mdadm/super-intel.c

3400 lines
85 KiB
C

/*
* mdadm - Intel(R) Matrix Storage Manager Support
*
* Copyright (C) 2002-2008 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define HAVE_STDINT_H 1
#include "mdadm.h"
#include "mdmon.h"
#include "sha1.h"
#include <values.h>
#include <scsi/sg.h>
#include <ctype.h>
/* MPB == Metadata Parameter Block */
#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
#define MPB_VERSION_RAID0 "1.0.00"
#define MPB_VERSION_RAID1 "1.1.00"
#define MPB_VERSION_RAID5 "1.2.02"
#define MAX_SIGNATURE_LENGTH 32
#define MAX_RAID_SERIAL_LEN 16
#define MPB_SECTOR_CNT 418
#define IMSM_RESERVED_SECTORS 4096
/* Disk configuration info. */
#define IMSM_MAX_DEVICES 255
struct imsm_disk {
__u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
__u32 total_blocks; /* 0xE8 - 0xEB total blocks */
__u32 scsi_id; /* 0xEC - 0xEF scsi ID */
__u32 status; /* 0xF0 - 0xF3 */
#define SPARE_DISK 0x01 /* Spare */
#define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
#define FAILED_DISK 0x04 /* Permanent failure */
#define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
#define IMSM_DISK_FILLERS 5
__u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
};
/* RAID map configuration infos. */
struct imsm_map {
__u32 pba_of_lba0; /* start address of partition */
__u32 blocks_per_member;/* blocks per member */
__u32 num_data_stripes; /* number of data stripes */
__u16 blocks_per_strip;
__u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
#define IMSM_T_STATE_NORMAL 0
#define IMSM_T_STATE_UNINITIALIZED 1
#define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
#define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
__u8 raid_level;
#define IMSM_T_RAID0 0
#define IMSM_T_RAID1 1
#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
__u8 num_members; /* number of member disks */
__u8 reserved[3];
__u32 filler[7]; /* expansion area */
#define IMSM_ORD_REBUILD (1 << 24)
__u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
* top byte contains some flags
*/
} __attribute__ ((packed));
struct imsm_vol {
__u32 curr_migr_unit;
__u32 reserved;
__u8 migr_state; /* Normal or Migrating */
__u8 migr_type; /* Initializing, Rebuilding, ... */
__u8 dirty;
__u8 fill[1];
__u32 filler[5];
struct imsm_map map[1];
/* here comes another one if migr_state */
} __attribute__ ((packed));
struct imsm_dev {
__u8 volume[MAX_RAID_SERIAL_LEN];
__u32 size_low;
__u32 size_high;
__u32 status; /* Persistent RaidDev status */
__u32 reserved_blocks; /* Reserved blocks at beginning of volume */
#define IMSM_DEV_FILLERS 12
__u32 filler[IMSM_DEV_FILLERS];
struct imsm_vol vol;
} __attribute__ ((packed));
struct imsm_super {
__u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
__u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
__u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
__u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
__u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
__u32 error_log_size; /* 0x30 - 0x33 in bytes */
__u32 attributes; /* 0x34 - 0x37 */
__u8 num_disks; /* 0x38 Number of configured disks */
__u8 num_raid_devs; /* 0x39 Number of configured volumes */
__u8 error_log_pos; /* 0x3A */
__u8 fill[1]; /* 0x3B */
__u32 cache_size; /* 0x3c - 0x40 in mb */
__u32 orig_family_num; /* 0x40 - 0x43 original family num */
__u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
__u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
#define IMSM_FILLERS 35
__u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
/* here comes imsm_dev[num_raid_devs] */
/* here comes BBM logs */
} __attribute__ ((packed));
#define BBM_LOG_MAX_ENTRIES 254
struct bbm_log_entry {
__u64 defective_block_start;
#define UNREADABLE 0xFFFFFFFF
__u32 spare_block_offset;
__u16 remapped_marked_count;
__u16 disk_ordinal;
} __attribute__ ((__packed__));
struct bbm_log {
__u32 signature; /* 0xABADB10C */
__u32 entry_count;
__u32 reserved_spare_block_count; /* 0 */
__u32 reserved; /* 0xFFFF */
__u64 first_spare_lba;
struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
} __attribute__ ((__packed__));
#ifndef MDASSEMBLE
static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
#endif
static unsigned int sector_count(__u32 bytes)
{
return ((bytes + (512-1)) & (~(512-1))) / 512;
}
static unsigned int mpb_sectors(struct imsm_super *mpb)
{
return sector_count(__le32_to_cpu(mpb->mpb_size));
}
/* internal representation of IMSM metadata */
struct intel_super {
union {
void *buf; /* O_DIRECT buffer for reading/writing metadata */
struct imsm_super *anchor; /* immovable parameters */
};
size_t len; /* size of the 'buf' allocation */
void *next_buf; /* for realloc'ing buf from the manager */
size_t next_len;
int updates_pending; /* count of pending updates for mdmon */
int creating_imsm; /* flag to indicate container creation */
int current_vol; /* index of raid device undergoing creation */
#define IMSM_MAX_RAID_DEVS 2
struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
struct dl {
struct dl *next;
int index;
__u8 serial[MAX_RAID_SERIAL_LEN];
int major, minor;
char *devname;
struct imsm_disk disk;
int fd;
} *disks;
struct dl *add; /* list of disks to add while mdmon active */
struct dl *missing; /* disks removed while we weren't looking */
struct bbm_log *bbm_log;
};
struct extent {
unsigned long long start, size;
};
/* definition of messages passed to imsm_process_update */
enum imsm_update_type {
update_activate_spare,
update_create_array,
update_add_disk,
};
struct imsm_update_activate_spare {
enum imsm_update_type type;
struct dl *dl;
int slot;
int array;
struct imsm_update_activate_spare *next;
};
struct imsm_update_create_array {
enum imsm_update_type type;
int dev_idx;
struct imsm_dev dev;
};
struct imsm_update_add_disk {
enum imsm_update_type type;
};
static struct supertype *match_metadata_desc_imsm(char *arg)
{
struct supertype *st;
if (strcmp(arg, "imsm") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = malloc(sizeof(*st));
memset(st, 0, sizeof(*st));
st->ss = &super_imsm;
st->max_devs = IMSM_MAX_DEVICES;
st->minor_version = 0;
st->sb = NULL;
return st;
}
#ifndef MDASSEMBLE
static __u8 *get_imsm_version(struct imsm_super *mpb)
{
return &mpb->sig[MPB_SIG_LEN];
}
#endif
/* retrieve a disk directly from the anchor when the anchor is known to be
* up-to-date, currently only at load time
*/
static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
{
if (index >= mpb->num_disks)
return NULL;
return &mpb->disk[index];
}
#ifndef MDASSEMBLE
/* retrieve a disk from the parsed metadata */
static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
{
struct dl *d;
for (d = super->disks; d; d = d->next)
if (d->index == index)
return &d->disk;
return NULL;
}
#endif
/* generate a checksum directly from the anchor when the anchor is known to be
* up-to-date, currently only at load or write_super after coalescing
*/
static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
{
__u32 end = mpb->mpb_size / sizeof(end);
__u32 *p = (__u32 *) mpb;
__u32 sum = 0;
while (end--)
sum += __le32_to_cpu(*p++);
return sum - __le32_to_cpu(mpb->check_sum);
}
static size_t sizeof_imsm_map(struct imsm_map *map)
{
return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
}
struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
{
struct imsm_map *map = &dev->vol.map[0];
if (second_map && !dev->vol.migr_state)
return NULL;
else if (second_map) {
void *ptr = map;
return ptr + sizeof_imsm_map(map);
} else
return map;
}
/* return the size of the device.
