed
*/
if (insync == 0)
return IMSM_T_STATE_FAILED;
}
return IMSM_T_STATE_DEGRADED;
}
case 5:
if (failed < 2)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
default:
break;
}
return map->map_state;
}
static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
int look_in_map)
{
int i;
int failed = 0;
struct imsm_disk *disk;
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *prev = get_imsm_map(dev, MAP_1);
struct imsm_map *map_for_loop;
__u32 ord;
int idx;
int idx_1;
/* at the beginning of migration we set IMSM_ORD_REBUILD on
* disks that are being rebuilt. New failures are recorded to
* map[0]. So we look through all the disks we started with and
* see if any failures are still present, or if any new ones
* have arrived
*/
map_for_loop = map;
if (prev && (map->num_members < prev->num_members))
map_for_loop = prev;
for (i = 0; i < map_for_loop->num_members; i++) {
idx_1 = -255;
/* when MAP_X is passed both maps failures are counted
*/
if (prev &&
(look_in_map == MAP_1 || look_in_map == MAP_X) &&
i < prev->num_members) {
ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
idx_1 = ord_to_idx(ord);
disk = get_imsm_disk(super, idx_1);
if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
failed++;
}
if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
i < map->num_members) {
ord = __le32_to_cpu(map->disk_ord_tbl[i]);
idx = ord_to_idx(ord);
if (idx != idx_1) {
disk = get_imsm_disk(super, idx);
if (!disk || is_failed(disk) ||
ord & IMSM_ORD_REBUILD)
failed++;
}
}
}
return failed;
}
static int imsm_open_new(struct supertype *c, struct active_array *a,
char *inst)
{
struct intel_super *super = c->sb;
struct imsm_super *mpb = super->anchor;
struct imsm_update_prealloc_bb_mem u;
if (atoi(inst) >= mpb->num_raid_devs) {
pr_err("subarry index %d, out of range\n", atoi(inst));
return -ENODEV;
}
dprintf("imsm: open_new %s\n", inst);
a->info.container_member = atoi(inst);
u.type = update_prealloc_badblocks_mem;
imsm_update_metadata_locally(c, &u, sizeof(u));
return 0;
}
static int is_resyncing(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) == MIGR_INIT ||
migr_type(dev) == MIGR_REPAIR)
return 1;
if (migr_type(dev) == MIGR_GEN_MIGR)
return 0;
migr_map = get_imsm_map(dev, MAP_1);
if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
dev->vol.migr_type != MIGR_GEN_MIGR)
return 1;
else
return 0;
}
/* return true if we recorded new information */
static int mark_failure(struct intel_super *super,
struct imsm_dev *dev, struct imsm_disk *disk, int idx)
{
__u32 ord;
int slot;
struct imsm_map *map;
char buf[MAX_RAID_SERIAL_LEN+3];
unsigned int len, shift = 0;
/* new failures are always set in map[0] */
map = get_imsm_map(dev, MAP_0);
slot = get_imsm_disk_slot(map, idx);
if (slot < 0)
return 0;
ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
return 0;
memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
buf[MAX_RAID_SERIAL_LEN] = '\000';
strcat(buf, ":0");
if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
shift = len - MAX_RAID_SERIAL_LEN + 1;
memcpy(disk->serial, &buf[shift], len + 1 - shift);
disk->status |= FAILED_DISK;
set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
/* mark failures in second map if second map exists and this disk
* in this slot.
* This is valid for migration, initialization and rebuild
*/
if (dev->vol.migr_state) {
struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
int slot2 = get_imsm_disk_slot(map2, idx);
if (slot2 < map2->num_members && slot2 >= 0)
set_imsm_ord_tbl_ent(map2, slot2,
idx | IMSM_ORD_REBUILD);
}
if (map->failed_disk_num == 0xff ||
(!is_rebuilding(dev) && map->failed_disk_num > slot))
map->failed_disk_num = slot;
clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
return 1;
}
static void mark_missing(struct intel_super *super,
struct imsm_dev *dev, struct imsm_disk *disk, int idx)
{
mark_failure(super, dev, disk, idx);
if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
return;
disk->scsi_id = __cpu_to_le32(~(__u32)0);
memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
}
static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
{
struct dl *dl;
if (!super->missing)
return;
/* When orom adds replacement for missing disk it does
* not remove entry of missing disk, but just updates map with
* new added disk. So it is not enough just to test if there is
* any missing disk, we have to look if there are any failed disks
* in map to stop migration */
dprintf("imsm: mark missing\n");
/* end process for initialization and rebuild only
*/
if (is_gen_migration(dev) == 0) {
int failed = imsm_count_failed(super, dev, MAP_0);
if (failed) {
__u8 map_state;
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *map1;
int i, ord, ord_map1;
int rebuilt = 1;
for (i = 0; i < map->num_members; i++) {
ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
if (!(ord & IMSM_ORD_REBUILD))
continue;
map1 = get_imsm_map(dev, MAP_1);
if (!map1)
continue;
ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
if (ord_map1 & IMSM_ORD_REBUILD)
rebuilt = 0;
}
if (rebuilt) {
map_state = imsm_check_degraded(super, dev,
failed, MAP_0);
end_migration(dev, super, map_state);
}
}
}
for (dl = super->missing; dl; dl = dl->next)
mark_missing(super, dev, &dl->disk, dl->index);
super->updates_pending++;
}
static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
long long new_size)
{
unsigned long long array_blocks;
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int used_disks = imsm_num_data_members(map);
if (used_disks == 0) {
/* when problems occures
* return current array_blocks value
*/
array_blocks = imsm_dev_size(dev);
return array_blocks;
}
/* set array size in metadata
*/
if (new_size <= 0)
/* OLCE size change is caused by added disks
*/
array_blocks = per_dev_array_size(map) * used_disks;
else
/* Online Volume Size Change
* Using available free space
*/
array_blocks = new_size;
array_blocks = round_size_to_mb(array_blocks, used_disks);
set_imsm_dev_size(dev, array_blocks);
return array_blocks;
}
static void imsm_set_disk(struct active_array *a, int n, int state);
static void imsm_progress_container_reshape(struct intel_super *super)
{
/* if no device has a migr_state, but some device has a
* different number of members than the previous device, start
* changing the number of devices in this device to match
* previous.
*/
struct imsm_super *mpb = super->anchor;
int prev_disks = -1;
int i;
int copy_map_size;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *map2;
int prev_num_members;
if (dev->vol.migr_state)
return;
if (prev_disks == -1)
prev_disks = map->num_members;
if (prev_disks == map->num_members)
continue;
/* OK, this array needs to enter reshape mode.
* i.e it needs a migr_state
*/
copy_map_size = sizeof_imsm_map(map);
prev_num_members = map->num_members;
map->num_members = prev_disks;
dev->vol.migr_state = 1;
dev->vol.curr_migr_unit = 0;
set_migr_type(dev, MIGR_GEN_MIGR);
for (i = prev_num_members;
i < map->num_members; i++)
set_imsm_ord_tbl_ent(map, i, i);
map2 = get_imsm_map(dev, MAP_1);
/* Copy the current map */
memcpy(map2, map, copy_map_size);
map2->num_members = prev_num_members;
imsm_set_array_size(dev, -1);
super->clean_migration_record_by_mdmon = 1;
super->updates_pending++;
}
}
/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
* states are handled in imsm_set_disk() with one exception, when a
* resync is stopped due to a new failure this routine will set the
* 'degraded' state for the array.
*/
static int imsm_set_array_state(struct active_array *a, int consistent)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int failed = imsm_count_failed(super, dev, MAP_0);
__u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
__u32 blocks_per_unit;
if (dev->vol.migr_state &&
dev->vol.migr_type == MIGR_GEN_MIGR) {
/* array state change is blocked due to reshape action
* We might need to
* - abort the reshape (if last_checkpoint is 0 and action!= reshape)
* - finish the reshape (if last_checkpoint is big and action != reshape)
* - update curr_migr_unit
*/
if (a->curr_action == reshape) {
/* still reshaping, maybe update curr_migr_unit */
goto mark_checkpoint;
} else {
if (a->last_checkpoint == 0 && a->prev_action == reshape) {
/* for some reason we aborted the reshape.
*
* disable automatic metadata rollback
* user action is required to recover process
*/
if (0) {
struct imsm_map *map2 =
get_imsm_map(dev, MAP_1);
dev->vol.migr_state = 0;
set_migr_type(dev, 0);
dev->vol.curr_migr_unit = 0;
memcpy(map, map2,
sizeof_imsm_map(map2));
super->updates_pending++;
}
}
if (a->last_checkpoint >= a->info.component_size) {
unsigned long long array_blocks;
int used_disks;
struct mdinfo *mdi;
used_disks = imsm_num_data_members(map);
if (used_disks > 0) {
array_blocks =
per_dev_array_size(map) *
used_disks;
array_blocks =
round_size_to_mb(array_blocks,
used_disks);
a->info.custom_array_size = array_blocks;
/* encourage manager to update array
* size
*/
a->check_reshape = 1;
}
/* finalize online capacity expansion/reshape */
for (mdi = a->info.devs; mdi; mdi = mdi->next)
imsm_set_disk(a,
mdi->disk.raid_disk,
mdi->curr_state);
imsm_progress_container_reshape(super);
}
}
}
/* before we activate this array handle any missing disks */
if (consistent == 2)
handle_missing(super, dev);
if (consistent == 2 &&
(!is_resync_complete(&a->info) ||
map_state != IMSM_T_STATE_NORMAL ||
dev->vol.migr_state))
consistent = 0;
if (is_resync_complete(&a->info)) {
/* complete intialization / resync,
* recovery and interrupted recovery is completed in
* ->set_disk
*/
if (is_resyncing(dev)) {
dprintf("imsm: mark resync done\n");
end_migration(dev, super, map_state);
super->updates_pending++;
a->last_checkpoint = 0;
}
} else if ((!is_resyncing(dev) && !failed) &&
(imsm_reshape_blocks_arrays_changes(super) == 0)) {
/* mark the start of the init process if nothing is failed */
dprintf("imsm: mark resync start\n");
if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
else
migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
super->updates_pending++;
}
mark_checkpoint:
/* skip checkpointing for general migration,
* it is controlled in mdadm
*/
if (is_gen_migration(dev))
goto skip_mark_checkpoint;
/* check if we can update curr_migr_unit from resync_start, recovery_start */
blocks_per_unit = blocks_per_migr_unit(super, dev);
if (blocks_per_unit) {
__u32 units32;
__u64 units;
units = a->last_checkpoint / blocks_per_unit;
units32 = units;
/* check that we did not overflow 32-bits, and that
* curr_migr_unit needs updating
*/
if (units32 == units &&
units32 != 0 &&
__le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
dprintf("imsm: mark checkpoint (%u)\n", units32);
dev->vol.curr_migr_unit = __cpu_to_le32(units32);
super->updates_pending++;
}
}
skip_mark_checkpoint:
/* mark dirty / clean */
if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
(!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
if (consistent) {
dev->vol.dirty = RAIDVOL_CLEAN;
} else {
dev->vol.dirty = RAIDVOL_DIRTY;
if (dev->rwh_policy == RWH_DISTRIBUTED ||
dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
}
super->updates_pending++;
}
return consistent;
}
static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
if (slot > map->num_members) {
pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
slot, map->num_members - 1);
return -1;
}
if (slot < 0)
return -1;
return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
}
static void imsm_set_disk(struct active_array *a, int n, int state)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_disk *disk;
struct mdinfo *mdi;
int recovery_not_finished = 0;
int failed;
int ord;
__u8 map_state;
int rebuild_done = 0;
int i;
ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
if (ord < 0)
return;
dprintf("imsm: set_disk %d:%x\n", n, state);
disk = get_imsm_disk(super, ord_to_idx(ord));
/* check for new failures */
if (disk && (state & DS_FAULTY)) {
if (mark_failure(super, dev, disk, ord_to_idx(ord)))
super->updates_pending++;
}
/* check if in_sync */
if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
