mdadm/super-intel.c

7419 lines
188 KiB
C

/*
* mdadm - Intel(R) Matrix Storage Manager Support
*
* Copyright (C) 2002-2008 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define HAVE_STDINT_H 1
#include "mdadm.h"
#include "mdmon.h"
#include "sha1.h"
#include "platform-intel.h"
#include <values.h>
#include <scsi/sg.h>
#include <ctype.h>
#include <dirent.h>
/* MPB == Metadata Parameter Block */
#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
#define MPB_VERSION_RAID0 "1.0.00"
#define MPB_VERSION_RAID1 "1.1.00"
#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
#define MPB_VERSION_RAID5 "1.2.02"
#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
#define MPB_VERSION_CNG "1.2.06"
#define MPB_VERSION_ATTRIBS "1.3.00"
#define MAX_SIGNATURE_LENGTH 32
#define MAX_RAID_SERIAL_LEN 16
#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
#define MPB_SECTOR_CNT 418
#define IMSM_RESERVED_SECTORS 4096
#define SECT_PER_MB_SHIFT 11
/* Disk configuration info. */
#define IMSM_MAX_DEVICES 255
struct imsm_disk {
__u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
__u32 total_blocks; /* 0xE8 - 0xEB total blocks */
__u32 scsi_id; /* 0xEC - 0xEF scsi ID */
#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
__u32 status; /* 0xF0 - 0xF3 */
__u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
#define IMSM_DISK_FILLERS 4
__u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
};
/* RAID map configuration infos. */
struct imsm_map {
__u32 pba_of_lba0; /* start address of partition */
__u32 blocks_per_member;/* blocks per member */
__u32 num_data_stripes; /* number of data stripes */
__u16 blocks_per_strip;
__u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
#define IMSM_T_STATE_NORMAL 0
#define IMSM_T_STATE_UNINITIALIZED 1
#define IMSM_T_STATE_DEGRADED 2
#define IMSM_T_STATE_FAILED 3
__u8 raid_level;
#define IMSM_T_RAID0 0
#define IMSM_T_RAID1 1
#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
__u8 num_members; /* number of member disks */
__u8 num_domains; /* number of parity domains */
__u8 failed_disk_num; /* valid only when state is degraded */
__u8 ddf;
__u32 filler[7]; /* expansion area */
#define IMSM_ORD_REBUILD (1 << 24)
__u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
* top byte contains some flags
*/
} __attribute__ ((packed));
struct imsm_vol {
__u32 curr_migr_unit;
__u32 checkpoint_id; /* id to access curr_migr_unit */
__u8 migr_state; /* Normal or Migrating */
#define MIGR_INIT 0
#define MIGR_REBUILD 1
#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
#define MIGR_GEN_MIGR 3
#define MIGR_STATE_CHANGE 4
#define MIGR_REPAIR 5
__u8 migr_type; /* Initializing, Rebuilding, ... */
__u8 dirty;
__u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
__u16 verify_errors; /* number of mismatches */
__u16 bad_blocks; /* number of bad blocks during verify */
__u32 filler[4];
struct imsm_map map[1];
/* here comes another one if migr_state */
} __attribute__ ((packed));
struct imsm_dev {
__u8 volume[MAX_RAID_SERIAL_LEN];
__u32 size_low;
__u32 size_high;
#define DEV_BOOTABLE __cpu_to_le32(0x01)
#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
#define DEV_READ_COALESCING __cpu_to_le32(0x04)
#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
__u32 status; /* Persistent RaidDev status */
__u32 reserved_blocks; /* Reserved blocks at beginning of volume */
__u8 migr_priority;
__u8 num_sub_vols;
__u8 tid;
__u8 cng_master_disk;
__u16 cache_policy;
__u8 cng_state;
__u8 cng_sub_state;
#define IMSM_DEV_FILLERS 10
__u32 filler[IMSM_DEV_FILLERS];
struct imsm_vol vol;
} __attribute__ ((packed));
struct imsm_super {
__u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
__u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
__u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
__u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
__u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
__u32 error_log_size; /* 0x30 - 0x33 in bytes */
__u32 attributes; /* 0x34 - 0x37 */
__u8 num_disks; /* 0x38 Number of configured disks */
__u8 num_raid_devs; /* 0x39 Number of configured volumes */
__u8 error_log_pos; /* 0x3A */
__u8 fill[1]; /* 0x3B */
__u32 cache_size; /* 0x3c - 0x40 in mb */
__u32 orig_family_num; /* 0x40 - 0x43 original family num */
__u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
__u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
#define IMSM_FILLERS 35
__u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
/* here comes imsm_dev[num_raid_devs] */
/* here comes BBM logs */
} __attribute__ ((packed));
#define BBM_LOG_MAX_ENTRIES 254
struct bbm_log_entry {
__u64 defective_block_start;
#define UNREADABLE 0xFFFFFFFF
__u32 spare_block_offset;
__u16 remapped_marked_count;
__u16 disk_ordinal;
} __attribute__ ((__packed__));
struct bbm_log {
__u32 signature; /* 0xABADB10C */
__u32 entry_count;
__u32 reserved_spare_block_count; /* 0 */
__u32 reserved; /* 0xFFFF */
__u64 first_spare_lba;
struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
} __attribute__ ((__packed__));