* migr_state increases the returned size if map[0] were to be duplicated
*/
static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
{
size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
sizeof_imsm_map(get_imsm_map(dev, 0));
/* migrating means an additional map */
if (dev->vol.migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, 1));
else if (migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, 0));
return size;
}
static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
{
int offset;
int i;
void *_mpb = mpb;
if (index >= mpb->num_raid_devs)
return NULL;
/* devices start after all disks */
offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
for (i = 0; i <= index; i++)
if (i == index)
return _mpb + offset;
else
offset += sizeof_imsm_dev(_mpb + offset, 0);
return NULL;
}
static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
{
if (index >= super->anchor->num_raid_devs)
return NULL;
return super->dev_tbl[index];
}
static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
{
struct imsm_map *map;
if (dev->vol.migr_state)
map = get_imsm_map(dev, 1);
else
map = get_imsm_map(dev, 0);
/* top byte identifies disk under rebuild */
return __le32_to_cpu(map->disk_ord_tbl[slot]);
}
#define ord_to_idx(ord) (((ord) << 8) >> 8)
static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
{
__u32 ord = get_imsm_ord_tbl_ent(dev, slot);
return ord_to_idx(ord);
}
static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
{
map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
}
static int get_imsm_raid_level(struct imsm_map *map)
{
if (map->raid_level == 1) {
if (map->num_members == 2)
return 1;
else
return 10;
}
return map->raid_level;
}
static int cmp_extent(const void *av, const void *bv)
{
const struct extent *a = av;
const struct extent *b = bv;
if (a->start < b->start)
return -1;
if (a->start > b->start)
return 1;
return 0;
}
static struct extent *get_extents(struct intel_super *super, struct dl *dl)
{
/* find a list of used extents on the given physical device */
struct extent *rv, *e;
int i, j;
int memberships = 0;
__u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
for (j = 0; j < map->num_members; j++) {
__u32 index = get_imsm_disk_idx(dev, j);
if (index == dl->index)
memberships++;
}
}
rv = malloc(sizeof(struct extent) * (memberships + 1));
if (!rv)
return NULL;
e = rv;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
for (j = 0; j < map->num_members; j++) {
__u32 index = get_imsm_disk_idx(dev, j);
if (index == dl->index) {
e->start = __le32_to_cpu(map->pba_of_lba0);
e->size = __le32_to_cpu(map->blocks_per_member);
e++;
}
}
}
qsort(rv, memberships, sizeof(*rv), cmp_extent);
/* determine the start of the metadata
* when no raid devices are defined use the default
* ...otherwise allow the metadata to truncate the value
* as is the case with older versions of imsm
*/
if (memberships) {
struct extent *last = &rv[memberships - 1];
__u32 remainder;
remainder = __le32_to_cpu(dl->disk.total_blocks) -
(last->start + last->size);
if (reservation > remainder)
reservation = remainder;
}
e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
e->size = 0;
return rv;
}
/* try to determine how much space is reserved for metadata from
* the last get_extents() entry, otherwise fallback to the
* default
*/
static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
{
struct extent *e;
int i;
__u32 rv;
/* for spares just return a minimal reservation which will grow
* once the spare is picked up by an array
*/
if (dl->index == -1)
return MPB_SECTOR_CNT;
e = get_extents(super, dl);
if (!e)
return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
/* scroll to last entry */
for (i = 0; e[i].size; i++)
continue;
rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
free(e);
return rv;
}
#ifndef MDASSEMBLE
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
static void print_imsm_dev(struct imsm_dev *dev, int index)
{
__u64 sz;
int slot;
struct imsm_map *map = get_imsm_map(dev, 0);
__u32 ord;
printf("\n");
printf("[%.16s]:\n", dev->volume);
printf(" RAID Level : %d\n", get_imsm_raid_level(map));
printf(" Members : %d\n", map->num_members);
for (slot = 0; slot < map->num_members; slot++)
if (index == get_imsm_disk_idx(dev, slot))
break;
if (slot < map->num_members) {
ord = get_imsm_ord_tbl_ent(dev, slot);
printf(" This Slot : %d%s\n", slot,
ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
} else
printf(" This Slot : ?\n");
sz = __le32_to_cpu(dev->size_high);
sz <<= 32;
sz += __le32_to_cpu(dev->size_low);
printf(" Array Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
sz = __le32_to_cpu(map->blocks_per_member);
printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
printf(" Sector Offset : %u\n",
__le32_to_cpu(map->pba_of_lba0));
printf(" Num Stripes : %u\n",
__le32_to_cpu(map->num_data_stripes));
printf(" Chunk Size : %u KiB\n",
__le16_to_cpu(map->blocks_per_strip) / 2);
printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
if (dev->vol.migr_state)
printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
printf("\n");
printf(" Map State : %s", map_state_str[map->map_state]);
if (dev->vol.migr_state) {
struct imsm_map *map = get_imsm_map(dev, 1);
printf(" <-- %s", map_state_str[map->map_state]);
}
printf("\n");
printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
}
static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
{
struct imsm_disk *disk = __get_imsm_disk(mpb, index);
char str[MAX_RAID_SERIAL_LEN + 1];
__u32 s;
__u64 sz;
if (index < 0)
return;
printf("\n");
snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
printf(" Disk%02d Serial : %s\n", index, str);
s = __le32_to_cpu(disk->status);
printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
s&CONFIGURED_DISK ? " active" : "",
s&FAILED_DISK ? " failed" : "",
s&USABLE_DISK ? " usable" : "");
printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
sz = __le32_to_cpu(disk->total_blocks) - reserved;
printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
}
static void examine_super_imsm(struct supertype *st, char *homehost)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
char str[MAX_SIGNATURE_LENGTH];
int i;
struct mdinfo info;
char nbuf[64];
__u32 sum;
__u32 reserved = imsm_reserved_sectors(super, super->disks);
snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
printf(" Magic : %s\n", str);
snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
printf(" Version : %s\n", get_imsm_version(mpb));
printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
getinfo_super_imsm(st, &info);
fname_from_uuid(st, &info, nbuf,'-');
printf(" UUID : %s\n", nbuf + 5);
sum = __le32_to_cpu(mpb->check_sum);
printf(" Checksum : %08x %s\n", sum,
__gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
printf(" Disks : %d\n", mpb->num_disks);
printf(" RAID Devices : %d\n", mpb->num_raid_devs);
print_imsm_disk(mpb, super->disks->index, reserved);
if (super->bbm_log) {
struct bbm_log *log = super->bbm_log;
printf("\n");
printf("Bad Block Management Log:\n");
printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
printf(" Signature : %x\n", __le32_to_cpu(log->signature));
printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
}
for (i = 0; i < mpb->num_raid_devs; i++)
print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
for (i = 0; i < mpb->num_disks; i++) {
if (i == super->disks->index)
continue;
print_imsm_disk(mpb, i, reserved);
}
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
static void brief_examine_super_imsm(struct supertype *st)
{
/* We just write a generic IMSM ARRAY entry */
struct mdinfo info;
char nbuf[64];
struct intel_super *super = st->sb;
int i;
if (!super->anchor->num_raid_devs)
return;
getinfo_super_imsm(st, &info);
fname_from_uuid(st, &info, nbuf,'-');
printf("ARRAY /dev/imsm metadata=imsm auto=md UUID=%s\n", nbuf + 5);
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
super->current_vol = i;
getinfo_super_imsm(st, &info);
fname_from_uuid(st, &info, nbuf,'-');
printf("ARRAY /dev/md/%.16s container=/dev/imsm member=%d auto=mdp UUID=%s\n",
dev->volume, i, nbuf + 5);
}
}
static void detail_super_imsm(struct supertype *st, char *homehost)
{
printf("%s\n", __FUNCTION__);
}
static void brief_detail_super_imsm(struct supertype *st)
{
struct mdinfo info;
char nbuf[64];
getinfo_super_imsm(st, &info);
fname_from_uuid(st, &info, nbuf,'-');
printf(" UUID=%s", nbuf + 5);
}
#endif
static int match_home_imsm(struct supertype *st, char *homehost)
{
printf("%s\n", __FUNCTION__);
return -1;
}
static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
{
/* The uuid returned here is used for:
* uuid to put into bitmap file (Create, Grow)
* uuid for backup header when saving critical section (Grow)
* comparing uuids when re-adding a device into an array
* In these cases the uuid required is that of the data-array,
* not the device-set.
* uuid to recognise same set when adding a missing device back
* to an array. This is a uuid for the device-set.
*
* For each of these we can make do with a truncated
* or hashed uuid rather than the original, as long as
* everyone agrees.
* In each case the uuid required is that of the data-array,
* not the device-set.
*/
/* imsm does not track uuid's so we synthesis one using sha1 on
* - The signature (Which is constant for all imsm array, but no matter)
* - the family_num of the container
* - the index number of the volume
* - the 'serial' number of the volume.
* Hopefully these are all constant.
*/
struct intel_super *super = st->sb;
char buf[20];
struct sha1_ctx ctx;
struct imsm_dev *dev = NULL;
sha1_init_ctx(&ctx);
sha1_process_bytes(super->anchor->sig, MAX_SIGNATURE_LENGTH, &ctx);
sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
if (super->current_vol >= 0)
dev = get_imsm_dev(super, super->current_vol);
if (dev) {
__u32 vol = super->current_vol;
sha1_process_bytes(&vol, sizeof(vol), &ctx);
sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
}
sha1_finish_ctx(&ctx, buf);
memcpy(uuid, buf, 4*4);
}
#if 0
static void
get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
{
__u8 *v = get_imsm_version(mpb);
__u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
char major[] = { 0, 0, 0 };
char minor[] = { 0 ,0, 0 };
char patch[] = { 0, 0, 0 };
char *ver_parse[] = { major, minor, patch };
int i, j;
i = j = 0;
while (*v != '\0' && v < end) {
if (*v != '.' && j < 2)
ver_parse[i][j++] = *v;
else {
i++;
j = 0;
}
v++;
}
*m = strtol(minor, NULL, 0);
*p = strtol(patch, NULL, 0);
}
#endif
static int imsm_level_to_layout(int level)
{
switch (level) {
case 0:
case 1:
return 0;
case 5:
case 6:
return ALGORITHM_LEFT_ASYMMETRIC;
case 10:
return 0x102;
}
return -1;
}
static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
struct imsm_map *map = get_imsm_map(dev, 0);
info->container_member = super->current_vol;
info->array.raid_disks = map->num_members;
info->array.level = get_imsm_raid_level(map);
info->array.layout = imsm_level_to_layout(info->array.level);
info->array.md_minor = -1;
info->array.ctime = 0;
info->array.utime = 0;
info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
info->array.state = !dev->vol.dirty;
info->disk.major = 0;
info->disk.minor = 0;
info->data_offset = __le32_to_cpu(map->pba_of_lba0);
info->component_size = __le32_to_cpu(map->blocks_per_member);
memset(info->uuid, 0, sizeof(info->uuid));
if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
info->resync_start = 0;
else if (dev->vol.migr_state)
info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
else
info->resync_start = ~0ULL;
strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
info->name[MAX_RAID_SERIAL_LEN] = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
sprintf(info->text_version, "/%s/%d",
devnum2devname(st->container_dev),
info->container_member);
info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
uuid_from_super_imsm(st, info->uuid);
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct imsm_disk *disk;
__u32 s;
if (super->current_vol >= 0) {
getinfo_super_imsm_volume(st, info);
return;
}
/* Set raid_disks to zero so that Assemble will always pull in valid
* spares
*/
info->array.raid_disks = 0;
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
info->array.ctime = 0; /* N/A for imsm */
info->array.utime = 0;
info->array.chunk_size = 0;
info->disk.major = 0;
info->disk.minor = 0;
info->disk.raid_disk = -1;
info->reshape_active = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
strcpy(info->text_version, "imsm");
info->safe_mode_delay = 0;
info->disk.number = -1;
info->disk.state = 0;
info->name[0] = 0;
if (super->disks) {
__u32 reserved = imsm_reserved_sectors(super, super->disks);
disk = &super->disks->disk;
info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
info->component_size = reserved;
s = __le32_to_cpu(disk->status);
info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
}
/* only call uuid_from_super_imsm when this disk is part of a populated container,
* ->compare_super may have updated the 'num_raid_devs' field for spares
*/
if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
uuid_from_super_imsm(st, info->uuid);
else
memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
}
static int update_super_imsm(struct supertype *st, struct mdinfo *info,
char *update, char *devname, int verbose,
int uuid_set, char *homehost)
{
/* FIXME */
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* name: update the name - preserving the homehost
*
* Following are not relevant for this imsm:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
* uuid: Change the uuid of the array to match watch is given
* homehost: update the recorded homehost
* _reshape_progress: record new reshape_progress position.