rebuild_done = 1;
super->updates_pending++;
}
failed = imsm_count_failed(super, dev, MAP_0);
map_state = imsm_check_degraded(super, dev, failed, MAP_0);
/* check if recovery complete, newly degraded, or failed */
dprintf("imsm: Detected transition to state ");
switch (map_state) {
case IMSM_T_STATE_NORMAL: /* transition to normal state */
dprintf("normal: ");
if (is_rebuilding(dev)) {
dprintf_cont("while rebuilding");
/* check if recovery is really finished */
for (mdi = a->info.devs; mdi ; mdi = mdi->next)
if (mdi->recovery_start != MaxSector) {
recovery_not_finished = 1;
break;
}
if (recovery_not_finished) {
dprintf_cont("\n");
dprintf("Rebuild has not finished yet, state not changed");
if (a->last_checkpoint < mdi->recovery_start) {
a->last_checkpoint = mdi->recovery_start;
super->updates_pending++;
}
break;
}
end_migration(dev, super, map_state);
map = get_imsm_map(dev, MAP_0);
map->failed_disk_num = ~0;
super->updates_pending++;
a->last_checkpoint = 0;
break;
}
if (is_gen_migration(dev)) {
dprintf_cont("while general migration");
if (a->last_checkpoint >= a->info.component_size)
end_migration(dev, super, map_state);
else
map->map_state = map_state;
map = get_imsm_map(dev, MAP_0);
map->failed_disk_num = ~0;
super->updates_pending++;
break;
}
break;
case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
dprintf_cont("degraded: ");
if (map->map_state != map_state && !dev->vol.migr_state) {
dprintf_cont("mark degraded");
map->map_state = map_state;
super->updates_pending++;
a->last_checkpoint = 0;
break;
}
if (is_rebuilding(dev)) {
dprintf_cont("while rebuilding ");
if (state & DS_FAULTY) {
dprintf_cont("removing failed drive ");
if (n == map->failed_disk_num) {
dprintf_cont("end migration");
end_migration(dev, super, map_state);
a->last_checkpoint = 0;
} else {
dprintf_cont("fail detected during rebuild, changing map state");
map->map_state = map_state;
}
super->updates_pending++;
}
if (!rebuild_done)
break;
/* check if recovery is really finished */
for (mdi = a->info.devs; mdi ; mdi = mdi->next)
if (mdi->recovery_start != MaxSector) {
recovery_not_finished = 1;
break;
}
if (recovery_not_finished) {
dprintf_cont("\n");
dprintf_cont("Rebuild has not finished yet");
if (a->last_checkpoint < mdi->recovery_start) {
a->last_checkpoint =
mdi->recovery_start;
super->updates_pending++;
}
break;
}
dprintf_cont(" Rebuild done, still degraded");
end_migration(dev, super, map_state);
a->last_checkpoint = 0;
super->updates_pending++;
for (i = 0; i < map->num_members; i++) {
int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
if (idx & IMSM_ORD_REBUILD)
map->failed_disk_num = i;
}
super->updates_pending++;
break;
}
if (is_gen_migration(dev)) {
dprintf_cont("while general migration");
if (a->last_checkpoint >= a->info.component_size)
end_migration(dev, super, map_state);
else {
map->map_state = map_state;
manage_second_map(super, dev);
}
super->updates_pending++;
break;
}
if (is_initializing(dev)) {
dprintf_cont("while initialization.");
map->map_state = map_state;
super->updates_pending++;
break;
}
break;
case IMSM_T_STATE_FAILED: /* transition to failed state */
dprintf_cont("failed: ");
if (is_gen_migration(dev)) {
dprintf_cont("while general migration");
map->map_state = map_state;
super->updates_pending++;
break;
}
if (map->map_state != map_state) {
dprintf_cont("mark failed");
end_migration(dev, super, map_state);
super->updates_pending++;
a->last_checkpoint = 0;
break;
}
break;
default:
dprintf_cont("state %i\n", map_state);
}
dprintf_cont("\n");
}
static int store_imsm_mpb(int fd, struct imsm_super *mpb)
{
void *buf = mpb;
__u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
unsigned long long dsize;
unsigned long long sectors;
unsigned int sector_size;
get_dev_sector_size(fd, NULL, &sector_size);
get_dev_size(fd, NULL, &dsize);
if (mpb_size > sector_size) {
/* -1 to account for anchor */
sectors = mpb_sectors(mpb, sector_size) - 1;
/* write the extended mpb to the sectors preceeding the anchor */
if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
SEEK_SET) < 0)
return 1;
if ((unsigned long long)write(fd, buf + sector_size,
sector_size * sectors) != sector_size * sectors)
return 1;
}
/* first block is stored on second to last sector of the disk */
if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
return 1;
if ((unsigned int)write(fd, buf, sector_size) != sector_size)
return 1;
return 0;
}
static void imsm_sync_metadata(struct supertype *container)
{
struct intel_super *super = container->sb;
dprintf("sync metadata: %d\n", super->updates_pending);
if (!super->updates_pending)
return;
write_super_imsm(container, 0);
super->updates_pending = 0;
}
static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int i = get_imsm_disk_idx(dev, idx, MAP_X);
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (dl->index == i)
break;
if (dl && is_failed(&dl->disk))
dl = NULL;
if (dl)
dprintf("found %x:%x\n", dl->major, dl->minor);
return dl;
}
static struct dl *imsm_add_spare(struct intel_super *super, int slot,
struct active_array *a, int activate_new,
struct mdinfo *additional_test_list)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int idx = get_imsm_disk_idx(dev, slot, MAP_X);
struct imsm_super *mpb = super->anchor;
struct imsm_map *map;
unsigned long long pos;
struct mdinfo *d;
struct extent *ex;
int i, j;
int found;
__u32 array_start = 0;
__u32 array_end = 0;
struct dl *dl;
struct mdinfo *test_list;
for (dl = super->disks; dl; dl = dl->next) {
/* If in this array, skip */
for (d = a->info.devs ; d ; d = d->next)
if (d->state_fd >= 0 &&
d->disk.major == dl->major &&
d->disk.minor == dl->minor) {
dprintf("%x:%x already in array\n",
dl->major, dl->minor);
break;
}
if (d)
continue;
test_list = additional_test_list;
while (test_list) {
if (test_list->disk.major == dl->major &&
test_list->disk.minor == dl->minor) {
dprintf("%x:%x already in additional test list\n",
dl->major, dl->minor);
break;
}
test_list = test_list->next;
}
if (test_list)
continue;
/* skip in use or failed drives */
if (is_failed(&dl->disk) || idx == dl->index ||
dl->index == -2) {
dprintf("%x:%x status (failed: %d index: %d)\n",
dl->major, dl->minor, is_failed(&dl->disk), idx);
continue;
}
/* skip pure spares when we are looking for partially
* assimilated drives
*/
if (dl->index == -1 && !activate_new)
continue;
if (!drive_validate_sector_size(super, dl))
continue;
/* Does this unused device have the requisite free space?
* It needs to be able to cover all member volumes
*/
ex = get_extents(super, dl, 1);
if (!ex) {
dprintf("cannot get extents\n");
continue;
}
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, MAP_0);
/* check if this disk is already a member of
* this array
*/
if (get_imsm_disk_slot(map, dl->index) >= 0)
continue;
found = 0;
j = 0;
pos = 0;
array_start = pba_of_lba0(map);
array_end = array_start +
per_dev_array_size(map) - 1;
do {
/* check that we can start at pba_of_lba0 with
* num_data_stripes*blocks_per_stripe of space
*/
if (array_start >= pos && array_end < ex[j].start) {
found = 1;
break;
}
pos = ex[j].start + ex[j].size;
j++;
} while (ex[j-1].size);
if (!found)
break;
}
free(ex);
if (i < mpb->num_raid_devs) {
dprintf("%x:%x does not have %u to %u available\n",
dl->major, dl->minor, array_start, array_end);
/* No room */
continue;
}
return dl;
}
return dl;
}
static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
{
struct imsm_dev *dev2;
struct imsm_map *map;
struct dl *idisk;
int slot;
int idx;
__u8 state;
dev2 = get_imsm_dev(cont->sb, dev_idx);
if (dev2) {
state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
if (state == IMSM_T_STATE_FAILED) {
map = get_imsm_map(dev2, MAP_0);
if (!map)
return 1;
for (slot = 0; slot < map->num_members; slot++) {
/*
* Check if failed disks are deleted from intel
* disk list or are marked to be deleted
*/
idx = get_imsm_disk_idx(dev2, slot, MAP_X);
idisk = get_imsm_dl_disk(cont->sb, idx);
/*
* Do not rebuild the array if failed disks
* from failed sub-array are not removed from
* container.
*/
if (idisk &&
is_failed(&idisk->disk) &&
(idisk->action != DISK_REMOVE))
return 0;
}
}
}
return 1;
}
static struct mdinfo *imsm_activate_spare(struct active_array *a,
struct metadata_update **updates)
{
/**
* Find a device with unused free space and use it to replace a
* failed/vacant region in an array. We replace failed regions one a
* array at a time. The result is that a new spare disk will be added
* to the first failed array and after the monitor has finished
* propagating failures the remainder will be consumed.
*
* FIXME add a capability for mdmon to request spares from another
* container.
*/
struct intel_super *super = a->container->sb;
int inst = a->info.container_member;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int failed = a->info.array.raid_disks;
struct mdinfo *rv = NULL;
struct mdinfo *d;
struct mdinfo *di;
struct metadata_update *mu;
struct dl *dl;
struct imsm_update_activate_spare *u;
int num_spares = 0;
int i;
int allowed;
for (d = a->info.devs ; d ; d = d->next) {
if ((d->curr_state & DS_FAULTY) &&
d->state_fd >= 0)
/* wait for Removal to happen */
return NULL;
if (d->state_fd >= 0)
failed--;
}
dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
inst, failed, a->info.array.raid_disks, a->info.array.level);
if (imsm_reshape_blocks_arrays_changes(super))
return NULL;
/* Cannot activate another spare if rebuild is in progress already
*/
if (is_rebuilding(dev)) {
dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
return NULL;
}
if (a->info.array.level == 4)
/* No repair for takeovered array
* imsm doesn't support raid4
*/
return NULL;
if (imsm_check_degraded(super, dev, failed, MAP_0) !=
IMSM_T_STATE_DEGRADED)
return NULL;
if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
return NULL;
}
/*
* If there are any failed disks check state of the other volume.
* Block rebuild if the another one is failed until failed disks
* are removed from container.
*/
if (failed) {
dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
MAX_RAID_SERIAL_LEN, dev->volume);
/* check if states of the other volumes allow for rebuild */
for (i = 0; i < super->anchor->num_raid_devs; i++) {
if (i != inst) {
allowed = imsm_rebuild_allowed(a->container,
i, failed);
if (!allowed)
return NULL;
}
}
}
/* For each slot, if it is not working, find a spare */
for (i = 0; i < a->info.array.raid_disks; i++) {
for (d = a->info.devs ; d ; d = d->next)
if (d->disk.raid_disk == i)
break;
dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
if (d && (d->state_fd >= 0))
continue;
/*
* OK, this device needs recovery. Try to re-add the
* previous occupant of this slot, if this fails see if
* we can continue the assimilation of a spare that was
* partially assimilated, finally try to activate a new
* spare.
*/
dl = imsm_readd(super, i, a);
if (!dl)
dl = imsm_add_spare(super, i, a, 0, rv);
if (!dl)
dl = imsm_add_spare(super, i, a, 1, rv);
if (!dl)
continue;
/* found a usable disk with enough space */
di = xcalloc(1, sizeof(*di));
/* dl->index will be -1 in the case we are activating a
* pristine spare. imsm_process_update() will create a
* new index in this case. Once a disk is found to be
* failed in all member arrays it is kicked from the
* metadata
*/
di->disk.number = dl->index;
/* (ab)use di->devs to store a pointer to the device
* we chose
*/
di->devs = (struct mdinfo *) dl;
di->disk.raid_disk = i;
di->disk.major = dl->major;
di->disk.minor = dl->minor;
di->disk.state = 0;
di->recovery_start = 0;
di->data_offset = pba_of_lba0(map);
di->component_size = a->info.component_size;
di->container_member = inst;
di->bb.supported = 1;
if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
di->ppl_sector = get_ppl_sector(super, inst);
di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
}
super->random = random32();
di->next = rv;
rv = di;
num_spares++;
dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
i, di->data_offset);
}
if (!rv)
/* No spares found */
return rv;
/* Now 'rv' has a list of devices to return.