#ifndef MDASSEMBLE
static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
#endif
static __u8 migr_type(struct imsm_dev *dev)
{
if (dev->vol.migr_type == MIGR_VERIFY &&
dev->status & DEV_VERIFY_AND_FIX)
return MIGR_REPAIR;
else
return dev->vol.migr_type;
}
static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
{
/* for compatibility with older oroms convert MIGR_REPAIR, into
* MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
*/
if (migr_type == MIGR_REPAIR) {
dev->vol.migr_type = MIGR_VERIFY;
dev->status |= DEV_VERIFY_AND_FIX;
} else {
dev->vol.migr_type = migr_type;
dev->status &= ~DEV_VERIFY_AND_FIX;
}
}
static unsigned int sector_count(__u32 bytes)
{
return ((bytes + (512-1)) & (~(512-1))) / 512;
}
static unsigned int mpb_sectors(struct imsm_super *mpb)
{
return sector_count(__le32_to_cpu(mpb->mpb_size));
}
struct intel_dev {
struct imsm_dev *dev;
struct intel_dev *next;
unsigned index;
};
struct intel_hba {
enum sys_dev_type type;
char *path;
char *pci_id;
struct intel_hba *next;
};
enum action {
DISK_REMOVE = 1,
DISK_ADD
};
/* internal representation of IMSM metadata */
struct intel_super {
union {
void *buf; /* O_DIRECT buffer for reading/writing metadata */
struct imsm_super *anchor; /* immovable parameters */
};
size_t len; /* size of the 'buf' allocation */
void *next_buf; /* for realloc'ing buf from the manager */
size_t next_len;
int updates_pending; /* count of pending updates for mdmon */
int current_vol; /* index of raid device undergoing creation */
__u32 create_offset; /* common start for 'current_vol' */
__u32 random; /* random data for seeding new family numbers */
struct intel_dev *devlist;
struct dl {
struct dl *next;
int index;
__u8 serial[MAX_RAID_SERIAL_LEN];
int major, minor;
char *devname;
struct imsm_disk disk;
int fd;
int extent_cnt;
struct extent *e; /* for determining freespace @ create */
int raiddisk; /* slot to fill in autolayout */
enum action action;
} *disks;
struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
active */
struct dl *missing; /* disks removed while we weren't looking */
struct bbm_log *bbm_log;
struct intel_hba *hba; /* device path of the raid controller for this metadata */
const struct imsm_orom *orom; /* platform firmware support */
struct intel_super *next; /* (temp) list for disambiguating family_num */
};
struct intel_disk {
struct imsm_disk disk;
#define IMSM_UNKNOWN_OWNER (-1)
int owner;
struct intel_disk *next;
};
struct extent {
unsigned long long start, size;
};
/* definitions of reshape process types */
enum imsm_reshape_type {
CH_TAKEOVER,
CH_MIGRATION,
};
/* definition of messages passed to imsm_process_update */
enum imsm_update_type {
update_activate_spare,
update_create_array,
update_kill_array,
update_rename_array,
update_add_remove_disk,
update_reshape_container_disks,
update_takeover
};
struct imsm_update_activate_spare {
enum imsm_update_type type;
struct dl *dl;
int slot;
int array;
struct imsm_update_activate_spare *next;
};
struct geo_params {
int dev_id;
char *dev_name;
long long size;
int level;
int layout;
int chunksize;
int raid_disks;
};
enum takeover_direction {
R10_TO_R0,
R0_TO_R10
};
struct imsm_update_takeover {
enum imsm_update_type type;
int subarray;
enum takeover_direction direction;
};
struct imsm_update_reshape {
enum imsm_update_type type;
int old_raid_disks;
int new_raid_disks;
int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
};
struct disk_info {
__u8 serial[MAX_RAID_SERIAL_LEN];
};
struct imsm_update_create_array {
enum imsm_update_type type;
int dev_idx;
struct imsm_dev dev;
};
struct imsm_update_kill_array {
enum imsm_update_type type;
int dev_idx;
};
struct imsm_update_rename_array {
enum imsm_update_type type;
__u8 name[MAX_RAID_SERIAL_LEN];
int dev_idx;
};
struct imsm_update_add_remove_disk {
enum imsm_update_type type;
};
static const char *_sys_dev_type[] = {
[SYS_DEV_UNKNOWN] = "Unknown",
[SYS_DEV_SAS] = "SAS",
[SYS_DEV_SATA] = "SATA"
};
const char *get_sys_dev_type(enum sys_dev_type type)
{
if (type >= SYS_DEV_MAX)
type = SYS_DEV_UNKNOWN;
return _sys_dev_type[type];
}
static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
{
struct intel_hba *result = malloc(sizeof(*result));
if (result) {
result->type = device->type;
result->path = strdup(device->path);
result->next = NULL;
if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
result->pci_id++;
}
return result;
}
static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
{
struct intel_hba *result=NULL;
for (result = hba; result; result = result->next) {
if (result->type == device->type && strcmp(result->path, device->path) == 0)
break;
}
return result;
}
static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
{
struct intel_hba *hba;
/* check if disk attached to Intel HBA */
hba = find_intel_hba(super->hba, device);
if (hba != NULL)
return 1;
/* Check if HBA is already attached to super */
if (super->hba == NULL) {
super->hba = alloc_intel_hba(device);
return 1;
}
hba = super->hba;
/* Intel metadata allows for all disks attached to the same type HBA.