*/
int rv = 0;
//struct intel_super *super = st->sb;
//struct imsm_super *mpb = super->mpb;
if (strcmp(update, "grow") == 0) {
}
if (strcmp(update, "resync") == 0) {
/* dev->vol.dirty = 1; */
}
/* IMSM has no concept of UUID or homehost */
return rv;
}
static size_t disks_to_mpb_size(int disks)
{
size_t size;
size = sizeof(struct imsm_super);
size += (disks - 1) * sizeof(struct imsm_disk);
size += 2 * sizeof(struct imsm_dev);
/* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
size += (4 - 2) * sizeof(struct imsm_map);
/* 4 possible disk_ord_tbl's */
size += 4 * (disks - 1) * sizeof(__u32);
return size;
}
static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
{
if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
return 0;
return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
}
static int compare_super_imsm(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct intel_super *first = st->sb;
struct intel_super *sec = tst->sb;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
return 3;
/* if an anchor does not have num_raid_devs set then it is a free
* floating spare
*/
if (first->anchor->num_raid_devs > 0 &&
sec->anchor->num_raid_devs > 0) {
if (first->anchor->family_num != sec->anchor->family_num)
return 3;
}
/* if 'first' is a spare promote it to a populated mpb with sec's
* family number
*/
if (first->anchor->num_raid_devs == 0 &&
sec->anchor->num_raid_devs > 0) {
int i;
/* we need to copy raid device info from sec if an allocation
* fails here we don't associate the spare
*/
for (i = 0; i < sec->anchor->num_raid_devs; i++) {
first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
if (!first->dev_tbl) {
while (--i >= 0) {
free(first->dev_tbl[i]);
first->dev_tbl[i] = NULL;
}
fprintf(stderr, "imsm: failed to associate spare\n");
return 3;
}
*first->dev_tbl[i] = *sec->dev_tbl[i];
}
first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
first->anchor->family_num = sec->anchor->family_num;
}
return 0;
}
static void fd2devname(int fd, char *name)
{
struct stat st;
char path[256];
char dname[100];
char *nm;
int rv;
name[0] = '\0';
if (fstat(fd, &st) != 0)
return;
sprintf(path, "/sys/dev/block/%d:%d",
major(st.st_rdev), minor(st.st_rdev));
rv = readlink(path, dname, sizeof(dname));
if (rv <= 0)
return;
dname[rv] = '\0';
nm = strrchr(dname, '/');
nm++;
snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
}
extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
static int imsm_read_serial(int fd, char *devname,
__u8 serial[MAX_RAID_SERIAL_LEN])
{
unsigned char scsi_serial[255];
int rv;
int rsp_len;
int len;
char *c, *rsp_buf;
memset(scsi_serial, 0, sizeof(scsi_serial));
rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
memset(serial, 0, MAX_RAID_SERIAL_LEN);
fd2devname(fd, (char *) serial);
return 0;
}
if (rv != 0) {
if (devname)
fprintf(stderr,
Name ": Failed to retrieve serial for %s\n",
devname);
return rv;
}
/* trim leading whitespace */
rsp_len = scsi_serial[3];
rsp_buf = (char *) &scsi_serial[4];
c = rsp_buf;
while (isspace(*c))
c++;
/* truncate len to the end of rsp_buf if necessary */
if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
len = rsp_len - (c - rsp_buf);
else
len = MAX_RAID_SERIAL_LEN;
/* initialize the buffer and copy rsp_buf characters */
memset(serial, 0, MAX_RAID_SERIAL_LEN);
memcpy(serial, c, len);
/* trim trailing whitespace starting with the last character copied */
c = (char *) &serial[len - 1];
while (isspace(*c) || *c == '\0')
*c-- = '\0';
return 0;
}
static int serialcmp(__u8 *s1, __u8 *s2)
{
return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
}
static void serialcpy(__u8 *dest, __u8 *src)
{
strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
}
static int
load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
{
struct dl *dl;
struct stat stb;
int rv;
int i;
int alloc = 1;
__u8 serial[MAX_RAID_SERIAL_LEN];
rv = imsm_read_serial(fd, devname, serial);
if (rv != 0)
return 2;
/* check if this is a disk we have seen before. it may be a spare in
* super->disks while the current anchor believes it is a raid member,
* check if we need to update dl->index
*/
for (dl = super->disks; dl; dl = dl->next)
if (serialcmp(dl->serial, serial) == 0)
break;
if (!dl)
dl = malloc(sizeof(*dl));
else
alloc = 0;
if (!dl) {
if (devname)
fprintf(stderr,
Name ": failed to allocate disk buffer for %s\n",
devname);
return 2;
}
if (alloc) {
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->disks;
dl->fd = keep_fd ? fd : -1;
dl->devname = devname ? strdup(devname) : NULL;
serialcpy(dl->serial, serial);
dl->index = -2;
} else if (keep_fd) {
close(dl->fd);
dl->fd = fd;
}
/* look up this disk's index in the current anchor */
for (i = 0; i < super->anchor->num_disks; i++) {
struct imsm_disk *disk_iter;
disk_iter = __get_imsm_disk(super->anchor, i);
if (serialcmp(disk_iter->serial, dl->serial) == 0) {
__u32 status;
dl->disk = *disk_iter;
status = __le32_to_cpu(dl->disk.status);
/* only set index on disks that are a member of a
* populated contianer, i.e. one with raid_devs
*/
if (status & FAILED_DISK)
dl->index = -2;
else if (status & SPARE_DISK)
dl->index = -1;
else
dl->index = i;
break;
}
}
/* no match, maybe a stale failed drive */
if (i == super->anchor->num_disks && dl->index >= 0) {
dl->disk = *__get_imsm_disk(super->anchor, dl->index);
if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
dl->index = -2;
}
if (alloc)
super->disks = dl;
return 0;
}
static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
{
memcpy(dest, src, sizeof_imsm_dev(src, 0));
}
#ifndef MDASSEMBLE
/* When migrating map0 contains the 'destination' state while map1
* contains the current state. When not migrating map0 contains the
* current state. This routine assumes that map[0].map_state is set to
* the current array state before being called.