* Create a metadata_update record to update the
* disk_ord_tbl for the array
*/
mu = xmalloc(sizeof(*mu));
mu->buf = xcalloc(num_spares,
sizeof(struct imsm_update_activate_spare));
mu->space = NULL;
mu->space_list = NULL;
mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
mu->next = *updates;
u = (struct imsm_update_activate_spare *) mu->buf;
for (di = rv ; di ; di = di->next) {
u->type = update_activate_spare;
u->dl = (struct dl *) di->devs;
di->devs = NULL;
u->slot = di->disk.raid_disk;
u->array = inst;
u->next = u + 1;
u++;
}
(u-1)->next = NULL;
*updates = mu;
return rv;
}
static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
{
struct imsm_dev *dev = get_imsm_dev(super, idx);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
struct disk_info *inf = get_disk_info(u);
struct imsm_disk *disk;
int i;
int j;
for (i = 0; i < map->num_members; i++) {
disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
for (j = 0; j < new_map->num_members; j++)
if (serialcmp(disk->serial, inf[j].serial) == 0)
return 1;
}
return 0;
}
static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
{
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (dl->major == major && dl->minor == minor)
return dl;
return NULL;
}
static int remove_disk_super(struct intel_super *super, int major, int minor)
{
struct dl *prev;
struct dl *dl;
prev = NULL;
for (dl = super->disks; dl; dl = dl->next) {
if (dl->major == major && dl->minor == minor) {
/* remove */
if (prev)
prev->next = dl->next;
else
super->disks = dl->next;
dl->next = NULL;
__free_imsm_disk(dl);
dprintf("removed %x:%x\n", major, minor);
break;
}
prev = dl;
}
return 0;
}
static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
static int add_remove_disk_update(struct intel_super *super)
{
int check_degraded = 0;
struct dl *disk;
/* add/remove some spares to/from the metadata/contrainer */
while (super->disk_mgmt_list) {
struct dl *disk_cfg;
disk_cfg = super->disk_mgmt_list;
super->disk_mgmt_list = disk_cfg->next;
disk_cfg->next = NULL;
if (disk_cfg->action == DISK_ADD) {
disk_cfg->next = super->disks;
super->disks = disk_cfg;
check_degraded = 1;
dprintf("added %x:%x\n",
disk_cfg->major, disk_cfg->minor);
} else if (disk_cfg->action == DISK_REMOVE) {
dprintf("Disk remove action processed: %x.%x\n",
disk_cfg->major, disk_cfg->minor);
disk = get_disk_super(super,
disk_cfg->major,
disk_cfg->minor);
if (disk) {
/* store action status */
disk->action = DISK_REMOVE;
/* remove spare disks only */
if (disk->index == -1) {
remove_disk_super(super,
disk_cfg->major,
disk_cfg->minor);
} else {
disk_cfg->fd = disk->fd;
disk->fd = -1;
}
}
/* release allocate disk structure */
__free_imsm_disk(disk_cfg);
}
}
return check_degraded;
}
static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
struct intel_super *super,
void ***space_list)
{
struct intel_dev *id;
void **tofree = NULL;
int ret_val = 0;
dprintf("(enter)\n");
if (u->subdev < 0 || u->subdev > 1) {
dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
return ret_val;
}
if (space_list == NULL || *space_list == NULL) {
dprintf("imsm: Error: Memory is not allocated\n");
return ret_val;
}
for (id = super->devlist ; id; id = id->next) {
if (id->index == (unsigned)u->subdev) {
struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
struct imsm_map *map;
struct imsm_dev *new_dev =
(struct imsm_dev *)*space_list;
struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
int to_state;
struct dl *new_disk;
if (new_dev == NULL)
return ret_val;
*space_list = **space_list;
memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
map = get_imsm_map(new_dev, MAP_0);
if (migr_map) {
dprintf("imsm: Error: migration in progress");
return ret_val;
}
to_state = map->map_state;
if ((u->new_level == 5) && (map->raid_level == 0)) {
map->num_members++;
/* this should not happen */
if (u->new_disks[0] < 0) {
map->failed_disk_num =
map->num_members - 1;
to_state = IMSM_T_STATE_DEGRADED;
} else
to_state = IMSM_T_STATE_NORMAL;
}
migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
if (u->new_level > -1)
map->raid_level = u->new_level;
migr_map = get_imsm_map(new_dev, MAP_1);
if ((u->new_level == 5) &&
(migr_map->raid_level == 0)) {
int ord = map->num_members - 1;
migr_map->num_members--;
if (u->new_disks[0] < 0)
ord |= IMSM_ORD_REBUILD;
set_imsm_ord_tbl_ent(map,
map->num_members - 1,
ord);
}
id->dev = new_dev;
tofree = (void **)dev;
/* update chunk size
*/
if (u->new_chunksize > 0) {
unsigned long long num_data_stripes;
struct imsm_map *dest_map =
get_imsm_map(dev, MAP_0);
int used_disks =
imsm_num_data_members(dest_map);
if (used_disks == 0)
return ret_val;
map->blocks_per_strip =
__cpu_to_le16(u->new_chunksize * 2);
num_data_stripes =
imsm_dev_size(dev) / used_disks;
num_data_stripes /= map->blocks_per_strip;
num_data_stripes /= map->num_domains;
set_num_data_stripes(map, num_data_stripes);
}
/* ensure blocks_per_member has valid value
*/
set_blocks_per_member(map,
per_dev_array_size(map) +
NUM_BLOCKS_DIRTY_STRIPE_REGION);
/* add disk
*/
if (u->new_level != 5 || migr_map->raid_level != 0 ||
migr_map->raid_level == map->raid_level)
goto skip_disk_add;
if (u->new_disks[0] >= 0) {
/* use passes spare
*/
new_disk = get_disk_super(super,
major(u->new_disks[0]),
minor(u->new_disks[0]));
dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
major(u->new_disks[0]),
minor(u->new_disks[0]),
new_disk, new_disk->index);
if (new_disk == NULL)
goto error_disk_add;
new_disk->index = map->num_members - 1;
/* slot to fill in autolayout
*/
new_disk->raiddisk = new_disk->index;
new_disk->disk.status |= CONFIGURED_DISK;
new_disk->disk.status &= ~SPARE_DISK;
} else
goto error_disk_add;
skip_disk_add:
*tofree = *space_list;
/* calculate new size
*/
imsm_set_array_size(new_dev, -1);
ret_val = 1;
}
}
if (tofree)
*space_list = tofree;
return ret_val;
error_disk_add:
dprintf("Error: imsm: Cannot find disk.\n");
return ret_val;
}
static int apply_size_change_update(struct imsm_update_size_change *u,
struct intel_super *super)
{
struct intel_dev *id;
int ret_val = 0;
dprintf("(enter)\n");
if (u->subdev < 0 || u->subdev > 1) {
dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
return ret_val;
}
for (id = super->devlist ; id; id = id->next) {
if (id->index == (unsigned)u->subdev) {
struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int used_disks = imsm_num_data_members(map);
unsigned long long blocks_per_member;
unsigned long long num_data_stripes;
unsigned long long new_size_per_disk;
if (used_disks == 0)
return 0;
/* calculate new size
*/
new_size_per_disk = u->new_size / used_disks;
blocks_per_member = new_size_per_disk +
NUM_BLOCKS_DIRTY_STRIPE_REGION;
num_data_stripes = new_size_per_disk /
map->blocks_per_strip;
num_data_stripes /= map->num_domains;
dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
u->new_size, new_size_per_disk,
num_data_stripes);
set_blocks_per_member(map, blocks_per_member);
set_num_data_stripes(map, num_data_stripes);
imsm_set_array_size(dev, u->new_size);
ret_val = 1;
break;
}
}
return ret_val;
}
static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
struct intel_super *super,
struct active_array *active_array)
{
struct imsm_super *mpb = super->anchor;
struct imsm_dev *dev = get_imsm_dev(super, u->array);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct imsm_map *migr_map;
struct active_array *a;
struct imsm_disk *disk;
__u8 to_state;
struct dl *dl;
unsigned int found;
int failed;
int victim;
int i;
int second_map_created = 0;
for (; u; u = u->next) {
victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
if (victim < 0)
return 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl == u->dl)
break;
if (!dl) {
pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
u->dl->index);
return 0;
}
/* count failures (excluding rebuilds and the victim)
* to determine map[0] state
*/
failed = 0;
for (i = 0; i < map->num_members; i++) {
if (i == u->slot)
continue;
disk = get_imsm_disk(super,
get_imsm_disk_idx(dev, i, MAP_X));
if (!disk || is_failed(disk))
failed++;
}
/* adding a pristine spare, assign a new index */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
disk = &dl->disk;
disk->status |= CONFIGURED_DISK;
disk->status &= ~SPARE_DISK;
/* mark rebuild */
to_state = imsm_check_degraded(super, dev, failed, MAP_0);
if (!second_map_created) {
second_map_created = 1;
map->map_state = IMSM_T_STATE_DEGRADED;
migrate(dev, super, to_state, MIGR_REBUILD);
} else
map->map_state = to_state;
migr_map = get_imsm_map(dev, MAP_1);
set_imsm_ord_tbl_ent(map, u->slot, dl->index);
set_imsm_ord_tbl_ent(migr_map, u->slot,
dl->index | IMSM_ORD_REBUILD);
/* update the family_num to mark a new container
* generation, being careful to record the existing
* family_num in orig_family_num to clean up after
* earlier mdadm versions that neglected to set it.
*/
if (mpb->orig_family_num == 0)
mpb->orig_family_num = mpb->family_num;
mpb->family_num += super->random;
/* count arrays using the victim in the metadata */
found = 0;
for (a = active_array; a ; a = a->next) {
dev = get_imsm_dev(super, a->info.container_member);
map = get_imsm_map(dev, MAP_0);
if (get_imsm_disk_slot(map, victim) >= 0)
found++;
}
/* delete the victim if it is no longer being
* utilized anywhere
*/
if (!found) {
struct dl **dlp;
/* We know that 'manager' isn't touching anything,
* so it is safe to delete
*/
for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
/* victim may be on the missing list */
if (!*dlp)
for (dlp = &super->missing; *dlp;
dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
imsm_delete(super, dlp, victim);
}
}
return 1;
}
static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
struct intel_super *super,
void ***space_list)
{
struct dl *new_disk;
struct intel_dev *id;
int i;
int delta_disks = u->new_raid_disks - u->old_raid_disks;
int disk_count = u->old_raid_disks;
void **tofree = NULL;
int devices_to_reshape = 1;
struct imsm_super *mpb = super->anchor;
int ret_val = 0;
unsigned int dev_id;
dprintf("(enter)\n");
/* enable spares to use in array */
for (i = 0; i < delta_disks; i++) {
new_disk = get_disk_super(super,
major(u->new_disks[i]),
minor(u->new_disks[i]));
dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
major(u->new_disks[i]), minor(u->new_disks[i]),
new_disk, new_disk->index);
if (new_disk == NULL ||
(new_disk->index >= 0 &&
new_disk->index < u->old_raid_disks))
goto update_reshape_exit;
new_disk->index = disk_count++;
/* slot to fill in autolayout
*/
new_disk->raiddisk = new_disk->index;
new_disk->disk.status |=
CONFIGURED_DISK;
new_disk->disk.status &= ~SPARE_DISK;
}
dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
mpb->num_raid_devs);
/* manage changes in volume
*/
for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
void **sp = *space_list;
struct imsm_dev *newdev;
struct imsm_map *newmap, *oldmap;
for (id = super->devlist ; id; id = id->next) {
if (id->index == dev_id)
break;
}
if (id == NULL)
break;
if (!sp)
continue;
*space_list = *sp;
newdev = (void*)sp;
/* Copy the dev, but not (all of) the map */
memcpy(newdev, id->dev, sizeof(*newdev));
oldmap = get_imsm_map(id->dev, MAP_0);
newmap = get_imsm_map(newdev, MAP_0);
/* Copy the current map */
memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
/* update one device only
*/
if (devices_to_reshape) {
dprintf("imsm: modifying subdev: %i\n",
id->index);
devices_to_reshape--;
newdev->vol.migr_state = 1;
newdev->vol.curr_migr_unit = 0;
set_migr_type(newdev, MIGR_GEN_MIGR);
newmap->num_members = u->new_raid_disks;
for (i = 0; i < delta_disks; i++) {
set_imsm_ord_tbl_ent(newmap,
u->old_raid_disks + i,
u->old_raid_disks + i);
}
/* New map is correct, now need to save old map
*/
newmap = get_imsm_map(newdev, MAP_1);
memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
imsm_set_array_size(newdev, -1);
}
sp = (void **)id->dev;
id->dev = newdev;
*sp = tofree;
tofree = sp;
/* Clear migration record */
memset(super->migr_rec, 0, sizeof(struct migr_record));
}
if (tofree)
*space_list = tofree;
ret_val = 1;
update_reshape_exit:
return ret_val;
}
static int apply_takeover_update(struct imsm_update_takeover *u,
struct intel_super *super,
void ***space_list)
{
struct imsm_dev *dev = NULL;
struct intel_dev *dv;
struct imsm_dev *dev_new;
struct imsm_map *map;
struct dl *dm, *du;
int i;
for (dv = super->devlist; dv; dv = dv->next)
if (dv->index == (unsigned int)u->subarray) {
dev = dv->dev;
break;
}
if (dev == NULL)
return 0;
map = get_imsm_map(dev, MAP_0);
if (u->direction == R10_TO_R0) {
unsigned long long num_data_stripes;
/* Number of failed disks must be half of initial disk number */
if (imsm_count_failed(super, dev, MAP_0) !=
(map->num_members / 2))
return 0;
/* iterate through devices to mark removed disks as spare */
for (dm = super->disks; dm; dm = dm->next) {
if (dm->disk.status & FAILED_DISK) {
int idx = dm->index;
/* update indexes on the disk list */
/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
the index values will end up being correct.... NB */
for (du = super->disks; du; du = du->next)
if (du->index > idx)
du->index--;
/* mark as spare disk */
mark_spare(dm);
}
}
/* update map */
map->num_members = map->num_members / 2;
map->map_state = IMSM_T_STATE_NORMAL;
map->num_domains = 1;
map->raid_level = 0;
map->failed_disk_num = -1;
num_data_stripes = imsm_dev_size(dev) / 2;
num_data_stripes /= map->blocks_per_strip;
set_num_data_stripes(map, num_data_stripes);
}
if (u->direction == R0_TO_R10) {
void **space;
unsigned long long num_data_stripes;
/* update slots in current disk list */
for (dm = super->disks; dm; dm = dm->next) {
if (dm->index >= 0)
dm->index *= 2;
}
/* create new *missing* disks */
for (i = 0; i < map->num_members; i++) {
space = *space_list;
if (!space)
continue;
*space_list = *space;
du = (void *)space;
memcpy(du, super->disks, sizeof(*du));
du->fd = -1;
du->minor = 0;
du->major = 0;
du->index = (i * 2) + 1;
sprintf((char *)du->disk.serial,
" MISSING_%d", du->index);
sprintf((char *)du->serial,
"MISSING_%d", du->index);
du->next = super->missing;
super->missing = du;
}
/* create new dev and map */
space = *space_list;
if (!space)
return 0;
*space_list = *space;
dev_new = (void *)space;
memcpy(dev_new, dev, sizeof(*dev));
/* update new map */
map = get_imsm_map(dev_new, MAP_0);
map->num_members = map->num_members * 2;
map->map_state = IMSM_T_STATE_DEGRADED;
map->num_domains = 2;
map->raid_level = 1;
num_data_stripes = imsm_dev_size(dev) / 2;
num_data_stripes /= map->blocks_per_strip;
num_data_stripes /= map->num_domains;
set_num_data_stripes(map, num_data_stripes);
/* replace dev<->dev_new */
dv->dev = dev_new;
}
/* update disk order table */
for (du = super->disks; du; du = du->next)
if (du->index >= 0)
set_imsm_ord_tbl_ent(map, du->index, du->index);
for (du = super->missing; du; du = du->next)
if (du->index >= 0) {
set_imsm_ord_tbl_ent(map, du->index, du->index);
mark_missing(super, dv->dev, &du->disk, du->index);
}
return 1;
}
static void imsm_process_update(struct supertype *st,
struct metadata_update *update)
{
/**
* crack open the metadata_update envelope to find the update record
* update can be one of:
* update_reshape_container_disks - all the arrays in the container
* are being reshaped to have more devices. We need to mark
* the arrays for general migration and convert selected spares
* into active devices.