* Do not sypport odf HBA types mixing
*/
if (device->type != hba->type)
return 2;
while (hba->next)
hba = hba->next;
hba->next = alloc_intel_hba(device);
return 1;
}
static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
{
struct sys_dev *list, *elem, *prev;
char *disk_path;
if ((list = find_intel_devices()) == NULL)
return 0;
if (fd < 0)
disk_path = (char *) devname;
else
disk_path = diskfd_to_devpath(fd);
if (!disk_path) {
free_sys_dev(&list);
return 0;
}
for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
if (path_attached_to_hba(disk_path, elem->path)) {
if (prev == NULL)
list = list->next;
else
prev->next = elem->next;
elem->next = NULL;
if (disk_path != devname)
free(disk_path);
free_sys_dev(&list);
return elem;
}
}
if (disk_path != devname)
free(disk_path);
free_sys_dev(&list);
return NULL;
}
static int find_intel_hba_capability(int fd, struct intel_super *super,
char *devname);
static struct supertype *match_metadata_desc_imsm(char *arg)
{
struct supertype *st;
if (strcmp(arg, "imsm") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = malloc(sizeof(*st));
if (!st)
return NULL;
memset(st, 0, sizeof(*st));
st->container_dev = NoMdDev;
st->ss = &super_imsm;
st->max_devs = IMSM_MAX_DEVICES;
st->minor_version = 0;
st->sb = NULL;
return st;
}
#ifndef MDASSEMBLE
static __u8 *get_imsm_version(struct imsm_super *mpb)
{
return &mpb->sig[MPB_SIG_LEN];
}
#endif
/* retrieve a disk directly from the anchor when the anchor is known to be
* up-to-date, currently only at load time
*/
static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
{
if (index >= mpb->num_disks)
return NULL;
return &mpb->disk[index];
}
/* retrieve the disk description based on a index of the disk
* in the sub-array
*/
static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
{
struct dl *d;
for (d = super->disks; d; d = d->next)
if (d->index == index)
return d;
return NULL;
}
/* retrieve a disk from the parsed metadata */
static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
{
struct dl *dl;
dl = get_imsm_dl_disk(super, index);
if (dl)
return &dl->disk;
return NULL;
}
/* generate a checksum directly from the anchor when the anchor is known to be
* up-to-date, currently only at load or write_super after coalescing
*/
static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
{
__u32 end = mpb->mpb_size / sizeof(end);
__u32 *p = (__u32 *) mpb;
__u32 sum = 0;
while (end--) {
sum += __le32_to_cpu(*p);
p++;
}
return sum - __le32_to_cpu(mpb->check_sum);
}
static size_t sizeof_imsm_map(struct imsm_map *map)
{
return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
}
struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
{
/* A device can have 2 maps if it is in the middle of a migration.
* If second_map is:
* 0 - we return the first map
* 1 - we return the second map if it exists, else NULL
* -1 - we return the second map if it exists, else the first
*/
struct imsm_map *map = &dev->vol.map[0];
if (second_map == 1 && !dev->vol.migr_state)
return NULL;
else if (second_map == 1 ||
(second_map < 0 && dev->vol.migr_state)) {
void *ptr = map;
return ptr + sizeof_imsm_map(map);
} else
return map;
}
/* return the size of the device.