*
* Migration is indicated by one of the following states
* 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
* 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
* map1state=unitialized)
* 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
* map1state=normal)
* 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
* map1state=degraded)
*/
static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
{
struct imsm_map *dest;
struct imsm_map *src = get_imsm_map(dev, 0);
dev->vol.migr_state = 1;
dev->vol.migr_type = rebuild_resync;
dev->vol.curr_migr_unit = 0;
dest = get_imsm_map(dev, 1);
memcpy(dest, src, sizeof_imsm_map(src));
src->map_state = to_state;
}
static void end_migration(struct imsm_dev *dev, __u8 map_state)
{
struct imsm_map *map = get_imsm_map(dev, 0);
dev->vol.migr_state = 0;
dev->vol.curr_migr_unit = 0;
map->map_state = map_state;
}
#endif
static int parse_raid_devices(struct intel_super *super)
{
int i;
struct imsm_dev *dev_new;
size_t len, len_migr;
size_t space_needed = 0;
struct imsm_super *mpb = super->anchor;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
len = sizeof_imsm_dev(dev_iter, 0);
len_migr = sizeof_imsm_dev(dev_iter, 1);
if (len_migr > len)
space_needed += len_migr - len;
dev_new = malloc(len_migr);
if (!dev_new)
return 1;
imsm_copy_dev(dev_new, dev_iter);
super->dev_tbl[i] = dev_new;
}
/* ensure that super->buf is large enough when all raid devices
* are migrating
*/
if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
void *buf;
len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
if (posix_memalign(&buf, 512, len) != 0)
return 1;
memcpy(buf, super->buf, len);
free(super->buf);
super->buf = buf;
super->len = len;
}
return 0;
}
/* retrieve a pointer to the bbm log which starts after all raid devices */
struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
{
void *ptr = NULL;
if (__le32_to_cpu(mpb->bbm_log_size)) {
ptr = mpb;
ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
}
return ptr;
}
static void __free_imsm(struct intel_super *super, int free_disks);
/* load_imsm_mpb - read matrix metadata
* allocates super->mpb to be freed by free_super
*/
static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
{
unsigned long long dsize;
unsigned long long sectors;
struct stat;
struct imsm_super *anchor;
__u32 check_sum;
int rc;
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (posix_memalign((void**)&anchor, 512, 512) != 0) {
if (devname)
fprintf(stderr,
Name ": Failed to allocate imsm anchor buffer"
" on %s\n", devname);
return 1;
}
if (read(fd, anchor, 512) != 512) {
if (devname)
fprintf(stderr,
Name ": Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
free(anchor);
return 1;
}
if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
if (devname)
fprintf(stderr,
Name ": no IMSM anchor on %s\n", devname);
free(anchor);
return 2;
}
__free_imsm(super, 0);
super->len = ROUND_UP(anchor->mpb_size, 512);
if (posix_memalign(&super->buf, 512, super->len) != 0) {
if (devname)
fprintf(stderr,
Name ": unable to allocate %zu byte mpb buffer\n",
super->len);
free(anchor);
return 2;
}
memcpy(super->buf, anchor, 512);
sectors = mpb_sectors(anchor) - 1;
free(anchor);
if (!sectors) {
rc = load_imsm_disk(fd, super, devname, 0);
if (rc == 0)
rc = parse_raid_devices(super);
return rc;
}
/* read the extended mpb */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to extended mpb on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
if (devname)
fprintf(stderr,
Name ": Cannot read extended mpb on %s: %s\n",
devname, strerror(errno));
return 2;
}
check_sum = __gen_imsm_checksum(super->anchor);
if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
if (devname)
fprintf(stderr,
Name ": IMSM checksum %x != %x on %s\n",
check_sum, __le32_to_cpu(super->anchor->check_sum),
devname);
return 2;
}
/* FIXME the BBM log is disk specific so we cannot use this global
* buffer for all disks. Ok for now since we only look at the global
* bbm_log_size parameter to gate assembly
*/
super->bbm_log = __get_imsm_bbm_log(super->anchor);
rc = load_imsm_disk(fd, super, devname, 0);
if (rc == 0)
rc = parse_raid_devices(super);
return rc;
}
static void __free_imsm_disk(struct dl *d)
{
if (d->fd >= 0)
close(d->fd);
if (d->devname)
free(d->devname);
free(d);
}
static void free_imsm_disks(struct intel_super *super)
{
struct dl *d;
while (super->disks) {
d = super->disks;
super->disks = d->next;
__free_imsm_disk(d);
}
while (super->missing) {
d = super->missing;
super->missing = d->next;
__free_imsm_disk(d);
}
}
/* free all the pieces hanging off of a super pointer */
static void __free_imsm(struct intel_super *super, int free_disks)
{
int i;
if (super->buf) {
free(super->buf);
super->buf = NULL;
}
if (free_disks)
free_imsm_disks(super);
for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
if (super->dev_tbl[i]) {
free(super->dev_tbl[i]);
super->dev_tbl[i] = NULL;
}
}
static void free_imsm(struct intel_super *super)
{
__free_imsm(super, 1);
free(super);
}
static void free_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
if (!super)
return;
free_imsm(super);
st->sb = NULL;
}
static struct intel_super *alloc_super(int creating_imsm)
{
struct intel_super *super = malloc(sizeof(*super));
if (super) {
memset(super, 0, sizeof(*super));
super->creating_imsm = creating_imsm;
super->current_vol = -1;
}
return super;
}
#ifndef MDASSEMBLE
/* find_missing - helper routine for load_super_imsm_all that identifies
* disks that have disappeared from the system. This routine relies on
* the mpb being uptodate, which it is at load time.
*/
static int find_missing(struct intel_super *super)
{
int i;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
struct imsm_disk *disk;
__u32 status;
for (i = 0; i < mpb->num_disks; i++) {
disk = __get_imsm_disk(mpb, i);
for (dl = super->disks; dl; dl = dl->next)
if (serialcmp(dl->disk.serial, disk->serial) == 0)
break;
if (dl)
continue;
/* ok we have a 'disk' without a live entry in
* super->disks
*/
status = __le32_to_cpu(disk->status);
if (status & FAILED_DISK || !(status & USABLE_DISK))
continue; /* never mind, already marked */
dl = malloc(sizeof(*dl));
if (!dl)
return 1;
dl->major = 0;
dl->minor = 0;
dl->fd = -1;
dl->devname = strdup("missing");
dl->index = i;
serialcpy(dl->serial, disk->serial);
dl->disk = *disk;
dl->next = super->missing;
super->missing = dl;
}
return 0;
}
static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
char *devname, int keep_fd)
{
struct mdinfo *sra;
struct intel_super *super;
struct mdinfo *sd, *best = NULL;
__u32 bestgen = 0;
__u32 gen;
char nm[20];
int dfd;
int rv;
/* check if this disk is a member of an active array */
sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "imsm") != 0)
return 1;
super = alloc_super(0);
if (!super)
return 1;
/* find the most up to date disk in this array, skipping spares */
for (sd = sra->devs; sd; sd = sd->next) {
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
if (!dfd) {
free_imsm(super);
return 2;
}
rv = load_imsm_mpb(dfd, super, NULL);
if (!keep_fd)
close(dfd);
if (rv == 0) {
if (super->anchor->num_raid_devs == 0)
gen = 0;
else
gen = __le32_to_cpu(super->anchor->generation_num);
if (!best || gen > bestgen) {
bestgen = gen;
best = sd;
}
} else {
free_imsm(super);
return 2;
}
}
if (!best) {
free_imsm(super);
return 1;
}
/* load the most up to date anchor */
sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (!dfd) {
free_imsm(super);
return 1;
}
rv = load_imsm_mpb(dfd, super, NULL);
close(dfd);
if (rv != 0) {
free_imsm(super);
return 2;
}
/* re-parse the disk list with the current anchor */
for (sd = sra->devs ; sd ; sd = sd->next) {
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
if (!dfd) {
free_imsm(super);
return 2;
}
load_imsm_disk(dfd, super, NULL, keep_fd);
if (!keep_fd)
close(dfd);
}
if (find_missing(super) != 0) {
free_imsm(super);
return 2;
}
if (st->subarray[0]) {
if (atoi(st->subarray) <= super->anchor->num_raid_devs)
super->current_vol = atoi(st->subarray);
else
return 1;
}
*sbp = super;
st->container_dev = fd2devnum(fd);
if (st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
st->loaded_container = 1;
return 0;
}
#endif
static int load_super_imsm(struct supertype *st, int fd, char *devname)
{
struct intel_super *super;
int rv;
#ifndef MDASSEMBLE
if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
return 0;
#endif
if (st->subarray[0])
return 1; /* FIXME */
super = alloc_super(0);
if (!super) {
fprintf(stderr,
Name ": malloc of %zu failed.\n",
sizeof(*super));
return 1;
}
rv = load_imsm_mpb(fd, super, devname);
if (rv) {
if (devname)
fprintf(stderr,
Name ": Failed to load all information "
"sections on %s\n", devname);
free_imsm(super);
return rv;
}
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
st->loaded_container = 0;
return 0;
}
static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
{
if (info->level == 1)
return 128;
return info->chunk_size >> 9;
}
static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
{
__u32 num_stripes;
num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
if (info->level == 1)
num_stripes /= 2;
return num_stripes;
}
static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
{
return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
}
static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
/* We are creating a volume inside a pre-existing container.
* so st->sb is already set.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct imsm_dev *dev;
struct imsm_vol *vol;
struct imsm_map *map;
int idx = mpb->num_raid_devs;
int i;
unsigned long long array_blocks;
__u32 offset = 0;
size_t size_old, size_new;
if (mpb->num_raid_devs >= 2) {
fprintf(stderr, Name": This imsm-container already has the "
"maximum of 2 volumes\n");
return 0;
}
/* ensure the mpb is large enough for the new data */
size_old = __le32_to_cpu(mpb->mpb_size);
size_new = disks_to_mpb_size(info->nr_disks);
if (size_new > size_old) {
void *mpb_new;
size_t size_round = ROUND_UP(size_new, 512);
if (posix_memalign(&mpb_new, 512, size_round) != 0) {
fprintf(stderr, Name": could not allocate new mpb\n");
return 0;
}
memcpy(mpb_new, mpb, size_old);
free(mpb);
mpb = mpb_new;
super->anchor = mpb_new;
mpb->mpb_size = __cpu_to_le32(size_new);
memset(mpb_new + size_old, 0, size_round - size_old);
}
super->current_vol = idx;
/* when creating the first raid device in this container set num_disks
* to zero, i.e. delete this spare and add raid member devices in
* add_to_super_imsm_volume()
*/
if (super->current_vol == 0)
mpb->num_disks = 0;
sprintf(st->subarray, "%d", idx);
dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
if (!dev) {
fprintf(stderr, Name": could not allocate raid device\n");
return 0;
}
strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
array_blocks = calc_array_size(info->level, info->raid_disks,
info->layout, info->chunk_size,
info->size*2);
dev->size_low = __cpu_to_le32((__u32) array_blocks);
dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
dev->status = __cpu_to_le32(0);
dev->reserved_blocks = __cpu_to_le32(0);
vol = &dev->vol;
vol->migr_state = 0;
vol->migr_type = 0;
vol->dirty = 0;
vol->curr_migr_unit = 0;
for (i = 0; i < idx; i++) {
struct imsm_dev *prev = get_imsm_dev(super, i);
struct imsm_map *pmap = get_imsm_map(prev, 0);
offset += __le32_to_cpu(pmap->blocks_per_member);
offset += IMSM_RESERVED_SECTORS;
}
map = get_imsm_map(dev, 0);
map->pba_of_lba0 = __cpu_to_le32(offset);
map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
IMSM_T_STATE_NORMAL;
if (info->level == 1 && info->raid_disks > 2) {
fprintf(stderr, Name": imsm does not support more than 2 disks"
"in a raid1 volume\n");
return 0;
}
if (info->level == 10)
map->raid_level = 1;
else
map->raid_level = info->level;
map->num_members = info->raid_disks;
for (i = 0; i < map->num_members; i++) {
/* initialized in add_to_super */
set_imsm_ord_tbl_ent(map, i, 0);
}
mpb->num_raid_devs++;
super->dev_tbl[super->current_vol] = dev;
return 1;
}
static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
/* This is primarily called by Create when creating a new array.