* update_activate_spare - a spare device has replaced a failed
* device in an array, update the disk_ord_tbl. If this disk is
* present in all member arrays then also clear the SPARE_DISK
* flag
* update_create_array
* update_kill_array
* update_rename_array
* update_add_remove_disk
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb;
enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
/* update requires a larger buf but the allocation failed */
if (super->next_len && !super->next_buf) {
super->next_len = 0;
return;
}
if (super->next_buf) {
memcpy(super->next_buf, super->buf, super->len);
free(super->buf);
super->len = super->next_len;
super->buf = super->next_buf;
super->next_len = 0;
super->next_buf = NULL;
}
mpb = super->anchor;
switch (type) {
case update_general_migration_checkpoint: {
struct intel_dev *id;
struct imsm_update_general_migration_checkpoint *u =
(void *)update->buf;
dprintf("called for update_general_migration_checkpoint\n");
/* find device under general migration */
for (id = super->devlist ; id; id = id->next) {
if (is_gen_migration(id->dev)) {
id->dev->vol.curr_migr_unit =
__cpu_to_le32(u->curr_migr_unit);
super->updates_pending++;
}
}
break;
}
case update_takeover: {
struct imsm_update_takeover *u = (void *)update->buf;
if (apply_takeover_update(u, super, &update->space_list)) {
imsm_update_version_info(super);
super->updates_pending++;
}
break;
}
case update_reshape_container_disks: {
struct imsm_update_reshape *u = (void *)update->buf;
if (apply_reshape_container_disks_update(
u, super, &update->space_list))
super->updates_pending++;
break;
}
case update_reshape_migration: {
struct imsm_update_reshape_migration *u = (void *)update->buf;
if (apply_reshape_migration_update(
u, super, &update->space_list))
super->updates_pending++;
break;
}
case update_size_change: {
struct imsm_update_size_change *u = (void *)update->buf;
if (apply_size_change_update(u, super))
super->updates_pending++;
break;
}
case update_activate_spare: {
struct imsm_update_activate_spare *u = (void *) update->buf;
if (apply_update_activate_spare(u, super, st->arrays))
super->updates_pending++;
break;
}
case update_create_array: {
/* someone wants to create a new array, we need to be aware of
* a few races/collisions:
* 1/ 'Create' called by two separate instances of mdadm
* 2/ 'Create' versus 'activate_spare': mdadm has chosen
* devices that have since been assimilated via
* activate_spare.
* In the event this update can not be carried out mdadm will
* (FIX ME) notice that its update did not take hold.
*/
struct imsm_update_create_array *u = (void *) update->buf;
struct intel_dev *dv;
struct imsm_dev *dev;
struct imsm_map *map, *new_map;
unsigned long long start, end;
unsigned long long new_start, new_end;
int i;
struct disk_info *inf;
struct dl *dl;
/* handle racing creates: first come first serve */
if (u->dev_idx < mpb->num_raid_devs) {
dprintf("subarray %d already defined\n", u->dev_idx);
goto create_error;
}
/* check update is next in sequence */
if (u->dev_idx != mpb->num_raid_devs) {
dprintf("can not create array %d expected index %d\n",
u->dev_idx, mpb->num_raid_devs);
goto create_error;
}
new_map = get_imsm_map(&u->dev, MAP_0);
new_start = pba_of_lba0(new_map);
new_end = new_start + per_dev_array_size(new_map);
inf = get_disk_info(u);
/* handle activate_spare versus create race:
* check to make sure that overlapping arrays do not include
* overalpping disks
*/
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, MAP_0);
start = pba_of_lba0(map);
end = start + per_dev_array_size(map);
if ((new_start >= start && new_start <= end) ||
(start >= new_start && start <= new_end))
/* overlap */;
else
continue;
if (disks_overlap(super, i, u)) {
dprintf("arrays overlap\n");
goto create_error;
}
}
/* check that prepare update was successful */
if (!update->space) {
dprintf("prepare update failed\n");
goto create_error;
}
/* check that all disks are still active before committing
* changes. FIXME: could we instead handle this by creating a
* degraded array? That's probably not what the user expects,
* so better to drop this update on the floor.
*/
for (i = 0; i < new_map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (!dl) {
dprintf("disk disappeared\n");
goto create_error;
}
}
super->updates_pending++;
/* convert spares to members and fixup ord_tbl */
for (i = 0; i < new_map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (dl->index == -1) {
dl->index = mpb->num_disks;
mpb->num_disks++;
dl->disk.status |= CONFIGURED_DISK;
dl->disk.status &= ~SPARE_DISK;
}
set_imsm_ord_tbl_ent(new_map, i, dl->index);
}
dv = update->space;
dev = dv->dev;
update->space = NULL;
imsm_copy_dev(dev, &u->dev);
dv->index = u->dev_idx;
dv->next = super->devlist;
super->devlist = dv;
mpb->num_raid_devs++;
imsm_update_version_info(super);
break;
create_error:
/* mdmon knows how to release update->space, but not
* ((struct intel_dev *) update->space)->dev
*/
if (update->space) {
dv = update->space;
free(dv->dev);
}
break;
}
case update_kill_array: {
struct imsm_update_kill_array *u = (void *) update->buf;
int victim = u->dev_idx;
struct active_array *a;
struct intel_dev **dp;
struct imsm_dev *dev;
/* sanity check that we are not affecting the uuid of
* active arrays, or deleting an active array
*
* FIXME when immutable ids are available, but note that
* we'll also need to fixup the invalidated/active
* subarray indexes in mdstat
*/
for (a = st->arrays; a; a = a->next)
if (a->info.container_member >= victim)
break;
/* by definition if mdmon is running at least one array
* is active in the container, so checking
* mpb->num_raid_devs is just extra paranoia
*/
dev = get_imsm_dev(super, victim);
if (a || !dev || mpb->num_raid_devs == 1) {
dprintf("failed to delete subarray-%d\n", victim);
break;
}
for (dp = &super->devlist; *dp;)
if ((*dp)->index == (unsigned)super->current_vol) {
*dp = (*dp)->next;
} else {
if ((*dp)->index > (unsigned)victim)
(*dp)->index--;
dp = &(*dp)->next;
}
mpb->num_raid_devs--;
super->updates_pending++;
break;
}
case update_rename_array: {
struct imsm_update_rename_array *u = (void *) update->buf;
char name[MAX_RAID_SERIAL_LEN+1];
int target = u->dev_idx;
struct active_array *a;
struct imsm_dev *dev;
/* sanity check that we are not affecting the uuid of
* an active array
*/
memset(name, 0, sizeof(name));
snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
name[MAX_RAID_SERIAL_LEN] = '\0';
for (a = st->arrays; a; a = a->next)
if (a->info.container_member == target)
break;
dev = get_imsm_dev(super, u->dev_idx);
if (a || !dev || !check_name(super, name, 1)) {
dprintf("failed to rename subarray-%d\n", target);
break;
}
memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
super->updates_pending++;
break;
}
case update_add_remove_disk: {
/* we may be able to repair some arrays if disks are
* being added, check the status of add_remove_disk
* if discs has been added.
*/
if (add_remove_disk_update(super)) {
struct active_array *a;
super->updates_pending++;
for (a = st->arrays; a; a = a->next)
a->check_degraded = 1;
}
break;
}
case update_prealloc_badblocks_mem:
break;
case update_rwh_policy: {
struct imsm_update_rwh_policy *u = (void *)update->buf;
int target = u->dev_idx;
struct imsm_dev *dev = get_imsm_dev(super, target);
if (!dev) {
dprintf("could not find subarray-%d\n", target);
break;
}
if (dev->rwh_policy != u->new_policy) {
dev->rwh_policy = u->new_policy;
super->updates_pending++;
}
break;
}
default:
pr_err("error: unsupported process update type:(type: %d)\n", type);
}
}
static struct mdinfo *get_spares_for_grow(struct supertype *st);
static int imsm_prepare_update(struct supertype *st,
struct metadata_update *update)
{
/**
* Allocate space to hold new disk entries, raid-device entries or a new
* mpb if necessary. The manager synchronously waits for updates to
* complete in the monitor, so new mpb buffers allocated here can be
* integrated by the monitor thread without worrying about live pointers
* in the manager thread.
*/
enum imsm_update_type type;
struct intel_super *super = st->sb;
unsigned int sector_size = super->sector_size;
struct imsm_super *mpb = super->anchor;
size_t buf_len;
size_t len = 0;
if (update->len < (int)sizeof(type))
return 0;
type = *(enum imsm_update_type *) update->buf;
switch (type) {
case update_general_migration_checkpoint:
if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
return 0;
dprintf("called for update_general_migration_checkpoint\n");
break;
case update_takeover: {
struct imsm_update_takeover *u = (void *)update->buf;
if (update->len < (int)sizeof(*u))
return 0;
if (u->direction == R0_TO_R10) {
void **tail = (void **)&update->space_list;
struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int num_members = map->num_members;
void *space;
int size, i;
/* allocate memory for added disks */
for (i = 0; i < num_members; i++) {
size = sizeof(struct dl);
space = xmalloc(size);
*tail = space;
tail = space;
*tail = NULL;
}
/* allocate memory for new device */
size = sizeof_imsm_dev(super->devlist->dev, 0) +
(num_members * sizeof(__u32));
space = xmalloc(size);
*tail = space;
tail = space;
*tail = NULL;
len = disks_to_mpb_size(num_members * 2);
}
break;
}
case update_reshape_container_disks: {
/* Every raid device in the container is about to
* gain some more devices, and we will enter a
* reconfiguration.
* So each 'imsm_map' will be bigger, and the imsm_vol
* will now hold 2 of them.
* Thus we need new 'struct imsm_dev' allocations sized
* as sizeof_imsm_dev but with more devices in both maps.
*/
struct imsm_update_reshape *u = (void *)update->buf;
struct intel_dev *dl;
void **space_tail = (void**)&update->space_list;
if (update->len < (int)sizeof(*u))
return 0;
dprintf("for update_reshape\n");
for (dl = super->devlist; dl; dl = dl->next) {
int size = sizeof_imsm_dev(dl->dev, 1);
void *s;
if (u->new_raid_disks > u->old_raid_disks)
size += sizeof(__u32)*2*
(u->new_raid_disks - u->old_raid_disks);
s = xmalloc(size);
*space_tail = s;
space_tail = s;
*space_tail = NULL;
}
len = disks_to_mpb_size(u->new_raid_disks);
dprintf("New anchor length is %llu\n", (unsigned long long)len);
break;
}
case update_reshape_migration: {
/* for migration level 0->5 we need to add disks
* so the same as for container operation we will copy
* device to the bigger location.