* migr_state increases the returned size if map[0] were to be duplicated
*/
static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
{
size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
sizeof_imsm_map(get_imsm_map(dev, 0));
/* migrating means an additional map */
if (dev->vol.migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, 1));
else if (migr_state)
size += sizeof_imsm_map(get_imsm_map(dev, 0));
return size;
}
#ifndef MDASSEMBLE
/* retrieve disk serial number list from a metadata update */
static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
{
void *u = update;
struct disk_info *inf;
inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
sizeof_imsm_dev(&update->dev, 0);
return inf;
}
#endif
static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
{
int offset;
int i;
void *_mpb = mpb;
if (index >= mpb->num_raid_devs)
return NULL;
/* devices start after all disks */
offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
for (i = 0; i <= index; i++)
if (i == index)
return _mpb + offset;
else
offset += sizeof_imsm_dev(_mpb + offset, 0);
return NULL;
}
static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
{
struct intel_dev *dv;
if (index >= super->anchor->num_raid_devs)
return NULL;
for (dv = super->devlist; dv; dv = dv->next)
if (dv->index == index)
return dv->dev;
return NULL;
}
/*
* for second_map:
* == 0 get first map
* == 1 get second map
* == -1 than get map according to the current migr_state
*/
static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
int slot,
int second_map)
{
struct imsm_map *map;
map = get_imsm_map(dev, second_map);
/* top byte identifies disk under rebuild */
return __le32_to_cpu(map->disk_ord_tbl[slot]);
}
#define ord_to_idx(ord) (((ord) << 8) >> 8)
static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
{
__u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
return ord_to_idx(ord);
}
static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
{
map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
}
static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
{
int slot;
__u32 ord;
for (slot = 0; slot < map->num_members; slot++) {
ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
if (ord_to_idx(ord) == idx)
return slot;
}
return -1;
}
static int get_imsm_raid_level(struct imsm_map *map)
{
if (map->raid_level == 1) {
if (map->num_members == 2)
return 1;
else
return 10;
}
return map->raid_level;
}
static int cmp_extent(const void *av, const void *bv)
{
const struct extent *a = av;
const struct extent *b = bv;
if (a->start < b->start)
return -1;
if (a->start > b->start)
return 1;
return 0;
}
static int count_memberships(struct dl *dl, struct intel_super *super)
{
int memberships = 0;
int i;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
if (get_imsm_disk_slot(map, dl->index) >= 0)
memberships++;
}
return memberships;
}
static struct extent *get_extents(struct intel_super *super, struct dl *dl)
{
/* find a list of used extents on the given physical device */
struct extent *rv, *e;
int i;
int memberships = count_memberships(dl, super);
__u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
rv = malloc(sizeof(struct extent) * (memberships + 1));
if (!rv)
return NULL;
e = rv;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
if (get_imsm_disk_slot(map, dl->index) >= 0) {
e->start = __le32_to_cpu(map->pba_of_lba0);
e->size = __le32_to_cpu(map->blocks_per_member);
e++;
}
}
qsort(rv, memberships, sizeof(*rv), cmp_extent);
/* determine the start of the metadata
* when no raid devices are defined use the default
* ...otherwise allow the metadata to truncate the value
* as is the case with older versions of imsm
*/
if (memberships) {
struct extent *last = &rv[memberships - 1];
__u32 remainder;
remainder = __le32_to_cpu(dl->disk.total_blocks) -
(last->start + last->size);
/* round down to 1k block to satisfy precision of the kernel
* 'size' interface
*/
remainder &= ~1UL;
/* make sure remainder is still sane */
if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
remainder = ROUND_UP(super->len, 512) >> 9;
if (reservation > remainder)
reservation = remainder;
}
e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
e->size = 0;
return rv;
}
/* try to determine how much space is reserved for metadata from
* the last get_extents() entry, otherwise fallback to the
* default
*/
static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
{
struct extent *e;
int i;
__u32 rv;
/* for spares just return a minimal reservation which will grow
* once the spare is picked up by an array
*/
if (dl->index == -1)
return MPB_SECTOR_CNT;
e = get_extents(super, dl);
if (!e)
return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
/* scroll to last entry */