* We will then get add_to_super called for each component, and then
* write_init_super called to write it out to each device.
* For IMSM, Create can create on fresh devices or on a pre-existing
* array.
* To create on a pre-existing array a different method will be called.
* This one is just for fresh drives.
*/
struct intel_super *super;
struct imsm_super *mpb;
size_t mpb_size;
if (!info) {
st->sb = NULL;
return 0;
}
if (st->sb)
return init_super_imsm_volume(st, info, size, name, homehost,
uuid);
super = alloc_super(1);
if (!super)
return 0;
mpb_size = disks_to_mpb_size(info->nr_disks);
if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
free(super);
return 0;
}
mpb = super->buf;
memset(mpb, 0, mpb_size);
memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
strlen(MPB_VERSION_RAID5));
mpb->mpb_size = mpb_size;
st->sb = super;
return 1;
}
#ifndef MDASSEMBLE
static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
struct imsm_dev *dev;
struct imsm_map *map;
__u32 status;
dev = get_imsm_dev(super, super->current_vol);
map = get_imsm_map(dev, 0);
for (dl = super->disks; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
return;
/* add a pristine spare to the metadata */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
set_imsm_ord_tbl_ent(map, dk->number, dl->index);
status = CONFIGURED_DISK | USABLE_DISK;
dl->disk.status = __cpu_to_le32(status);
/* if we are creating the first raid device update the family number */
if (super->current_vol == 0) {
__u32 sum;
struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
*_dev = *dev;
*_disk = dl->disk;
sum = __gen_imsm_checksum(mpb);
mpb->family_num = __cpu_to_le32(sum);
}
}
static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct intel_super *super = st->sb;
struct dl *dd;
unsigned long long size;
__u32 status, id;
int rv;
struct stat stb;
if (super->current_vol >= 0) {
add_to_super_imsm_volume(st, dk, fd, devname);
return;
}
fstat(fd, &stb);
dd = malloc(sizeof(*dd));
if (!dd) {
fprintf(stderr,
Name ": malloc failed %s:%d.\n", __func__, __LINE__);
abort();
}
memset(dd, 0, sizeof(*dd));
dd->major = major(stb.st_rdev);
dd->minor = minor(stb.st_rdev);
dd->index = -1;
dd->devname = devname ? strdup(devname) : NULL;
dd->fd = fd;
rv = imsm_read_serial(fd, devname, dd->serial);
if (rv) {
fprintf(stderr,
Name ": failed to retrieve scsi serial, aborting\n");
free(dd);
abort();
}
get_dev_size(fd, NULL, &size);
size /= 512;
status = USABLE_DISK | SPARE_DISK;
serialcpy(dd->disk.serial, dd->serial);
dd->disk.total_blocks = __cpu_to_le32(size);
dd->disk.status = __cpu_to_le32(status);
if (sysfs_disk_to_scsi_id(fd, &id) == 0)
dd->disk.scsi_id = __cpu_to_le32(id);
else
dd->disk.scsi_id = __cpu_to_le32(0);
if (st->update_tail) {
dd->next = super->add;
super->add = dd;
} else {
dd->next = super->disks;
super->disks = dd;
}
}
static int store_imsm_mpb(int fd, struct intel_super *super);
/* spare records have their own family number and do not have any defined raid
* devices
*/
static int write_super_imsm_spares(struct intel_super *super, int doclose)
{
struct imsm_super mpb_save;
struct imsm_super *mpb = super->anchor;
__u32 sum;
struct dl *d;
mpb_save = *mpb;
mpb->num_raid_devs = 0;
mpb->num_disks = 1;
mpb->mpb_size = sizeof(struct imsm_super);
mpb->generation_num = __cpu_to_le32(1UL);
for (d = super->disks; d; d = d->next) {
if (d->index != -1)
continue;
mpb->disk[0] = d->disk;
sum = __gen_imsm_checksum(mpb);
mpb->family_num = __cpu_to_le32(sum);
sum = __gen_imsm_checksum(mpb);
mpb->check_sum = __cpu_to_le32(sum);
if (store_imsm_mpb(d->fd, super)) {
fprintf(stderr, "%s: failed for device %d:%d %s\n",
__func__, d->major, d->minor, strerror(errno));
*mpb = mpb_save;
return 1;
}
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
*mpb = mpb_save;
return 0;
}
static int write_super_imsm(struct intel_super *super, int doclose)
{
struct imsm_super *mpb = super->anchor;
struct dl *d;
__u32 generation;
__u32 sum;
int spares = 0;
int i;
__u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
/* 'generation' is incremented everytime the metadata is written */
generation = __le32_to_cpu(mpb->generation_num);
generation++;
mpb->generation_num = __cpu_to_le32(generation);
mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
for (d = super->disks; d; d = d->next) {
if (d->index == -1)
spares++;
else
mpb->disk[d->index] = d->disk;
}
for (d = super->missing; d; d = d->next)
mpb->disk[d->index] = d->disk;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
imsm_copy_dev(dev, super->dev_tbl[i]);
mpb_size += sizeof_imsm_dev(dev, 0);
}
mpb_size += __le32_to_cpu(mpb->bbm_log_size);
mpb->mpb_size = __cpu_to_le32(mpb_size);
/* recalculate checksum */
sum = __gen_imsm_checksum(mpb);
mpb->check_sum = __cpu_to_le32(sum);
/* write the mpb for disks that compose raid devices */
for (d = super->disks; d ; d = d->next) {
if (d->index < 0)
continue;
if (store_imsm_mpb(d->fd, super))
fprintf(stderr, "%s: failed for device %d:%d %s\n",
__func__, d->major, d->minor, strerror(errno));
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
if (spares)
return write_super_imsm_spares(super, doclose);
return 0;
}
static int create_array(struct supertype *st)
{
size_t len;
struct imsm_update_create_array *u;
struct intel_super *super = st->sb;
struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
u = malloc(len);
if (!u) {
fprintf(stderr, "%s: failed to allocate update buffer\n",
__func__);
return 1;
}
u->type = update_create_array;
u->dev_idx = super->current_vol;
imsm_copy_dev(&u->dev, dev);
append_metadata_update(st, u, len);
return 0;
}
static int _add_disk(struct supertype *st)
{
struct intel_super *super = st->sb;
size_t len;
struct imsm_update_add_disk *u;
if (!super->add)
return 0;
len = sizeof(*u);
u = malloc(len);
if (!u) {
fprintf(stderr, "%s: failed to allocate update buffer\n",
__func__);
return 1;
}
u->type = update_add_disk;
append_metadata_update(st, u, len);
return 0;
}
static int write_init_super_imsm(struct supertype *st)
{
if (st->update_tail) {
/* queue the recently created array / added disk
* as a metadata update */
struct intel_super *super = st->sb;
struct dl *d;
int rv;
/* determine if we are creating a volume or adding a disk */
if (super->current_vol < 0) {
/* in the add disk case we are running in mdmon
* context, so don't close fd's
*/
return _add_disk(st);
} else
rv = create_array(st);
for (d = super->disks; d ; d = d->next) {
close(d->fd);
d->fd = -1;
}
return rv;
} else
return write_super_imsm(st->sb, 1);
}
#endif
static int store_zero_imsm(struct supertype *st, int fd)
{
unsigned long long dsize;
void *buf;
get_dev_size(fd, NULL, &dsize);
/* first block is stored on second to last sector of the disk */
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
return 1;
if (posix_memalign(&buf, 512, 512) != 0)
return 1;
memset(buf, 0, 512);
if (write(fd, buf, 512) != 512)
return 1;
return 0;
}
static int imsm_bbm_log_size(struct imsm_super *mpb)
{
return __le32_to_cpu(mpb->bbm_log_size);
}
#ifndef MDASSEMBLE
static int validate_geometry_imsm_container(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size, char *dev,
unsigned long long *freesize,
int verbose)
{
int fd;
unsigned long long ldsize;
if (level != LEVEL_CONTAINER)
return 0;
if (!dev)
return 1;
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, dev, &ldsize)) {
close(fd);
return 0;
}
close(fd);
*freesize = avail_size_imsm(st, ldsize >> 9);
return 1;
}
/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
* FIX ME add ahci details
*/
static int validate_geometry_imsm_volume(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size, char *dev,
unsigned long long *freesize,
int verbose)
{
struct stat stb;
struct intel_super *super = st->sb;
struct dl *dl;
unsigned long long pos = 0;
unsigned long long maxsize;
struct extent *e;
int i;
if (level == LEVEL_CONTAINER)
return 0;
if (level == 1 && raiddisks > 2) {
if (verbose)
fprintf(stderr, Name ": imsm does not support more "
"than 2 in a raid1 configuration\n");
return 0;
}
/* We must have the container info already read in. */
if (!super)
return 0;
if (!dev) {
/* General test: make sure there is space for
* 'raiddisks' device extents of size 'size' at a given
* offset
*/
unsigned long long minsize = size*2 /* convert to blocks */;
unsigned long long start_offset = ~0ULL;
int dcnt = 0;
if (minsize == 0)
minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
for (dl = super->disks; dl ; dl = dl->next) {
int found = 0;
pos = 0;
i = 0;
e = get_extents(super, dl);
if (!e) continue;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= minsize)
found = 1;
if (found && start_offset == ~0ULL) {
start_offset = pos;
break;
} else if (found && pos != start_offset) {
found = 0;
break;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
if (found)
dcnt++;
free(e);
}
if (dcnt < raiddisks) {
if (verbose)
fprintf(stderr, Name ": imsm: Not enough "
"devices with space for this array "
"(%d < %d)\n",
dcnt, raiddisks);
return 0;
}
return 1;
}
/* This device must be a member of the set */
if (stat(dev, &stb) < 0)
return 0;
if ((S_IFMT & stb.st_mode) != S_IFBLK)
return 0;
for (dl = super->disks ; dl ; dl = dl->next) {
if (dl->major == major(stb.st_rdev) &&
dl->minor == minor(stb.st_rdev))
break;
}
if (!dl) {
if (verbose)
fprintf(stderr, Name ": %s is not in the "
"same imsm set\n", dev);
return 0;
}
e = get_extents(super, dl);
maxsize = 0;
i = 0;
if (e) do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize)
maxsize = esize;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
*freesize = maxsize;
return 1;
}
static int validate_geometry_imsm(struct supertype *st, int level, int layout,
int raiddisks, int chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose)
{
int fd, cfd;
struct mdinfo *sra;
/* if given unused devices create a container
* if given given devices in a container create a member volume
*/
if (level == LEVEL_CONTAINER) {
/* Must be a fresh device to add to a container */
return validate_geometry_imsm_container(st, level, layout,
raiddisks, chunk, size,
dev, freesize,
verbose);
}
if (st->sb) {
/* creating in a given container */
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk, size,
dev, freesize, verbose);
}
/* limit creation to the following levels */
if (!dev)
switch (level) {
case 0:
case 1:
case 10:
case 5:
break;
default:
return 1;
}
/* This device needs to be a device in an 'imsm' container */
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd >= 0) {
if (verbose)
fprintf(stderr,
Name ": Cannot create this array on device %s\n",
dev);
close(fd);
return 0;
}
if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
if (verbose)
fprintf(stderr, Name ": Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
/* Well, it is in use by someone, maybe an 'imsm' container. */
cfd = open_container(fd);
if (cfd < 0) {
close(fd);
if (verbose)
fprintf(stderr, Name ": Cannot use %s: It is busy\n",
dev);
return 0;
}
sra = sysfs_read(cfd, 0, GET_VERSION);
close(fd);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "imsm") == 0) {
/* This is a member of a imsm container. Load the container
* and try to create a volume
*/
struct intel_super *super;
if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
st->sb = super;
st->container_dev = fd2devnum(cfd);
close(cfd);
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk,
size, dev,
freesize, verbose);
}
close(cfd);
} else /* may belong to another container */
return 0;
return 1;
}
#endif /* MDASSEMBLE */
static struct mdinfo *container_content_imsm(struct supertype *st)
{
/* Given a container loaded by load_super_imsm_all,
* extract information about all the arrays into
* an mdinfo tree.
*
* For each imsm_dev create an mdinfo, fill it in,
* then look for matching devices in super->disks
* and create appropriate device mdinfo.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct mdinfo *rest = NULL;
int i;
/* do not assemble arrays that might have bad blocks */
if (imsm_bbm_log_size(super->anchor)) {
fprintf(stderr, Name ": BBM log found in metadata. "
"Cannot activate array(s).\n");
return NULL;
}
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
struct mdinfo *this;
int slot;
this = malloc(sizeof(*this));
memset(this, 0, sizeof(*this));
this->next = rest;
super->current_vol = i;
getinfo_super_imsm_volume(st, this);
for (slot = 0 ; slot < map->num_members; slot++) {
struct mdinfo *info_d;
struct dl *d;
int idx;
int skip;
__u32 s;
__u32 ord;
skip = 0;
idx = get_imsm_disk_idx(dev, slot);
ord = get_imsm_ord_tbl_ent(dev, slot);
for (d = super->disks; d ; d = d->next)
if (d->index == idx)
break;
if (d == NULL)
skip = 1;
s = d ? __le32_to_cpu(d->disk.status) : 0;
if (s & FAILED_DISK)
skip = 1;
if (!(s & USABLE_DISK))
skip = 1;
if (ord & IMSM_ORD_REBUILD)
skip = 1;
/*
* if we skip some disks the array will be assmebled degraded;
* reset resync start to avoid a dirty-degraded situation
*
* FIXME handle dirty degraded
*/
if (skip && !dev->vol.dirty)
this->resync_start = ~0ULL;
if (skip)
continue;
info_d = malloc(sizeof(*info_d));
if (!info_d) {
fprintf(stderr, Name ": failed to allocate disk"
" for volume %s\n", (char *) dev->volume);
free(this);
this = rest;
break;
}
memset(info_d, 0, sizeof(*info_d));
info_d->next = this->devs;
this->devs = info_d;
info_d->disk.number = d->index;
info_d->disk.major = d->major;
info_d->disk.minor = d->minor;
info_d->disk.raid_disk = slot;
this->array.working_disks++;
info_d->events = __le32_to_cpu(mpb->generation_num);
info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
info_d->component_size = __le32_to_cpu(map->blocks_per_member);
if (d->devname)
strcpy(info_d->name, d->devname);
}
rest = this;
}
return rest;
}
#ifndef MDASSEMBLE
static int imsm_open_new(struct supertype *c, struct active_array *a,
char *inst)
{
struct intel_super *super = c->sb;
struct imsm_super *mpb = super->anchor;
if (atoi(inst) >= mpb->num_raid_devs) {
fprintf(stderr, "%s: subarry index %d, out of range\n",
__func__, atoi(inst));
return -ENODEV;
}
dprintf("imsm: open_new %s\n", inst);
a->info.container_member = atoi(inst);
return 0;
}
static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
{
struct imsm_map *map = get_imsm_map(dev, 0);
if (!failed)
return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
switch (get_imsm_raid_level(map)) {
case 0:
return IMSM_T_STATE_FAILED;
break;
case 1:
if (failed < map->num_members)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
case 10:
{
/**
* check to see if any mirrors have failed, otherwise we
* are degraded. Even numbered slots are mirrored on
* slot+1
*/
int i;
/* gcc -Os complains that this is unused */
int insync = insync;
for (i = 0; i < map->num_members; i++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, i);
int idx = ord_to_idx(ord);
struct imsm_disk *disk;
/* reset the potential in-sync count on even-numbered
* slots. num_copies is always 2 for imsm raid10
*/
if ((i & 1) == 0)
insync = 2;
disk = get_imsm_disk(super, idx);
if (!disk ||
__le32_to_cpu(disk->status) & FAILED_DISK ||
ord & IMSM_ORD_REBUILD)
insync--;
/* no in-sync disks left in this mirror the
* array has failed
*/
if (insync == 0)
return IMSM_T_STATE_FAILED;
}
return IMSM_T_STATE_DEGRADED;
}
case 5:
if (failed < 2)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
default:
break;
}
return map->map_state;
}
static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
{
int i;
int failed = 0;
struct imsm_disk *disk;
struct imsm_map *map = get_imsm_map(dev, 0);
for (i = 0; i < map->num_members; i++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, i);
int idx = ord_to_idx(ord);
disk = get_imsm_disk(super, idx);
if (!disk ||
__le32_to_cpu(disk->status) & FAILED_DISK ||
ord & IMSM_ORD_REBUILD)
failed++;
}
return failed;
}
static int is_resyncing(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (dev->vol.migr_type == 0)
return 1;
migr_map = get_imsm_map(dev, 1);
if (migr_map->map_state == IMSM_T_STATE_NORMAL)
return 1;
else
return 0;
}
static int is_rebuilding(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (dev->vol.migr_type == 0)
return 0;
migr_map = get_imsm_map(dev, 1);
if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
return 1;
else
return 0;
}
static void mark_failure(struct imsm_disk *disk)
{
__u32 status = __le32_to_cpu(disk->status);
if (status & FAILED_DISK)
return;
status |= FAILED_DISK;
disk->status = __cpu_to_le32(status);
disk->scsi_id = __cpu_to_le32(~(__u32)0);
memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
}
/* Handle dirty -> clean transititions and resync. Degraded and rebuild
* states are handled in imsm_set_disk() with one exception, when a
* resync is stopped due to a new failure this routine will set the
* 'degraded' state for the array.