* in memory prepared device and new disk area are prepared
* for usage in process update
*/
struct imsm_update_reshape_migration *u = (void *)update->buf;
struct intel_dev *id;
void **space_tail = (void **)&update->space_list;
int size;
void *s;
int current_level = -1;
if (update->len < (int)sizeof(*u))
return 0;
dprintf("for update_reshape\n");
/* add space for bigger array in update
*/
for (id = super->devlist; id; id = id->next) {
if (id->index == (unsigned)u->subdev) {
size = sizeof_imsm_dev(id->dev, 1);
if (u->new_raid_disks > u->old_raid_disks)
size += sizeof(__u32)*2*
(u->new_raid_disks - u->old_raid_disks);
s = xmalloc(size);
*space_tail = s;
space_tail = s;
*space_tail = NULL;
break;
}
}
if (update->space_list == NULL)
break;
/* add space for disk in update
*/
size = sizeof(struct dl);
s = xmalloc(size);
*space_tail = s;
space_tail = s;
*space_tail = NULL;
/* add spare device to update
*/
for (id = super->devlist ; id; id = id->next)
if (id->index == (unsigned)u->subdev) {
struct imsm_dev *dev;
struct imsm_map *map;
dev = get_imsm_dev(super, u->subdev);
map = get_imsm_map(dev, MAP_0);
current_level = map->raid_level;
break;
}
if (u->new_level == 5 && u->new_level != current_level) {
struct mdinfo *spares;
spares = get_spares_for_grow(st);
if (spares) {
struct dl *dl;
struct mdinfo *dev;
dev = spares->devs;
if (dev) {
u->new_disks[0] =
makedev(dev->disk.major,
dev->disk.minor);
dl = get_disk_super(super,
dev->disk.major,
dev->disk.minor);
dl->index = u->old_raid_disks;
dev = dev->next;
}
sysfs_free(spares);
}
}
len = disks_to_mpb_size(u->new_raid_disks);
dprintf("New anchor length is %llu\n", (unsigned long long)len);
break;
}
case update_size_change: {
if (update->len < (int)sizeof(struct imsm_update_size_change))
return 0;
break;
}
case update_activate_spare: {
if (update->len < (int)sizeof(struct imsm_update_activate_spare))
return 0;
break;
}
case update_create_array: {
struct imsm_update_create_array *u = (void *) update->buf;
struct intel_dev *dv;
struct imsm_dev *dev = &u->dev;
struct imsm_map *map = get_imsm_map(dev, MAP_0);
struct dl *dl;
struct disk_info *inf;
int i;
int activate = 0;
if (update->len < (int)sizeof(*u))
return 0;
inf = get_disk_info(u);
len = sizeof_imsm_dev(dev, 1);
/* allocate a new super->devlist entry */
dv = xmalloc(sizeof(*dv));
dv->dev = xmalloc(len);
update->space = dv;
/* count how many spares will be converted to members */
for (i = 0; i < map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (!dl) {
/* hmm maybe it failed?, nothing we can do about
* it here
*/
continue;
}
if (count_memberships(dl, super) == 0)
activate++;
}
len += activate * sizeof(struct imsm_disk);
break;
}
case update_kill_array: {
if (update->len < (int)sizeof(struct imsm_update_kill_array))
return 0;
break;
}
case update_rename_array: {
if (update->len < (int)sizeof(struct imsm_update_rename_array))
return 0;
break;
}
case update_add_remove_disk:
/* no update->len needed */
break;
case update_prealloc_badblocks_mem:
super->extra_space += sizeof(struct bbm_log) -
get_imsm_bbm_log_size(super->bbm_log);
break;
case update_rwh_policy: {
if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
return 0;
break;
}
default:
return 0;
}
/* check if we need a larger metadata buffer */
if (super->next_buf)
buf_len = super->next_len;
else
buf_len = super->len;
if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
/* ok we need a larger buf than what is currently allocated
* if this allocation fails process_update will notice that
* ->next_len is set and ->next_buf is NULL
*/
buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
super->extra_space + len, sector_size);
if (super->next_buf)
free(super->next_buf);
super->next_len = buf_len;
if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
memset(super->next_buf, 0, buf_len);
else
super->next_buf = NULL;
}
return 1;
}
/* must be called while manager is quiesced */
static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
{
struct imsm_super *mpb = super->anchor;
struct dl *iter;
struct imsm_dev *dev;
struct imsm_map *map;
unsigned int i, j, num_members;
__u32 ord, ord_map0;
struct bbm_log *log = super->bbm_log;
dprintf("deleting device[%d] from imsm_super\n", index);
/* shift all indexes down one */
for (iter = super->disks; iter; iter = iter->next)
if (iter->index > (int)index)
iter->index--;
for (iter = super->missing; iter; iter = iter->next)
if (iter->index > (int)index)
iter->index--;
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, MAP_0);
num_members = map->num_members;
for (j = 0; j < num_members; j++) {
/* update ord entries being careful not to propagate
* ord-flags to the first map
*/
ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
if (ord_to_idx(ord) <= index)
continue;
map = get_imsm_map(dev, MAP_0);
set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
map = get_imsm_map(dev, MAP_1);
if (map)
set_imsm_ord_tbl_ent(map, j, ord - 1);
}
}
for (i = 0; i < log->entry_count; i++) {
struct bbm_log_entry *entry = &log->marked_block_entries[i];
if (entry->disk_ordinal <= index)
continue;
entry->disk_ordinal--;
}
mpb->num_disks--;
super->updates_pending++;
if (*dlp) {
struct dl *dl = *dlp;
*dlp = (*dlp)->next;
__free_imsm_disk(dl);
}
}
static void close_targets(int *targets, int new_disks)
{
int i;
if (!targets)
return;
for (i = 0; i < new_disks; i++) {
if (targets[i] >= 0) {
close(targets[i]);
targets[i] = -1;
}
}
}
static int imsm_get_allowed_degradation(int level, int raid_disks,
struct intel_super *super,
struct imsm_dev *dev)
{
switch (level) {
case 1:
case 10:{
int ret_val = 0;
struct imsm_map *map;
int i;
ret_val = raid_disks/2;
/* check map if all disks pairs not failed
* in both maps
*/
map = get_imsm_map(dev, MAP_0);
for (i = 0; i < ret_val; i++) {
int degradation = 0;
if (get_imsm_disk(super, i) == NULL)
degradation++;
if (get_imsm_disk(super, i + 1) == NULL)
degradation++;
if (degradation == 2)
return 0;
}
map = get_imsm_map(dev, MAP_1);
/* if there is no second map
* result can be returned
*/
if (map == NULL)
return ret_val;
/* check degradation in second map
*/
for (i = 0; i < ret_val; i++) {
int degradation = 0;
if (get_imsm_disk(super, i) == NULL)
degradation++;
if (get_imsm_disk(super, i + 1) == NULL)
degradation++;
if (degradation == 2)
return 0;
}
return ret_val;
}
case 5:
return 1;
case 6:
return 2;
default:
return 0;
}
}
/*******************************************************************************
* Function: open_backup_targets
* Description: Function opens file descriptors for all devices given in
* info->devs
* Parameters:
* info : general array info
* raid_disks : number of disks
* raid_fds : table of device's file descriptors
* super : intel super for raid10 degradation check
* dev : intel device for raid10 degradation check
* Returns:
* 0 : success
* -1 : fail
******************************************************************************/
int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
struct intel_super *super, struct imsm_dev *dev)
{
struct mdinfo *sd;
int i;
int opened = 0;
for (i = 0; i < raid_disks; i++)
raid_fds[i] = -1;
for (sd = info->devs ; sd ; sd = sd->next) {
char *dn;
if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
dprintf("disk is faulty!!\n");
continue;
}
if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
continue;
dn = map_dev(sd->disk.major,
sd->disk.minor, 1);
raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
if (raid_fds[sd->disk.raid_disk] < 0) {
pr_err("cannot open component\n");
continue;
}
opened++;
}
/* check if maximum array degradation level is not exceeded
*/
if ((raid_disks - opened) >
imsm_get_allowed_degradation(info->new_level, raid_disks,
super, dev)) {
pr_err("Not enough disks can be opened.\n");
close_targets(raid_fds, raid_disks);
return -2;
}
return 0;
}
/*******************************************************************************
* Function: validate_container_imsm
* Description: This routine validates container after assemble,
* eg. if devices in container are under the same controller.
*
* Parameters:
* info : linked list with info about devices used in array
* Returns:
* 1 : HBA mismatch
* 0 : Success
******************************************************************************/
int validate_container_imsm(struct mdinfo *info)
{
if (check_env("IMSM_NO_PLATFORM"))
return 0;
struct sys_dev *idev;
struct sys_dev *hba = NULL;
struct sys_dev *intel_devices = find_intel_devices();
char *dev_path = devt_to_devpath(makedev(info->disk.major,
info->disk.minor));
for (idev = intel_devices; idev; idev = idev->next) {
if (dev_path && strstr(dev_path, idev->path)) {
hba = idev;
break;
}
}
if (dev_path)
free(dev_path);
if (!hba) {
pr_err("WARNING - Cannot detect HBA for device %s!\n",
devid2kname(makedev(info->disk.major, info->disk.minor)));
return 1;
}
const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
struct mdinfo *dev;
for (dev = info->next; dev; dev = dev->next) {
dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
struct sys_dev *hba2 = NULL;
for (idev = intel_devices; idev; idev = idev->next) {
if (dev_path && strstr(dev_path, idev->path)) {
hba2 = idev;
break;
}
}
if (dev_path)
free(dev_path);
const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
get_orom_by_device_id(hba2->dev_id);
if (hba2 && hba->type != hba2->type) {
pr_err("WARNING - HBAs of devices do not match %s != %s\n",
get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
return 1;
}
if (orom != orom2) {
pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
" This operation is not supported and can lead to data loss.\n");
return 1;
}
if (!orom) {
pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
" This operation is not supported and can lead to data loss.\n");
return 1;
}
}
return 0;
}
/*******************************************************************************
* Function: imsm_record_badblock
* Description: This routine stores new bad block record in BBM log
*
* Parameters:
* a : array containing a bad block
* slot : disk number containing a bad block
* sector : bad block sector
* length : bad block sectors range
* Returns:
* 1 : Success
* 0 : Error
******************************************************************************/
static int imsm_record_badblock(struct active_array *a, int slot,
unsigned long long sector, int length)
{
struct intel_super *super = a->container->sb;
int ord;
int ret;
ord = imsm_disk_slot_to_ord(a, slot);
if (ord < 0)
return 0;
ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
length);
if (ret)
super->updates_pending++;
return ret;
}
/*******************************************************************************
* Function: imsm_clear_badblock
* Description: This routine clears bad block record from BBM log
*
* Parameters:
* a : array containing a bad block
* slot : disk number containing a bad block
* sector : bad block sector
* length : bad block sectors range
* Returns:
* 1 : Success
* 0 : Error
******************************************************************************/
static int imsm_clear_badblock(struct active_array *a, int slot,
unsigned long long sector, int length)
{
struct intel_super *super = a->container->sb;
int ord;
int ret;
ord = imsm_disk_slot_to_ord(a, slot);
if (ord < 0)
return 0;
ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
if (ret)
super->updates_pending++;
return ret;
}
/*******************************************************************************
* Function: imsm_get_badblocks
* Description: This routine get list of bad blocks for an array
*
* Parameters:
* a : array
* slot : disk number
* Returns:
* bb : structure containing bad blocks
* NULL : error
******************************************************************************/
static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, MAP_0);
int ord;
ord = imsm_disk_slot_to_ord(a, slot);
if (ord < 0)
return NULL;
get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
per_dev_array_size(map), &super->bb);
return &super->bb;
}
/*******************************************************************************
* Function: examine_badblocks_imsm
* Description: Prints list of bad blocks on a disk to the standard output
*
* Parameters:
* st : metadata handler
* fd : open file descriptor for device
* devname : device name
* Returns:
* 0 : Success
* 1 : Error
******************************************************************************/
static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
{
struct intel_super *super = st->sb;
struct bbm_log *log = super->bbm_log;
struct dl *d = NULL;
int any = 0;
for (d = super->disks; d ; d = d->next) {
if (strcmp(d->devname, devname) == 0)
break;
}
if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
pr_err("%s doesn't appear to be part of a raid array\n",
devname);
return 1;
}
if (log != NULL) {
unsigned int i;
struct bbm_log_entry *entry = &log->marked_block_entries[0];
for (i = 0; i < log->entry_count; i++) {
if (entry[i].disk_ordinal == d->index) {
unsigned long long sector = __le48_to_cpu(
&entry[i].defective_block_start);
int cnt = entry[i].marked_count + 1;
if (!any) {
printf("Bad-blocks on %s:\n", devname);
any = 1;
}
printf("%20llu for %d sectors\n", sector, cnt);
}
}
}
if (!any)
printf("No bad-blocks list configured on %s\n", devname);
return 0;
}
/*******************************************************************************
* Function: init_migr_record_imsm
* Description: Function inits imsm migration record
* Parameters:
* super : imsm internal array info
* dev : device under migration
* info : general array info to find the smallest device
* Returns:
* none
******************************************************************************/
void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct migr_record *migr_rec = super->migr_rec;
int new_data_disks;
unsigned long long dsize, dev_sectors;
long long unsigned min_dev_sectors = -1LLU;
struct mdinfo *sd;
char nm[30];
int fd;
struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
unsigned long long num_migr_units;
unsigned long long array_blocks;
memset(migr_rec, 0, sizeof(struct migr_record));
migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
/* only ascending reshape supported now */
migr_rec->ascending_migr = __cpu_to_le32(1);
migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
migr_rec->dest_depth_per_unit *=
max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
new_data_disks = imsm_num_data_members(map_dest);
migr_rec->blocks_per_unit =
__cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
migr_rec->dest_depth_per_unit =
__cpu_to_le32(migr_rec->dest_depth_per_unit);
array_blocks = info->component_size * new_data_disks;
num_migr_units =
array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
num_migr_units++;
set_num_migr_units(migr_rec, num_migr_units);
migr_rec->post_migr_vol_cap = dev->size_low;
migr_rec->post_migr_vol_cap_hi = dev->size_high;
/* Find the smallest dev */
for (sd = info->devs ; sd ; sd = sd->next) {
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
fd = dev_open(nm, O_RDONLY);
if (fd < 0)
continue;
get_dev_size(fd, NULL, &dsize);
dev_sectors = dsize / 512;
if (dev_sectors < min_dev_sectors)
min_dev_sectors = dev_sectors;
close(fd);
}
set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
write_imsm_migr_rec(st);
return;
}
/*******************************************************************************
* Function: save_backup_imsm
* Description: Function saves critical data stripes to Migration Copy Area
* and updates the current migration unit status.