for (i = 0; e[i].size; i++)
continue;
rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
free(e);
return rv;
}
static int is_spare(struct imsm_disk *disk)
{
return (disk->status & SPARE_DISK) == SPARE_DISK;
}
static int is_configured(struct imsm_disk *disk)
{
return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
}
static int is_failed(struct imsm_disk *disk)
{
return (disk->status & FAILED_DISK) == FAILED_DISK;
}
/* Return minimum size of a spare that can be used in this array*/
static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
struct dl *dl;
struct extent *e;
int i;
unsigned long long rv = 0;
if (!super)
return rv;
/* find first active disk in array */
dl = super->disks;
while (dl && (is_failed(&dl->disk) || dl->index == -1))
dl = dl->next;
if (!dl)
return rv;
/* find last lba used by subarrays */
e = get_extents(super, dl);
if (!e)
return rv;
for (i = 0; e[i].size; i++)
continue;
if (i > 0)
rv = e[i-1].start + e[i-1].size;
free(e);
/* add the amount of space needed for metadata */
rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
return rv * 512;
}
#ifndef MDASSEMBLE
static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
{
__u64 sz;
int slot, i;
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *map2 = get_imsm_map(dev, 1);
__u32 ord;
printf("\n");
printf("[%.16s]:\n", dev->volume);
printf(" UUID : %s\n", uuid);
printf(" RAID Level : %d", get_imsm_raid_level(map));
if (map2)
printf(" <-- %d", get_imsm_raid_level(map2));
printf("\n");
printf(" Members : %d", map->num_members);
if (map2)
printf(" <-- %d", map2->num_members);
printf("\n");
printf(" Slots : [");
for (i = 0; i < map->num_members; i++) {
ord = get_imsm_ord_tbl_ent(dev, i, 0);
printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
}
printf("]");
if (map2) {
printf(" <-- [");
for (i = 0; i < map2->num_members; i++) {
ord = get_imsm_ord_tbl_ent(dev, i, 1);
printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
}
printf("]");
}
printf("\n");
printf(" Failed disk : ");
if (map->failed_disk_num == 0xff)
printf("none");
else
printf("%i", map->failed_disk_num);
printf("\n");
slot = get_imsm_disk_slot(map, disk_idx);
if (slot >= 0) {
ord = get_imsm_ord_tbl_ent(dev, slot, -1);
printf(" This Slot : %d%s\n", slot,
ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
} else
printf(" This Slot : ?\n");
sz = __le32_to_cpu(dev->size_high);
sz <<= 32;
sz += __le32_to_cpu(dev->size_low);
printf(" Array Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
sz = __le32_to_cpu(map->blocks_per_member);
printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
printf(" Sector Offset : %u\n",
__le32_to_cpu(map->pba_of_lba0));
printf(" Num Stripes : %u\n",
__le32_to_cpu(map->num_data_stripes));
printf(" Chunk Size : %u KiB",
__le16_to_cpu(map->blocks_per_strip) / 2);
if (map2)
printf(" <-- %u KiB",
__le16_to_cpu(map2->blocks_per_strip) / 2);
printf("\n");
printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
printf(" Migrate State : ");
if (dev->vol.migr_state) {
if (migr_type(dev) == MIGR_INIT)
printf("initialize\n");
else if (migr_type(dev) == MIGR_REBUILD)
printf("rebuild\n");
else if (migr_type(dev) == MIGR_VERIFY)
printf("check\n");
else if (migr_type(dev) == MIGR_GEN_MIGR)
printf("general migration\n");
else if (migr_type(dev) == MIGR_STATE_CHANGE)
printf("state change\n");
else if (migr_type(dev) == MIGR_REPAIR)
printf("repair\n");
else
printf("<unknown:%d>\n", migr_type(dev));
} else
printf("idle\n");
printf(" Map State : %s", map_state_str[map->map_state]);
if (dev->vol.migr_state) {
struct imsm_map *map = get_imsm_map(dev, 1);
printf(" <-- %s", map_state_str[map->map_state]);
printf("\n Checkpoint : %u (%llu)",
__le32_to_cpu(dev->vol.curr_migr_unit),
(unsigned long long)blocks_per_migr_unit(dev));
}
printf("\n");
printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
}
static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
{
struct imsm_disk *disk = __get_imsm_disk(mpb, index);
char str[MAX_RAID_SERIAL_LEN + 1];
__u64 sz;
if (index < 0 || !disk)
return;
printf("\n");
snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
printf(" Disk%02d Serial : %s\n", index, str);
printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
is_configured(disk) ? " active" : "",
is_failed(disk) ? " failed" : "");
printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
sz = __le32_to_cpu(disk->total_blocks) - reserved;
printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
static void examine_super_imsm(struct supertype *st, char *homehost)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
char str[MAX_SIGNATURE_LENGTH];
int i;
struct mdinfo info;
char nbuf[64];
__u32 sum;
__u32 reserved = imsm_reserved_sectors(super, super->disks);
struct dl *dl;
snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
printf(" Magic : %s\n", str);
snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
printf(" Version : %s\n", get_imsm_version(mpb));
printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf(" UUID : %s\n", nbuf + 5);
sum = __le32_to_cpu(mpb->check_sum);
printf(" Checksum : %08x %s\n", sum,
__gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
printf(" Disks : %d\n", mpb->num_disks);
printf(" RAID Devices : %d\n", mpb->num_raid_devs);
print_imsm_disk(mpb, super->disks->index, reserved);
if (super->bbm_log) {
struct bbm_log *log = super->bbm_log;
printf("\n");
printf("Bad Block Management Log:\n");
printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
printf(" Signature : %x\n", __le32_to_cpu(log->signature));
printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
printf(" First Spare : %llx\n",
(unsigned long long) __le64_to_cpu(log->first_spare_lba));
}
for (i = 0; i < mpb->num_raid_devs; i++) {
struct mdinfo info;
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
super->current_vol = i;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
print_imsm_dev(dev, nbuf + 5, super->disks->index);
}
for (i = 0; i < mpb->num_disks; i++) {
if (i == super->disks->index)
continue;
print_imsm_disk(mpb, i, reserved);
}
for (dl = super->disks ; dl; dl = dl->next) {
struct imsm_disk *disk;
char str[MAX_RAID_SERIAL_LEN + 1];
__u64 sz;
if (dl->index >= 0)
continue;
disk = &dl->disk;
printf("\n");
snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
printf(" Disk Serial : %s\n", str);
printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
is_configured(disk) ? " active" : "",
is_failed(disk) ? " failed" : "");
printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
sz = __le32_to_cpu(disk->total_blocks) - reserved;
printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
}
}
static void brief_examine_super_imsm(struct supertype *st, int verbose)
{
/* We just write a generic IMSM ARRAY entry */
struct mdinfo info;
char nbuf[64];
struct intel_super *super = st->sb;
if (!super->anchor->num_raid_devs) {
printf("ARRAY metadata=imsm\n");
return;
}
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
}
static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
{
/* We just write a generic IMSM ARRAY entry */
struct mdinfo info;
char nbuf[64];
char nbuf1[64];
struct intel_super *super = st->sb;
int i;
if (!super->anchor->num_raid_devs)
return;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
super->current_vol = i;
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf1, ':');
printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
dev->volume, nbuf + 5, i, nbuf1 + 5);
}
}
static void export_examine_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct mdinfo info;
char nbuf[64];
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("MD_METADATA=imsm\n");
printf("MD_LEVEL=container\n");
printf("MD_UUID=%s\n", nbuf+5);
printf("MD_DEVICES=%u\n", mpb->num_disks);
}
static void detail_super_imsm(struct supertype *st, char *homehost)
{
struct mdinfo info;
char nbuf[64];
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("\n UUID : %s\n", nbuf + 5);
}
static void brief_detail_super_imsm(struct supertype *st)
{
struct mdinfo info;
char nbuf[64];
getinfo_super_imsm(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf(" UUID=%s", nbuf + 5);
}
static int imsm_read_serial(int fd, char *devname, __u8 *serial);
static void fd2devname(int fd, char *name);
static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
{
/* dump an unsorted list of devices attached to AHCI Intel storage
* controller, as well as non-connected ports
*/
int hba_len = strlen(hba_path) + 1;
struct dirent *ent;
DIR *dir;
char *path = NULL;
int err = 0;
unsigned long port_mask = (1 << port_count) - 1;
if (port_count > (int)sizeof(port_mask) * 8) {
if (verbose)
fprintf(stderr, Name ": port_count %d out of range\n", port_count);
return 2;
}
/* scroll through /sys/dev/block looking for devices attached to
* this hba
*/
dir = opendir("/sys/dev/block");
for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
int fd;
char model[64];
char vendor[64];
char buf[1024];
int major, minor;
char *device;
char *c;
int port;
int type;
if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
continue;
path = devt_to_devpath(makedev(major, minor));
if (!path)
continue;
if (!path_attached_to_hba(path, hba_path)) {
free(path);
path = NULL;
continue;
}
/* retrieve the scsi device type */
if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
if (verbose)
fprintf(stderr, Name ": failed to allocate 'device'\n");
err = 2;
break;
}
sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