*/
static int imsm_set_array_state(struct active_array *a, int consistent)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
int failed = imsm_count_failed(super, dev);
__u8 map_state = imsm_check_degraded(super, dev, failed);
/* before we activate this array handle any missing disks */
if (consistent == 2 && super->missing) {
struct dl *dl;
dprintf("imsm: mark missing\n");
end_migration(dev, map_state);
for (dl = super->missing; dl; dl = dl->next)
mark_failure(&dl->disk);
super->updates_pending++;
}
if (consistent == 2 &&
(!is_resync_complete(a) ||
map_state != IMSM_T_STATE_NORMAL ||
dev->vol.migr_state))
consistent = 0;
if (is_resync_complete(a)) {
/* complete intialization / resync,
* recovery is completed in ->set_disk
*/
if (is_resyncing(dev)) {
dprintf("imsm: mark resync done\n");
end_migration(dev, map_state);
super->updates_pending++;
}
} else if (!is_resyncing(dev) && !failed) {
/* mark the start of the init process if nothing is failed */
dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
map->map_state = map_state;
migrate(dev, IMSM_T_STATE_NORMAL,
map->map_state == IMSM_T_STATE_NORMAL);
super->updates_pending++;
}
/* check if we can update the migration checkpoint */
if (dev->vol.migr_state &&
__le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
super->updates_pending++;
}
/* mark dirty / clean */
if (dev->vol.dirty != !consistent) {
dprintf("imsm: mark '%s' (%llu)\n",
consistent ? "clean" : "dirty", a->resync_start);
if (consistent)
dev->vol.dirty = 0;
else
dev->vol.dirty = 1;
super->updates_pending++;
}
return consistent;
}
static void imsm_set_disk(struct active_array *a, int n, int state)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_disk *disk;
int failed;
__u32 status;
__u32 ord;
__u8 map_state;
if (n > map->num_members)
fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
n, map->num_members - 1);
if (n < 0)
return;
dprintf("imsm: set_disk %d:%x\n", n, state);
ord = get_imsm_ord_tbl_ent(dev, n);
disk = get_imsm_disk(super, ord_to_idx(ord));
/* check for new failures */
status = __le32_to_cpu(disk->status);
if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
mark_failure(disk);
super->updates_pending++;
}
/* check if in_sync */
if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
struct imsm_map *migr_map = get_imsm_map(dev, 1);
set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
super->updates_pending++;
}
failed = imsm_count_failed(super, dev);
map_state = imsm_check_degraded(super, dev, failed);
/* check if recovery complete, newly degraded, or failed */
if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
end_migration(dev, map_state);
super->updates_pending++;
} else if (map_state == IMSM_T_STATE_DEGRADED &&
map->map_state != map_state &&
!dev->vol.migr_state) {
dprintf("imsm: mark degraded\n");
map->map_state = map_state;
super->updates_pending++;
} else if (map_state == IMSM_T_STATE_FAILED &&
map->map_state != map_state) {
dprintf("imsm: mark failed\n");
end_migration(dev, map_state);
super->updates_pending++;
}
}
static int store_imsm_mpb(int fd, struct intel_super *super)
{
struct imsm_super *mpb = super->anchor;
__u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
unsigned long long dsize;
unsigned long long sectors;
get_dev_size(fd, NULL, &dsize);
if (mpb_size > 512) {
/* -1 to account for anchor */
sectors = mpb_sectors(mpb) - 1;
/* write the extended mpb to the sectors preceeding the anchor */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
return 1;
if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
return 1;
}
/* first block is stored on second to last sector of the disk */
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
return 1;
if (write(fd, super->buf, 512) != 512)
return 1;
return 0;
}
static void imsm_sync_metadata(struct supertype *container)
{
struct intel_super *super = container->sb;
if (!super->updates_pending)
return;
write_super_imsm(super, 0);
super->updates_pending = 0;
}
static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int i = get_imsm_disk_idx(dev, idx);
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (dl->index == i)
break;
if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
dl = NULL;
if (dl)
dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
return dl;
}
static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int idx = get_imsm_disk_idx(dev, slot);
struct imsm_map *map = get_imsm_map(dev, 0);
unsigned long long esize;
unsigned long long pos;
struct mdinfo *d;
struct extent *ex;
int j;
int found;
__u32 array_start;
__u32 status;
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next) {
/* If in this array, skip */
for (d = a->info.devs ; d ; d = d->next)
if (d->state_fd >= 0 &&
d->disk.major == dl->major &&
d->disk.minor == dl->minor) {
dprintf("%x:%x already in array\n", dl->major, dl->minor);
break;
}
if (d)
continue;
/* skip in use or failed drives */
status = __le32_to_cpu(dl->disk.status);
if (status & FAILED_DISK || idx == dl->index) {
dprintf("%x:%x status ( %s%s)\n",
dl->major, dl->minor,
status & FAILED_DISK ? "failed " : "",
idx == dl->index ? "in use " : "");
continue;
}
/* Does this unused device have the requisite free space?
* We need a->info.component_size sectors
*/
ex = get_extents(super, dl);
if (!ex) {
dprintf("cannot get extents\n");
continue;
}
found = 0;
j = 0;
pos = 0;
array_start = __le32_to_cpu(map->pba_of_lba0);
do {
/* check that we can start at pba_of_lba0 with
* a->info.component_size of space
*/
esize = ex[j].start - pos;
if (array_start >= pos &&
array_start + a->info.component_size < ex[j].start) {
found = 1;
break;
}
pos = ex[j].start + ex[j].size;
j++;
} while (ex[j-1].size);
free(ex);
if (!found) {
dprintf("%x:%x does not have %llu at %d\n",
dl->major, dl->minor,
a->info.component_size,
__le32_to_cpu(map->pba_of_lba0));
/* No room */
continue;
} else
break;
}
return dl;
}
static struct mdinfo *imsm_activate_spare(struct active_array *a,
struct metadata_update **updates)
{
/**
* Find a device with unused free space and use it to replace a
* failed/vacant region in an array. We replace failed regions one a
* array at a time. The result is that a new spare disk will be added
* to the first failed array and after the monitor has finished
* propagating failures the remainder will be consumed.
*
* FIXME add a capability for mdmon to request spares from another
* container.
*/
struct intel_super *super = a->container->sb;
int inst = a->info.container_member;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
int failed = a->info.array.raid_disks;
struct mdinfo *rv = NULL;
struct mdinfo *d;
struct mdinfo *di;
struct metadata_update *mu;
struct dl *dl;
struct imsm_update_activate_spare *u;
int num_spares = 0;
int i;
for (d = a->info.devs ; d ; d = d->next) {
if ((d->curr_state & DS_FAULTY) &&
d->state_fd >= 0)
/* wait for Removal to happen */
return NULL;
if (d->state_fd >= 0)
failed--;
}
dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
inst, failed, a->info.array.raid_disks, a->info.array.level);
if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
return NULL;
/* For each slot, if it is not working, find a spare */
for (i = 0; i < a->info.array.raid_disks; i++) {
for (d = a->info.devs ; d ; d = d->next)
if (d->disk.raid_disk == i)
break;
dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
if (d && (d->state_fd >= 0))
continue;
/*
* OK, this device needs recovery. Try to re-add the previous
* occupant of this slot, if this fails add a new spare
*/
dl = imsm_readd(super, i, a);
if (!dl)
dl = imsm_add_spare(super, i, a);
if (!dl)
continue;
/* found a usable disk with enough space */
di = malloc(sizeof(*di));
if (!di)
continue;
memset(di, 0, sizeof(*di));
/* dl->index will be -1 in the case we are activating a
* pristine spare. imsm_process_update() will create a
* new index in this case. Once a disk is found to be
* failed in all member arrays it is kicked from the
* metadata
*/
di->disk.number = dl->index;
/* (ab)use di->devs to store a pointer to the device
* we chose
*/
di->devs = (struct mdinfo *) dl;
di->disk.raid_disk = i;
di->disk.major = dl->major;
di->disk.minor = dl->minor;
di->disk.state = 0;
di->data_offset = __le32_to_cpu(map->pba_of_lba0);
di->component_size = a->info.component_size;
di->container_member = inst;
di->next = rv;
rv = di;
num_spares++;
dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
i, di->data_offset);
break;
}
if (!rv)
/* No spares found */
return rv;
/* Now 'rv' has a list of devices to return.