* Use restore_stripes() to form a destination stripe,
* and to write it to the Copy Area.
* Parameters:
* st : supertype information
* dev : imsm device that backup is saved for
* info : general array info
* buf : input buffer
* length : length of data to backup (blocks_per_unit)
* Returns:
* 0 : success
*, -1 : fail
******************************************************************************/
int save_backup_imsm(struct supertype *st,
struct imsm_dev *dev,
struct mdinfo *info,
void *buf,
int length)
{
int rv = -1;
struct intel_super *super = st->sb;
unsigned long long *target_offsets;
int *targets;
int i;
struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
int new_disks = map_dest->num_members;
int dest_layout = 0;
int dest_chunk;
unsigned long long start;
int data_disks = imsm_num_data_members(map_dest);
targets = xmalloc(new_disks * sizeof(int));
for (i = 0; i < new_disks; i++)
targets[i] = -1;
target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
start = info->reshape_progress * 512;
for (i = 0; i < new_disks; i++) {
target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
/* move back copy area adderss, it will be moved forward
* in restore_stripes() using start input variable
*/
target_offsets[i] -= start/data_disks;
}
if (open_backup_targets(info, new_disks, targets,
super, dev))
goto abort;
dest_layout = imsm_level_to_layout(map_dest->raid_level);
dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
if (restore_stripes(targets, /* list of dest devices */
target_offsets, /* migration record offsets */
new_disks,
dest_chunk,
map_dest->raid_level,
dest_layout,
-1, /* source backup file descriptor */
0, /* input buf offset
* always 0 buf is already offseted */
start,
length,
buf) != 0) {
pr_err("Error restoring stripes\n");
goto abort;
}
rv = 0;
abort:
if (targets) {
close_targets(targets, new_disks);
free(targets);
}
free(target_offsets);
return rv;
}
/*******************************************************************************
* Function: save_checkpoint_imsm
* Description: Function called for current unit status update
* in the migration record. It writes it to disk.
* Parameters:
* super : imsm internal array info
* info : general array info
* Returns:
* 0: success
* 1: failure
* 2: failure, means no valid migration record
* / no general migration in progress /
******************************************************************************/
int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
{
struct intel_super *super = st->sb;
unsigned long long blocks_per_unit;
unsigned long long curr_migr_unit;
if (load_imsm_migr_rec(super, info) != 0) {
dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
return 1;
}
blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
if (blocks_per_unit == 0) {
dprintf("imsm: no migration in progress.\n");
return 2;
}
curr_migr_unit = info->reshape_progress / blocks_per_unit;
/* check if array is alligned to copy area
* if it is not alligned, add one to current migration unit value
* this can happend on array reshape finish only
*/
if (info->reshape_progress % blocks_per_unit)
curr_migr_unit++;
set_current_migr_unit(super->migr_rec, curr_migr_unit);
super->migr_rec->rec_status = __cpu_to_le32(state);
set_migr_dest_1st_member_lba(super->migr_rec,
super->migr_rec->dest_depth_per_unit * curr_migr_unit);
if (write_imsm_migr_rec(st) < 0) {
dprintf("imsm: Cannot write migration record outside backup area\n");
return 1;
}
return 0;
}
/*******************************************************************************
* Function: recover_backup_imsm
* Description: Function recovers critical data from the Migration Copy Area
* while assembling an array.
* Parameters:
* super : imsm internal array info
* info : general array info
* Returns:
* 0 : success (or there is no data to recover)
* 1 : fail
******************************************************************************/
int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct migr_record *migr_rec = super->migr_rec;
struct imsm_map *map_dest;
struct intel_dev *id = NULL;
unsigned long long read_offset;
unsigned long long write_offset;
unsigned unit_len;
int *targets = NULL;
int new_disks, i, err;
char *buf = NULL;
int retval = 1;
unsigned int sector_size = super->sector_size;
unsigned long curr_migr_unit = current_migr_unit(migr_rec);
unsigned long num_migr_units = get_num_migr_units(migr_rec);
char buffer[20];
int skipped_disks = 0;
err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
if (err < 1)
return 1;
/* recover data only during assemblation */
if (strncmp(buffer, "inactive", 8) != 0)
return 0;
/* no data to recover */
if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
return 0;
if (curr_migr_unit >= num_migr_units)
return 1;
/* find device during reshape */
for (id = super->devlist; id; id = id->next)
if (is_gen_migration(id->dev))
break;
if (id == NULL)
return 1;
map_dest = get_imsm_map(id->dev, MAP_0);
new_disks = map_dest->num_members;
read_offset = migr_chkp_area_pba(migr_rec) * 512;
write_offset = (migr_dest_1st_member_lba(migr_rec) +
pba_of_lba0(map_dest)) * 512;
unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
goto abort;
targets = xcalloc(new_disks, sizeof(int));
if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
pr_err("Cannot open some devices belonging to array.\n");
goto abort;
}
for (i = 0; i < new_disks; i++) {
if (targets[i] < 0) {
skipped_disks++;
continue;
}
if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
pr_err("Cannot seek to block: %s\n",
strerror(errno));
skipped_disks++;
continue;
}
if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
pr_err("Cannot read copy area block: %s\n",
strerror(errno));
skipped_disks++;
continue;
}
if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
pr_err("Cannot seek to block: %s\n",
strerror(errno));
skipped_disks++;
continue;
}
if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
pr_err("Cannot restore block: %s\n",
strerror(errno));
skipped_disks++;
continue;
}
}
if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
new_disks,
super,
id->dev)) {
pr_err("Cannot restore data from backup. Too many failed disks\n");
goto abort;
}
if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
/* ignore error == 2, this can mean end of reshape here
*/
dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
} else
retval = 0;
abort:
if (targets) {
for (i = 0; i < new_disks; i++)
if (targets[i])
close(targets[i]);
free(targets);
}
free(buf);
return retval;
}
static char disk_by_path[] = "/dev/disk/by-path/";
static const char *imsm_get_disk_controller_domain(const char *path)
{
char disk_path[PATH_MAX];
char *drv=NULL;
struct stat st;
strcpy(disk_path, disk_by_path);
strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
if (stat(disk_path, &st) == 0) {
struct sys_dev* hba;
char *path;
path = devt_to_devpath(st.st_rdev);
if (path == NULL)
return "unknown";
hba = find_disk_attached_hba(-1, path);
if (hba && hba->type == SYS_DEV_SAS)
drv = "isci";
else if (hba && hba->type == SYS_DEV_SATA)
drv = "ahci";
else if (hba && hba->type == SYS_DEV_VMD)
drv = "vmd";
else if (hba && hba->type == SYS_DEV_NVME)
drv = "nvme";
else
drv = "unknown";
dprintf("path: %s hba: %s attached: %s\n",
path, (hba) ? hba->path : "NULL", drv);
free(path);
}
return drv;
}
static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
{
static char devnm[32];
char subdev_name[20];
struct mdstat_ent *mdstat;
sprintf(subdev_name, "%d", subdev);
mdstat = mdstat_by_subdev(subdev_name, container);
if (!mdstat)
return NULL;
strcpy(devnm, mdstat->devnm);
free_mdstat(mdstat);
return devnm;
}
static int imsm_reshape_is_allowed_on_container(struct supertype *st,
struct geo_params *geo,
int *old_raid_disks,
int direction)
{
/* currently we only support increasing the number of devices
* for a container. This increases the number of device for each
* member array. They must all be RAID0 or RAID5.
*/
int ret_val = 0;
struct mdinfo *info, *member;
int devices_that_can_grow = 0;
dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
if (geo->size > 0 ||
geo->level != UnSet ||
geo->layout != UnSet ||
geo->chunksize != 0 ||
geo->raid_disks == UnSet) {
dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
return ret_val;
}
if (direction == ROLLBACK_METADATA_CHANGES) {
dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
return ret_val;
}
info = container_content_imsm(st, NULL);
for (member = info; member; member = member->next) {
char *result;
dprintf("imsm: checking device_num: %i\n",
member->container_member);
if (geo->raid_disks <= member->array.raid_disks) {
/* we work on container for Online Capacity Expansion
* only so raid_disks has to grow
*/
dprintf("imsm: for container operation raid disks increase is required\n");
break;
}
if (info->array.level != 0 && info->array.level != 5) {
/* we cannot use this container with other raid level
*/
dprintf("imsm: for container operation wrong raid level (%i) detected\n",
info->array.level);
break;
} else {
/* check for platform support
* for this raid level configuration
*/
struct intel_super *super = st->sb;
if (!is_raid_level_supported(super->orom,
member->array.level,
geo->raid_disks)) {
dprintf("platform does not support raid%d with %d disk%s\n",
info->array.level,
geo->raid_disks,
geo->raid_disks > 1 ? "s" : "");
break;
}
/* check if component size is aligned to chunk size
*/
if (info->component_size %
(info->array.chunk_size/512)) {
dprintf("Component size is not aligned to chunk size\n");
break;
}
}
if (*old_raid_disks &&
info->array.raid_disks != *old_raid_disks)
break;
*old_raid_disks = info->array.raid_disks;
/* All raid5 and raid0 volumes in container
* have to be ready for Online Capacity Expansion
* so they need to be assembled. We have already
* checked that no recovery etc is happening.
*/
result = imsm_find_array_devnm_by_subdev(member->container_member,
st->container_devnm);
if (result == NULL) {
dprintf("imsm: cannot find array\n");
break;
}
devices_that_can_grow++;
}
sysfs_free(info);
if (!member && devices_that_can_grow)
ret_val = 1;
if (ret_val)
dprintf("Container operation allowed\n");
else
dprintf("Error: %i\n", ret_val);
return ret_val;
}
/* Function: get_spares_for_grow
* Description: Allocates memory and creates list of spare devices
* avaliable in container. Checks if spare drive size is acceptable.
* Parameters: Pointer to the supertype structure
* Returns: Pointer to the list of spare devices (mdinfo structure) on success,
* NULL if fail
*/
static struct mdinfo *get_spares_for_grow(struct supertype *st)
{
struct spare_criteria sc;
get_spare_criteria_imsm(st, &sc);
return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
}
/******************************************************************************
* function: imsm_create_metadata_update_for_reshape
* Function creates update for whole IMSM container.
*
******************************************************************************/
static int imsm_create_metadata_update_for_reshape(
struct supertype *st,
struct geo_params *geo,
int old_raid_disks,
struct imsm_update_reshape **updatep)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
int update_memory_size;
struct imsm_update_reshape *u;
struct mdinfo *spares;
int i;
int delta_disks;
struct mdinfo *dev;
dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
delta_disks = geo->raid_disks - old_raid_disks;
/* size of all update data without anchor */
update_memory_size = sizeof(struct imsm_update_reshape);
/* now add space for spare disks that we need to add. */
update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
u = xcalloc(1, update_memory_size);
u->type = update_reshape_container_disks;
u->old_raid_disks = old_raid_disks;
u->new_raid_disks = geo->raid_disks;
/* now get spare disks list
*/
spares = get_spares_for_grow(st);
if (spares == NULL || delta_disks > spares->array.spare_disks) {
pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
i = -1;
goto abort;
}
/* we have got spares
* update disk list in imsm_disk list table in anchor
*/
dprintf("imsm: %i spares are available.\n\n",
spares->array.spare_disks);
dev = spares->devs;
for (i = 0; i < delta_disks; i++) {
struct dl *dl;
if (dev == NULL)
break;
u->new_disks[i] = makedev(dev->disk.major,
dev->disk.minor);
dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
dl->index = mpb->num_disks;
mpb->num_disks++;
dev = dev->next;
}
abort:
/* free spares
*/
sysfs_free(spares);
dprintf("imsm: reshape update preparation :");
if (i == delta_disks) {
dprintf_cont(" OK\n");
*updatep = u;
return update_memory_size;
}
free(u);
dprintf_cont(" Error\n");
return 0;
}
/******************************************************************************
* function: imsm_create_metadata_update_for_size_change()
* Creates update for IMSM array for array size change.