if (load_sys(device, buf) != 0) {
if (verbose)
fprintf(stderr, Name ": failed to read device type for %s\n",
path);
err = 2;
free(device);
break;
}
type = strtoul(buf, NULL, 10);
/* if it's not a disk print the vendor and model */
if (!(type == 0 || type == 7 || type == 14)) {
vendor[0] = '\0';
model[0] = '\0';
sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
if (load_sys(device, buf) == 0) {
strncpy(vendor, buf, sizeof(vendor));
vendor[sizeof(vendor) - 1] = '\0';
c = (char *) &vendor[sizeof(vendor) - 1];
while (isspace(*c) || *c == '\0')
*c-- = '\0';
}
sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
if (load_sys(device, buf) == 0) {
strncpy(model, buf, sizeof(model));
model[sizeof(model) - 1] = '\0';
c = (char *) &model[sizeof(model) - 1];
while (isspace(*c) || *c == '\0')
*c-- = '\0';
}
if (vendor[0] && model[0])
sprintf(buf, "%.64s %.64s", vendor, model);
else
switch (type) { /* numbers from hald/linux/device.c */
case 1: sprintf(buf, "tape"); break;
case 2: sprintf(buf, "printer"); break;
case 3: sprintf(buf, "processor"); break;
case 4:
case 5: sprintf(buf, "cdrom"); break;
case 6: sprintf(buf, "scanner"); break;
case 8: sprintf(buf, "media_changer"); break;
case 9: sprintf(buf, "comm"); break;
case 12: sprintf(buf, "raid"); break;
default: sprintf(buf, "unknown");
}
} else
buf[0] = '\0';
free(device);
/* chop device path to 'host%d' and calculate the port number */
c = strchr(&path[hba_len], '/');
if (!c) {
if (verbose)
fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
err = 2;
break;
}
*c = '\0';
if (sscanf(&path[hba_len], "host%d", &port) == 1)
port -= host_base;
else {
if (verbose) {
*c = '/'; /* repair the full string */
fprintf(stderr, Name ": failed to determine port number for %s\n",
path);
}
err = 2;
break;
}
/* mark this port as used */
port_mask &= ~(1 << port);
/* print out the device information */
if (buf[0]) {
printf(" Port%d : - non-disk device (%s) -\n", port, buf);
continue;
}
fd = dev_open(ent->d_name, O_RDONLY);
if (fd < 0)
printf(" Port%d : - disk info unavailable -\n", port);
else {
fd2devname(fd, buf);
printf(" Port%d : %s", port, buf);
if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
printf(" (%s)\n", buf);
else
printf("()\n");
}
close(fd);
free(path);
path = NULL;
}
if (path)
free(path);
if (dir)
closedir(dir);
if (err == 0) {
int i;
for (i = 0; i < port_count; i++)
if (port_mask & (1 << i))
printf(" Port%d : - no device attached -\n", i);
}
return err;
}
static void print_found_intel_controllers(struct sys_dev *elem)
{
for (; elem; elem = elem->next) {
fprintf(stderr, Name ": found Intel(R) ");
if (elem->type == SYS_DEV_SATA)
fprintf(stderr, "SATA ");
else if (elem->type == SYS_DEV_SAS)
fprintf(stderr, "SAS ");
fprintf(stderr, "RAID controller");
if (elem->pci_id)
fprintf(stderr, " at %s", elem->pci_id);
fprintf(stderr, ".\n");
}
fflush(stderr);
}
static int ahci_get_port_count(const char *hba_path, int *port_count)
{
struct dirent *ent;
DIR *dir;
int host_base = -1;
*port_count = 0;
if ((dir = opendir(hba_path)) == NULL)
return -1;
for (ent = readdir(dir); ent; ent = readdir(dir)) {
int host;
if (sscanf(ent->d_name, "host%d", &host) != 1)
continue;
if (*port_count == 0)
host_base = host;
else if (host < host_base)
host_base = host;
if (host + 1 > *port_count + host_base)
*port_count = host + 1 - host_base;
}
closedir(dir);
return host_base;
}
static void print_imsm_capability(const struct imsm_orom *orom)
{
printf(" Platform : Intel(R) Matrix Storage Manager\n");
printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
orom->hotfix_ver, orom->build);
printf(" RAID Levels :%s%s%s%s%s\n",
imsm_orom_has_raid0(orom) ? " raid0" : "",
imsm_orom_has_raid1(orom) ? " raid1" : "",
imsm_orom_has_raid1e(orom) ? " raid1e" : "",
imsm_orom_has_raid10(orom) ? " raid10" : "",
imsm_orom_has_raid5(orom) ? " raid5" : "");
printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
printf(" Max Disks : %d\n", orom->tds);
printf(" Max Volumes : %d\n", orom->vpa);
return;
}
static int detail_platform_imsm(int verbose, int enumerate_only)
{
/* There are two components to imsm platform support, the ahci SATA
* controller and the option-rom. To find the SATA controller we
* simply look in /sys/bus/pci/drivers/ahci to see if an ahci
* controller with the Intel vendor id is present. This approach
* allows mdadm to leverage the kernel's ahci detection logic, with the
* caveat that if ahci.ko is not loaded mdadm will not be able to
* detect platform raid capabilities. The option-rom resides in a
* platform "Adapter ROM". We scan for its signature to retrieve the
* platform capabilities. If raid support is disabled in the BIOS the
* option-rom capability structure will not be available.