* Create a metadata_update record to update the
* disk_ord_tbl for the array
*/
mu = malloc(sizeof(*mu));
if (mu) {
mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
if (mu->buf == NULL) {
free(mu);
mu = NULL;
}
}
if (!mu) {
while (rv) {
struct mdinfo *n = rv->next;
free(rv);
rv = n;
}
return NULL;
}
mu->space = NULL;
mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
mu->next = *updates;
u = (struct imsm_update_activate_spare *) mu->buf;
for (di = rv ; di ; di = di->next) {
u->type = update_activate_spare;
u->dl = (struct dl *) di->devs;
di->devs = NULL;
u->slot = di->disk.raid_disk;
u->array = inst;
u->next = u + 1;
u++;
}
(u-1)->next = NULL;
*updates = mu;
return rv;
}
static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
{
struct imsm_map *m1 = get_imsm_map(d1, 0);
struct imsm_map *m2 = get_imsm_map(d2, 0);
int i;
int j;
int idx;
for (i = 0; i < m1->num_members; i++) {
idx = get_imsm_disk_idx(d1, i);
for (j = 0; j < m2->num_members; j++)
if (idx == get_imsm_disk_idx(d2, j))
return 1;
}
return 0;
}
static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
static void imsm_process_update(struct supertype *st,
struct metadata_update *update)
{
/**
* crack open the metadata_update envelope to find the update record
* update can be one of:
* update_activate_spare - a spare device has replaced a failed
* device in an array, update the disk_ord_tbl. If this disk is
* present in all member arrays then also clear the SPARE_DISK
* flag
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb;
enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
/* update requires a larger buf but the allocation failed */
if (super->next_len && !super->next_buf) {
super->next_len = 0;
return;
}
if (super->next_buf) {
memcpy(super->next_buf, super->buf, super->len);
free(super->buf);
super->len = super->next_len;
super->buf = super->next_buf;
super->next_len = 0;
super->next_buf = NULL;
}
mpb = super->anchor;
switch (type) {
case update_activate_spare: {
struct imsm_update_activate_spare *u = (void *) update->buf;
struct imsm_dev *dev = get_imsm_dev(super, u->array);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *migr_map;
struct active_array *a;
struct imsm_disk *disk;
__u32 status;
__u8 to_state;
struct dl *dl;
unsigned int found;
int failed;
int victim = get_imsm_disk_idx(dev, u->slot);
int i;
for (dl = super->disks; dl; dl = dl->next)
if (dl == u->dl)
break;
if (!dl) {
fprintf(stderr, "error: imsm_activate_spare passed "
"an unknown disk (index: %d)\n",
u->dl->index);
return;
}
super->updates_pending++;
/* count failures (excluding rebuilds and the victim)
* to determine map[0] state
*/
failed = 0;
for (i = 0; i < map->num_members; i++) {
if (i == u->slot)
continue;
disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
if (!disk ||
__le32_to_cpu(disk->status) & FAILED_DISK)
failed++;
}
/* adding a pristine spare, assign a new index */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
disk = &dl->disk;
status = __le32_to_cpu(disk->status);
status |= CONFIGURED_DISK;
status &= ~SPARE_DISK;
disk->status = __cpu_to_le32(status);
/* mark rebuild */
to_state = imsm_check_degraded(super, dev, failed);
map->map_state = IMSM_T_STATE_DEGRADED;
migrate(dev, to_state, 1);
migr_map = get_imsm_map(dev, 1);
set_imsm_ord_tbl_ent(map, u->slot, dl->index);
set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
/* count arrays using the victim in the metadata */
found = 0;
for (a = st->arrays; a ; a = a->next) {
dev = get_imsm_dev(super, a->info.container_member);
for (i = 0; i < map->num_members; i++)
if (victim == get_imsm_disk_idx(dev, i))
found++;
}
/* delete the victim if it is no longer being
* utilized anywhere
*/
if (!found) {
struct dl **dlp;
/* We know that 'manager' isn't touching anything,
* so it is safe to delete
*/
for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
/* victim may be on the missing list */
if (!*dlp)
for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
imsm_delete(super, dlp, victim);
}
break;
}
case update_create_array: {
/* someone wants to create a new array, we need to be aware of
* a few races/collisions:
* 1/ 'Create' called by two separate instances of mdadm
* 2/ 'Create' versus 'activate_spare': mdadm has chosen
* devices that have since been assimilated via
* activate_spare.
* In the event this update can not be carried out mdadm will
* (FIX ME) notice that its update did not take hold.
*/
struct imsm_update_create_array *u = (void *) update->buf;
struct imsm_dev *dev;
struct imsm_map *map, *new_map;
unsigned long long start, end;
unsigned long long new_start, new_end;
int i;
int overlap = 0;
/* handle racing creates: first come first serve */
if (u->dev_idx < mpb->num_raid_devs) {
dprintf("%s: subarray %d already defined\n",
__func__, u->dev_idx);
return;
}
/* check update is next in sequence */
if (u->dev_idx != mpb->num_raid_devs) {
dprintf("%s: can not create array %d expected index %d\n",
__func__, u->dev_idx, mpb->num_raid_devs);
return;
}
new_map = get_imsm_map(&u->dev, 0);
new_start = __le32_to_cpu(new_map->pba_of_lba0);
new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
/* handle activate_spare versus create race:
* check to make sure that overlapping arrays do not include
* overalpping disks
*/
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
start = __le32_to_cpu(map->pba_of_lba0);
end = start + __le32_to_cpu(map->blocks_per_member);
if ((new_start >= start && new_start <= end) ||
(start >= new_start && start <= new_end))
overlap = 1;
if (overlap && disks_overlap(dev, &u->dev)) {
dprintf("%s: arrays overlap\n", __func__);
return;
}
}
/* check num_members sanity */
if (new_map->num_members > mpb->num_disks) {
dprintf("%s: num_disks out of range\n", __func__);
return;
}
/* check that prepare update was successful */
if (!update->space) {
dprintf("%s: prepare update failed\n", __func__);
return;
}
super->updates_pending++;
dev = update->space;
map = get_imsm_map(dev, 0);
update->space = NULL;
imsm_copy_dev(dev, &u->dev);
map = get_imsm_map(dev, 0);
super->dev_tbl[u->dev_idx] = dev;
mpb->num_raid_devs++;
/* fix up flags */
for (i = 0; i < map->num_members; i++) {
struct imsm_disk *disk;
__u32 status;
disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
status = __le32_to_cpu(disk->status);
status |= CONFIGURED_DISK;
status &= ~SPARE_DISK;
disk->status = __cpu_to_le32(status);
}
break;
}
case update_add_disk:
/* we may be able to repair some arrays if disks are
* being added */
if (super->add) {
struct active_array *a;
super->updates_pending++;
for (a = st->arrays; a; a = a->next)
a->check_degraded = 1;
}
/* add some spares to the metadata */
while (super->add) {
struct dl *al;
al = super->add;
super->add = al->next;
al->next = super->disks;
super->disks = al;
dprintf("%s: added %x:%x\n",
__func__, al->major, al->minor);
}
break;
}
}
static void imsm_prepare_update(struct supertype *st,
struct metadata_update *update)
{
/**
* Allocate space to hold new disk entries, raid-device entries or a new
* mpb if necessary. The manager synchronously waits for updates to
* complete in the monitor, so new mpb buffers allocated here can be
* integrated by the monitor thread without worrying about live pointers
* in the manager thread.
*/
enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
size_t buf_len;
size_t len = 0;
switch (type) {
case update_create_array: {
struct imsm_update_create_array *u = (void *) update->buf;
len = sizeof_imsm_dev(&u->dev, 1);
update->space = malloc(len);
break;
default:
break;
}
}
/* check if we need a larger metadata buffer */
if (super->next_buf)
buf_len = super->next_len;
else
buf_len = super->len;
if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
/* ok we need a larger buf than what is currently allocated
* if this allocation fails process_update will notice that
* ->next_len is set and ->next_buf is NULL
*/
buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
if (super->next_buf)
free(super->next_buf);
super->next_len = buf_len;
if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
super->next_buf = NULL;
}
}
/* must be called while manager is quiesced */
static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
{
struct imsm_super *mpb = super->anchor;
struct dl *iter;
struct imsm_dev *dev;
struct imsm_map *map;
int i, j, num_members;
__u32 ord;
dprintf("%s: deleting device[%d] from imsm_super\n",
__func__, index);
/* shift all indexes down one */
for (iter = super->disks; iter; iter = iter->next)
if (iter->index > index)
iter->index--;
for (iter = super->missing; iter; iter = iter->next)
if (iter->index > index)
iter->index--;
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
num_members = map->num_members;
for (j = 0; j < num_members; j++) {
/* update ord entries being careful not to propagate
* ord-flags to the first map
*/
ord = get_imsm_ord_tbl_ent(dev, j);
if (ord_to_idx(ord) <= index)
continue;
map = get_imsm_map(dev, 0);
set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
map = get_imsm_map(dev, 1);
if (map)
set_imsm_ord_tbl_ent(map, j, ord - 1);
}
}
mpb->num_disks--;
super->updates_pending++;
if (*dlp) {
struct dl *dl = *dlp;
*dlp = (*dlp)->next;
__free_imsm_disk(dl);
}
}
#endif /* MDASSEMBLE */
struct superswitch super_imsm = {
#ifndef MDASSEMBLE
.examine_super = examine_super_imsm,
.brief_examine_super = brief_examine_super_imsm,
.detail_super = detail_super_imsm,
.brief_detail_super = brief_detail_super_imsm,
.write_init_super = write_init_super_imsm,
.validate_geometry = validate_geometry_imsm,
.add_to_super = add_to_super_imsm,
#endif
.match_home = match_home_imsm,
.uuid_from_super= uuid_from_super_imsm,
.getinfo_super = getinfo_super_imsm,
.update_super = update_super_imsm,
.avail_size = avail_size_imsm,
.compare_super = compare_super_imsm,
.load_super = load_super_imsm,
.init_super = init_super_imsm,
.store_super = store_zero_imsm,
.free_super = free_super_imsm,
.match_metadata_desc = match_metadata_desc_imsm,
.container_content = container_content_imsm,
.external = 1,
#ifndef MDASSEMBLE
/* for mdmon */
.open_new = imsm_open_new,
.load_super = load_super_imsm,
.set_array_state= imsm_set_array_state,
.set_disk = imsm_set_disk,
.sync_metadata = imsm_sync_metadata,
.activate_spare = imsm_activate_spare,
.process_update = imsm_process_update,
.prepare_update = imsm_prepare_update,
#endif /* MDASSEMBLE */
};