*
******************************************************************************/
static int imsm_create_metadata_update_for_size_change(
struct supertype *st,
struct geo_params *geo,
struct imsm_update_size_change **updatep)
{
struct intel_super *super = st->sb;
int update_memory_size;
struct imsm_update_size_change *u;
dprintf("(enter) New size = %llu\n", geo->size);
/* size of all update data without anchor */
update_memory_size = sizeof(struct imsm_update_size_change);
u = xcalloc(1, update_memory_size);
u->type = update_size_change;
u->subdev = super->current_vol;
u->new_size = geo->size;
dprintf("imsm: reshape update preparation : OK\n");
*updatep = u;
return update_memory_size;
}
/******************************************************************************
* function: imsm_create_metadata_update_for_migration()
* Creates update for IMSM array.
*
******************************************************************************/
static int imsm_create_metadata_update_for_migration(
struct supertype *st,
struct geo_params *geo,
struct imsm_update_reshape_migration **updatep)
{
struct intel_super *super = st->sb;
int update_memory_size;
struct imsm_update_reshape_migration *u;
struct imsm_dev *dev;
int previous_level = -1;
dprintf("(enter) New Level = %i\n", geo->level);
/* size of all update data without anchor */
update_memory_size = sizeof(struct imsm_update_reshape_migration);
u = xcalloc(1, update_memory_size);
u->type = update_reshape_migration;
u->subdev = super->current_vol;
u->new_level = geo->level;
u->new_layout = geo->layout;
u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
u->new_disks[0] = -1;
u->new_chunksize = -1;
dev = get_imsm_dev(super, u->subdev);
if (dev) {
struct imsm_map *map;
map = get_imsm_map(dev, MAP_0);
if (map) {
int current_chunk_size =
__le16_to_cpu(map->blocks_per_strip) / 2;
if (geo->chunksize != current_chunk_size) {
u->new_chunksize = geo->chunksize / 1024;
dprintf("imsm: chunk size change from %i to %i\n",
current_chunk_size, u->new_chunksize);
}
previous_level = map->raid_level;
}
}
if (geo->level == 5 && previous_level == 0) {
struct mdinfo *spares = NULL;
u->new_raid_disks++;
spares = get_spares_for_grow(st);
if (spares == NULL || spares->array.spare_disks < 1) {
free(u);
sysfs_free(spares);
update_memory_size = 0;
pr_err("cannot get spare device for requested migration\n");
return 0;
}
sysfs_free(spares);
}
dprintf("imsm: reshape update preparation : OK\n");
*updatep = u;
return update_memory_size;
}
static void imsm_update_metadata_locally(struct supertype *st,
void *buf, int len)
{
struct metadata_update mu;
mu.buf = buf;
mu.len = len;
mu.space = NULL;
mu.space_list = NULL;
mu.next = NULL;
if (imsm_prepare_update(st, &mu))
imsm_process_update(st, &mu);
while (mu.space_list) {
void **space = mu.space_list;
mu.space_list = *space;
free(space);
}
}
/***************************************************************************
* Function: imsm_analyze_change
* Description: Function analyze change for single volume
* and validate if transition is supported
* Parameters: Geometry parameters, supertype structure,
* metadata change direction (apply/rollback)
* Returns: Operation type code on success, -1 if fail
****************************************************************************/
enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
struct geo_params *geo,
int direction)
{
struct mdinfo info;
int change = -1;
int check_devs = 0;
int chunk;
/* number of added/removed disks in operation result */
int devNumChange = 0;
/* imsm compatible layout value for array geometry verification */
int imsm_layout = -1;
int data_disks;
struct imsm_dev *dev;
struct imsm_map *map;
struct intel_super *super;
unsigned long long current_size;
unsigned long long free_size;
unsigned long long max_size;
int rv;
getinfo_super_imsm_volume(st, &info, NULL);
if (geo->level != info.array.level && geo->level >= 0 &&
geo->level != UnSet) {
switch (info.array.level) {
case 0:
if (geo->level == 5) {
change = CH_MIGRATION;
if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
change = -1;
goto analyse_change_exit;
}
imsm_layout = geo->layout;
check_devs = 1;
devNumChange = 1; /* parity disk added */
} else if (geo->level == 10) {
change = CH_TAKEOVER;
check_devs = 1;
devNumChange = 2; /* two mirrors added */
imsm_layout = 0x102; /* imsm supported layout */
}
break;
case 1:
case 10:
if (geo->level == 0) {
change = CH_TAKEOVER;
check_devs = 1;
devNumChange = -(geo->raid_disks/2);
imsm_layout = 0; /* imsm raid0 layout */
}
break;
}
if (change == -1) {
pr_err("Error. Level Migration from %d to %d not supported!\n",
info.array.level, geo->level);
goto analyse_change_exit;
}
} else
geo->level = info.array.level;
if (geo->layout != info.array.layout &&
(geo->layout != UnSet && geo->layout != -1)) {
change = CH_MIGRATION;
if (info.array.layout == 0 && info.array.level == 5 &&
geo->layout == 5) {
/* reshape 5 -> 4 */
} else if (info.array.layout == 5 && info.array.level == 5 &&
geo->layout == 0) {
/* reshape 4 -> 5 */
geo->layout = 0;
geo->level = 5;
} else {
pr_err("Error. Layout Migration from %d to %d not supported!\n",
info.array.layout, geo->layout);
change = -1;
goto analyse_change_exit;
}
} else {
geo->layout = info.array.layout;
if (imsm_layout == -1)
imsm_layout = info.array.layout;
}
if (geo->chunksize > 0 && geo->chunksize != UnSet &&
geo->chunksize != info.array.chunk_size) {
if (info.array.level == 10) {
pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
change = -1;
goto analyse_change_exit;
} else if (info.component_size % (geo->chunksize/512)) {
pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
geo->chunksize/1024, info.component_size/2);
change = -1;
goto analyse_change_exit;
}
change = CH_MIGRATION;
} else {
geo->chunksize = info.array.chunk_size;
}
chunk = geo->chunksize / 1024;
super = st->sb;
dev = get_imsm_dev(super, super->current_vol);
map = get_imsm_map(dev, MAP_0);
data_disks = imsm_num_data_members(map);
/* compute current size per disk member
*/
current_size = info.custom_array_size / data_disks;
if (geo->size > 0 && geo->size != MAX_SIZE) {
/* align component size
*/
geo->size = imsm_component_size_alignment_check(
get_imsm_raid_level(dev->vol.map),
chunk * 1024, super->sector_size,
geo->size * 2);
if (geo->size == 0) {
pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
current_size);
goto analyse_change_exit;
}
}
if (current_size != geo->size && geo->size > 0) {
if (change != -1) {
pr_err("Error. Size change should be the only one at a time.\n");
change = -1;
goto analyse_change_exit;
}
if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
super->current_vol, st->devnm);
goto analyse_change_exit;
}
/* check the maximum available size
*/
rv = imsm_get_free_size(st, dev->vol.map->num_members,
0, chunk, &free_size);
if (rv == 0)
/* Cannot find maximum available space
*/
max_size = 0;
else {
max_size = free_size + current_size;
/* align component size
*/
max_size = imsm_component_size_alignment_check(
get_imsm_raid_level(dev->vol.map),
chunk * 1024, super->sector_size,
max_size);
}
if (geo->size == MAX_SIZE) {
/* requested size change to the maximum available size
*/
if (max_size == 0) {
pr_err("Error. Cannot find maximum available space.\n");
change = -1;
goto analyse_change_exit;
} else
geo->size = max_size;
}
if (direction == ROLLBACK_METADATA_CHANGES) {
/* accept size for rollback only
*/
} else {
/* round size due to metadata compatibility
*/
geo->size = (geo->size >> SECT_PER_MB_SHIFT)
<< SECT_PER_MB_SHIFT;
dprintf("Prepare update for size change to %llu\n",
geo->size );
if (current_size >= geo->size) {
pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
current_size, geo->size);
goto analyse_change_exit;
}
if (max_size && geo->size > max_size) {
pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
max_size, geo->size);
goto analyse_change_exit;
}
}
geo->size *= data_disks;
geo->raid_disks = dev->vol.map->num_members;
change = CH_ARRAY_SIZE;
}
if (!validate_geometry_imsm(st,
geo->level,
imsm_layout,
geo->raid_disks + devNumChange,
&chunk,
geo->size, INVALID_SECTORS,
0, 0, info.consistency_policy, 1))
change = -1;
if (check_devs) {
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
if (mpb->num_raid_devs > 1) {
pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
geo->dev_name);
change = -1;
}
}
analyse_change_exit:
if (direction == ROLLBACK_METADATA_CHANGES &&
(change == CH_MIGRATION || change == CH_TAKEOVER)) {
dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
change = -1;
}
return change;
}
int imsm_takeover(struct supertype *st, struct geo_params *geo)
{
struct intel_super *super = st->sb;
struct imsm_update_takeover *u;
u = xmalloc(sizeof(struct imsm_update_takeover));
u->type = update_takeover;
u->subarray = super->current_vol;
/* 10->0 transition */
if (geo->level == 0)
u->direction = R10_TO_R0;
/* 0->10 transition */
if (geo->level == 10)
u->direction = R0_TO_R10;
/* update metadata locally */
imsm_update_metadata_locally(st, u,
sizeof(struct imsm_update_takeover));
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u,
sizeof(struct imsm_update_takeover));
else
free(u);
return 0;
}
static int imsm_reshape_super(struct supertype *st, unsigned long long size,
int level,
int layout, int chunksize, int raid_disks,
int delta_disks, char *backup, char *dev,
int direction, int verbose)
{
int ret_val = 1;
struct geo_params geo;
dprintf("(enter)\n");
memset(&geo, 0, sizeof(struct geo_params));
geo.dev_name = dev;
strcpy(geo.devnm, st->devnm);
geo.size = size;
geo.level = level;
geo.layout = layout;
geo.chunksize = chunksize;
geo.raid_disks = raid_disks;
if (delta_disks != UnSet)
geo.raid_disks += delta_disks;
dprintf("for level : %i\n", geo.level);
dprintf("for raid_disks : %i\n", geo.raid_disks);
if (strcmp(st->container_devnm, st->devnm) == 0) {
/* On container level we can only increase number of devices. */
dprintf("imsm: info: Container operation\n");
int old_raid_disks = 0;
if (imsm_reshape_is_allowed_on_container(
st, &geo, &old_raid_disks, direction)) {
struct imsm_update_reshape *u = NULL;
int len;
len = imsm_create_metadata_update_for_reshape(
st, &geo, old_raid_disks, &u);
if (len <= 0) {
dprintf("imsm: Cannot prepare update\n");
goto exit_imsm_reshape_super;
}
ret_val = 0;
/* update metadata locally */
imsm_update_metadata_locally(st, u, len);
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u, len);
else
free(u);
} else {
pr_err("(imsm) Operation is not allowed on this container\n");
}
} else {
/* On volume level we support following operations
* - takeover: raid10 -> raid0; raid0 -> raid10
* - chunk size migration
* - migration: raid5 -> raid0; raid0 -> raid5
*/
struct intel_super *super = st->sb;
struct intel_dev *dev = super->devlist;
int change;
dprintf("imsm: info: Volume operation\n");
/* find requested device */
while (dev) {
char *devnm =
imsm_find_array_devnm_by_subdev(
dev->index, st->container_devnm);
if (devnm && strcmp(devnm, geo.devnm) == 0)
break;
dev = dev->next;
}
if (dev == NULL) {
pr_err("Cannot find %s (%s) subarray\n",
geo.dev_name, geo.devnm);
goto exit_imsm_reshape_super;
}
super->current_vol = dev->index;
change = imsm_analyze_change(st, &geo, direction);
switch (change) {
case CH_TAKEOVER:
ret_val = imsm_takeover(st, &geo);
break;
case CH_MIGRATION: {
struct imsm_update_reshape_migration *u = NULL;
int len =
imsm_create_metadata_update_for_migration(
st, &geo, &u);
if (len < 1) {
dprintf("imsm: Cannot prepare update\n");
break;
}
ret_val = 0;
/* update metadata locally */
imsm_update_metadata_locally(st, u, len);
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u, len);
else
free(u);
}
break;
case CH_ARRAY_SIZE: {
struct imsm_update_size_change *u = NULL;
int len =
imsm_create_metadata_update_for_size_change(
st, &geo, &u);
if (len < 1) {
dprintf("imsm: Cannot prepare update\n");
break;
}
ret_val = 0;
/* update metadata locally */
imsm_update_metadata_locally(st, u, len);
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u, len);
else
free(u);
}
break;
default:
ret_val = 1;
}
}
exit_imsm_reshape_super:
dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
return ret_val;
}
#define COMPLETED_OK 0
#define COMPLETED_NONE 1
#define COMPLETED_DELAYED 2
static int read_completed(int fd, unsigned long long *val)
{
int ret;
char buf[50];
ret = sysfs_fd_get_str(fd, buf, 50);
if (ret < 0)
return ret;
ret = COMPLETED_OK;
if (strncmp(buf, "none", 4) == 0) {
ret = COMPLETED_NONE;
} else if (strncmp(buf, "delayed", 7) == 0) {
ret = COMPLETED_DELAYED;
} else {
char *ep;
*val = strtoull(buf, &ep, 0);
if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
ret = -1;
}
return ret;
}
/*******************************************************************************
* Function: wait_for_reshape_imsm
* Description: Function writes new sync_max value and waits until
* reshape process reach new position
* Parameters:
* sra : general array info
* ndata : number of disks in new array's layout
* Returns:
* 0 : success,
* 1 : there is no reshape in progress,
* -1 : fail
******************************************************************************/
int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
{
int fd = sysfs_get_fd(sra, NULL, "sync_completed");
int retry = 3;
unsigned long long completed;
/* to_complete : new sync_max position */
unsigned long long to_complete = sra->reshape_progress;
unsigned long long position_to_set = to_complete / ndata;
if (fd < 0) {
dprintf("cannot open reshape_position\n");
return 1;
}
do {
if (sysfs_fd_get_ll(fd, &completed) < 0) {
if (!retry) {
dprintf("cannot read reshape_position (no reshape in progres)\n");
close(fd);
return 1;
}
usleep(30000);
} else
break;
} while (retry--);
if (completed > position_to_set) {
dprintf("wrong next position to set %llu (%llu)\n",
to_complete, position_to_set);
close(fd);
return -1;
}
dprintf("Position set: %llu\n", position_to_set);
if (sysfs_set_num(sra, NULL, "sync_max",
position_to_set) != 0) {
dprintf("cannot set reshape position to %llu\n",
position_to_set);
close(fd);
return -1;
}
do {
int rc;
char action[20];
int timeout = 3000;
sysfs_wait(fd, &timeout);
if (sysfs_get_str(sra, NULL, "sync_action",
action, 20) > 0 &&
strncmp(action, "reshape", 7) != 0) {
if (strncmp(action, "idle", 4) == 0)
break;
close(fd);
return -1;
}
rc = read_completed(fd, &completed);
if (rc < 0) {
dprintf("cannot read reshape_position (in loop)\n");
close(fd);
return 1;
} else if (rc == COMPLETED_NONE)
break;
} while (completed < position_to_set);
close(fd);
return 0;
}
/*******************************************************************************
* Function: check_degradation_change
* Description: Check that array hasn't become failed.
* Parameters:
* info : for sysfs access
* sources : source disks descriptors
* degraded: previous degradation level
* Returns:
* degradation level
******************************************************************************/
int check_degradation_change(struct mdinfo *info,
int *sources,
int degraded)
{
unsigned long long new_degraded;
int rv;
rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
/* check each device to ensure it is still working */
struct mdinfo *sd;
new_degraded = 0;
for (sd = info->devs ; sd ; sd = sd->next) {
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (sd->disk.state & (1<<MD_DISK_SYNC)) {
char sbuf[100];
if (sysfs_get_str(info,
sd, "state", sbuf, sizeof(sbuf)) < 0 ||
strstr(sbuf, "faulty") ||
strstr(sbuf, "in_sync") == NULL) {
/* this device is dead */
sd->disk.state = (1<<MD_DISK_FAULTY);
if (sd->disk.raid_disk >= 0 &&
sources[sd->disk.raid_disk] >= 0) {
close(sources[
sd->disk.raid_disk]);
sources[sd->disk.raid_disk] =
-1;
}
new_degraded++;
}
}
}
}
return new_degraded;
}
/*******************************************************************************
* Function: imsm_manage_reshape
* Description: Function finds array under reshape and it manages reshape
* process. It creates stripes backups (if required) and sets
* checkpoints.
* Parameters:
* afd : Backup handle (nattive) - not used
* sra : general array info
* reshape : reshape parameters - not used
* st : supertype structure
* blocks : size of critical section [blocks]
* fds : table of source device descriptor
* offsets : start of array (offest per devices)
* dests : not used
* destfd : table of destination device descriptor
* destoffsets : table of destination offsets (per device)
* Returns:
* 1 : success, reshape is done
* 0 : fail
******************************************************************************/
static int imsm_manage_reshape(
int afd, struct mdinfo *sra, struct reshape *reshape,
struct supertype *st, unsigned long backup_blocks,
int *fds, unsigned long long *offsets,
int dests, int *destfd, unsigned long long *destoffsets)
{
int ret_val = 0;
struct intel_super *super = st->sb;
struct intel_dev *dv;
unsigned int sector_size = super->sector_size;
struct imsm_dev *dev = NULL;
struct imsm_map *map_src, *map_dest;
int migr_vol_qan = 0;
int ndata, odata; /* [bytes] */
int chunk; /* [bytes] */
struct migr_record *migr_rec;
char *buf = NULL;
unsigned int buf_size; /* [bytes] */
unsigned long long max_position; /* array size [bytes] */
unsigned long long next_step; /* [blocks]/[bytes] */
unsigned long long old_data_stripe_length;
unsigned long long start_src; /* [bytes] */
unsigned long long start; /* [bytes] */
unsigned long long start_buf_shift; /* [bytes] */
int degraded = 0;
int source_layout = 0;
if (!sra)
return ret_val;
if (!fds || !offsets)
goto abort;
/* Find volume during the reshape */
for (dv = super->devlist; dv; dv = dv->next) {
if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
dv->dev->vol.migr_state == 1) {
dev = dv->dev;
migr_vol_qan++;
}
}
/* Only one volume can migrate at the same time */
if (migr_vol_qan != 1) {
pr_err("%s", migr_vol_qan ?
"Number of migrating volumes greater than 1\n" :
"There is no volume during migrationg\n");
goto abort;
}
map_dest = get_imsm_map(dev, MAP_0);
map_src = get_imsm_map(dev, MAP_1);
if (map_src == NULL)
goto abort;
ndata = imsm_num_data_members(map_dest);
odata = imsm_num_data_members(map_src);
chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
old_data_stripe_length = odata * chunk;
migr_rec = super->migr_rec;
/* initialize migration record for start condition */
if (sra->reshape_progress == 0)
init_migr_record_imsm(st, dev, sra);
else {
if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
dprintf("imsm: cannot restart migration when data are present in copy area.\n");
goto abort;
}
/* Save checkpoint to update migration record for current
* reshape position (in md). It can be farther than current
* reshape position in metadata.
*/
if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
/* ignore error == 2, this can mean end of reshape here
*/
dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
goto abort;
}
}
/* size for data */
buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
/* extend buffer size for parity disk */
buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
/* add space for stripe alignment */
buf_size += old_data_stripe_length;
if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
dprintf("imsm: Cannot allocate checkpoint buffer\n");
goto abort;
}
max_position = sra->component_size * ndata;
source_layout = imsm_level_to_layout(map_src->raid_level);
while (current_migr_unit(migr_rec) <
get_num_migr_units(migr_rec)) {
/* current reshape position [blocks] */
unsigned long long current_position =
__le32_to_cpu(migr_rec->blocks_per_unit)
* current_migr_unit(migr_rec);
unsigned long long border;
/* Check that array hasn't become failed.
*/
degraded = check_degradation_change(sra, fds, degraded);
if (degraded > 1) {
dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
goto abort;
}
next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
if ((current_position + next_step) > max_position)
next_step = max_position - current_position;
start = current_position * 512;
/* align reading start to old geometry */
start_buf_shift = start % old_data_stripe_length;
start_src = start - start_buf_shift;
border = (start_src / odata) - (start / ndata);
border /= 512;
if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
/* save critical stripes to buf
* start - start address of current unit
* to backup [bytes]
* start_src - start address of current unit
* to backup alligned to source array
* [bytes]
*/
unsigned long long next_step_filler;
unsigned long long copy_length = next_step * 512;
/* allign copy area length to stripe in old geometry */
next_step_filler = ((copy_length + start_buf_shift)
% old_data_stripe_length);
if (next_step_filler)
next_step_filler = (old_data_stripe_length
- next_step_filler);
dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
start, start_src, copy_length,
start_buf_shift, next_step_filler);
if (save_stripes(fds, offsets, map_src->num_members,
chunk, map_src->raid_level,
source_layout, 0, NULL, start_src,
copy_length +
next_step_filler + start_buf_shift,
buf)) {
dprintf("imsm: Cannot save stripes to buffer\n");
goto abort;
}
/* Convert data to destination format and store it
* in backup general migration area
*/
if (save_backup_imsm(st, dev, sra,
buf + start_buf_shift, copy_length)) {
dprintf("imsm: Cannot save stripes to target devices\n");
goto abort;
}
if (save_checkpoint_imsm(st, sra,
UNIT_SRC_IN_CP_AREA)) {
dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
goto abort;
}
} else {
/* set next step to use whole border area */
border /= next_step;
if (border > 1)
next_step *= border;
}
/* When data backed up, checkpoint stored,
* kick the kernel to reshape unit of data
*/
next_step = next_step + sra->reshape_progress;
/* limit next step to array max position */
if (next_step > max_position)
next_step = max_position;
sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
sysfs_set_num(sra, NULL, "suspend_hi", next_step);
sra->reshape_progress = next_step;
/* wait until reshape finish */
if (wait_for_reshape_imsm(sra, ndata)) {
dprintf("wait_for_reshape_imsm returned error!\n");
goto abort;
}
if (sigterm)
goto abort;
if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
/* ignore error == 2, this can mean end of reshape here
*/
dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
goto abort;
}
}
/* clear migr_rec on disks after successful migration */
struct dl *d;
memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
for (d = super->disks; d; d = d->next) {
if (d->index < 0 || is_failed(&d->disk))
continue;
unsigned long long dsize;
get_dev_size(d->fd, NULL, &dsize);
if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
SEEK_SET) >= 0) {
if ((unsigned int)write(d->fd, super->migr_rec_buf,
MIGR_REC_BUF_SECTORS*sector_size) !=
MIGR_REC_BUF_SECTORS*sector_size)
perror("Write migr_rec failed");
}
}
/* return '1' if done */
ret_val = 1;
abort:
free(buf);
/* See Grow.c: abort_reshape() for further explanation */
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
sysfs_set_num(sra, NULL, "suspend_hi", 0);
sysfs_set_num(sra, NULL, "suspend_lo", 0);
return ret_val;
}
struct superswitch super_imsm = {
.examine_super = examine_super_imsm,
.brief_examine_super = brief_examine_super_imsm,
.brief_examine_subarrays = brief_examine_subarrays_imsm,
.export_examine_super = export_examine_super_imsm,
.detail_super = detail_super_imsm,
.brief_detail_super = brief_detail_super_imsm,
.write_init_super = write_init_super_imsm,
.validate_geometry = validate_geometry_imsm,
.add_to_super = add_to_super_imsm,
.remove_from_super = remove_from_super_imsm,
.detail_platform = detail_platform_imsm,
.export_detail_platform = export_detail_platform_imsm,
.kill_subarray = kill_subarray_imsm,
.update_subarray = update_subarray_imsm,
.load_container = load_container_imsm,
.default_geometry = default_geometry_imsm,
.get_disk_controller_domain = imsm_get_disk_controller_domain,
.reshape_super = imsm_reshape_super,
.manage_reshape = imsm_manage_reshape,
.recover_backup = recover_backup_imsm,
.copy_metadata = copy_metadata_imsm,
.examine_badblocks = examine_badblocks_imsm,
.match_home = match_home_imsm,
.uuid_from_super= uuid_from_super_imsm,
.getinfo_super = getinfo_super_imsm,
.getinfo_super_disks = getinfo_super_disks_imsm,
.update_super = update_super_imsm,
.avail_size = avail_size_imsm,
.get_spare_criteria = get_spare_criteria_imsm,
.compare_super = compare_super_imsm,
.load_super = load_super_imsm,
.init_super = init_super_imsm,
.store_super = store_super_imsm,
.free_super = free_super_imsm,
.match_metadata_desc = match_metadata_desc_imsm,
.container_content = container_content_imsm,
.validate_container = validate_container_imsm,
.write_init_ppl = write_init_ppl_imsm,
.validate_ppl = validate_ppl_imsm,
.external = 1,
.name = "imsm",
/* for mdmon */
.open_new = imsm_open_new,
.set_array_state= imsm_set_array_state,
.set_disk = imsm_set_disk,
.sync_metadata = imsm_sync_metadata,
.activate_spare = imsm_activate_spare,
.process_update = imsm_process_update,
.prepare_update = imsm_prepare_update,
.record_bad_block = imsm_record_badblock,
.clear_bad_block = imsm_clear_badblock,
.get_bad_blocks = imsm_get_badblocks,
};