*/
const struct imsm_orom *orom;
struct sys_dev *list, *hba;
int host_base = 0;
int port_count = 0;
int result=0;
if (enumerate_only) {
if (check_env("IMSM_NO_PLATFORM"))
return 0;
list = find_intel_devices();
if (!list)
return 2;
for (hba = list; hba; hba = hba->next) {
orom = find_imsm_capability(hba->type);
if (!orom) {
result = 2;
break;
}
}
free_sys_dev(&list);
return result;
}
list = find_intel_devices();
if (!list) {
if (verbose)
fprintf(stderr, Name ": no active Intel(R) RAID "
"controller found.\n");
free_sys_dev(&list);
return 2;
} else if (verbose)
print_found_intel_controllers(list);
for (hba = list; hba; hba = hba->next) {
orom = find_imsm_capability(hba->type);
if (!orom)
fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
hba->path, get_sys_dev_type(hba->type));
else
print_imsm_capability(orom);
}
for (hba = list; hba; hba = hba->next) {
printf(" I/O Controller : %s (%s)\n",
hba->path, get_sys_dev_type(hba->type));
if (hba->type == SYS_DEV_SATA) {
host_base = ahci_get_port_count(hba->path, &port_count);
if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
if (verbose)
fprintf(stderr, Name ": failed to enumerate "
"ports on SATA controller at %s.", hba->pci_id);
result |= 2;
}
}
}
free_sys_dev(&list);
return result;
}
#endif
static int match_home_imsm(struct supertype *st, char *homehost)
{
/* the imsm metadata format does not specify any host
* identification information. We return -1 since we can never
* confirm nor deny whether a given array is "meant" for this
* host. We rely on compare_super and the 'family_num' fields to
* exclude member disks that do not belong, and we rely on
* mdadm.conf to specify the arrays that should be assembled.
* Auto-assembly may still pick up "foreign" arrays.
*/
return -1;
}
static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
{
/* The uuid returned here is used for:
* uuid to put into bitmap file (Create, Grow)
* uuid for backup header when saving critical section (Grow)
* comparing uuids when re-adding a device into an array
* In these cases the uuid required is that of the data-array,
* not the device-set.
* uuid to recognise same set when adding a missing device back
* to an array. This is a uuid for the device-set.
*
* For each of these we can make do with a truncated
* or hashed uuid rather than the original, as long as
* everyone agrees.
* In each case the uuid required is that of the data-array,
* not the device-set.
*/
/* imsm does not track uuid's so we synthesis one using sha1 on
* - The signature (Which is constant for all imsm array, but no matter)
* - the orig_family_num of the container
* - the index number of the volume
* - the 'serial' number of the volume.
* Hopefully these are all constant.
*/
struct intel_super *super = st->sb;
char buf[20];
struct sha1_ctx ctx;
struct imsm_dev *dev = NULL;
__u32 family_num;
/* some mdadm versions failed to set ->orig_family_num, in which
* case fall back to ->family_num. orig_family_num will be
* fixed up with the first metadata update.
*/
family_num = super->anchor->orig_family_num;
if (family_num == 0)
family_num = super->anchor->family_num;
sha1_init_ctx(&ctx);
sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
if (super->current_vol >= 0)
dev = get_imsm_dev(super, super->current_vol);
if (dev) {
__u32 vol = super->current_vol;
sha1_process_bytes(&vol, sizeof(vol), &ctx);
sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
}
sha1_finish_ctx(&ctx, buf);
memcpy(uuid, buf, 4*4);
}
#if 0
static void
get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
{
__u8 *v = get_imsm_version(mpb);
__u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
char major[] = { 0, 0, 0 };
char minor[] = { 0 ,0, 0 };
char patch[] = { 0, 0, 0 };
char *ver_parse[] = { major, minor, patch };
int i, j;
i = j = 0;
while (*v != '\0' && v < end) {
if (*v != '.' && j < 2)
ver_parse[i][j++] = *v;
else {
i++;
j = 0;
}
v++;
}
*m = strtol(minor, NULL, 0);
*p = strtol(patch, NULL, 0);
}
#endif
static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
{
/* migr_strip_size when repairing or initializing parity */
struct imsm_map *map = get_imsm_map(dev, 0);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch (get_imsm_raid_level(map)) {
case 5:
case 10:
return chunk;
default:
return 128*1024 >> 9;
}
}
static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
{
/* migr_strip_size when rebuilding a degraded disk, no idea why
* this is different than migr_strip_size_resync(), but it's good
* to be compatible
*/
struct imsm_map *map = get_imsm_map(dev, 1);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch (get_imsm_raid_level(map)) {
case 1:
case 10:
if (map->num_members % map->num_domains == 0)
return 128*1024 >> 9;
else
return chunk;
case 5:
return max((__u32) 64*1024 >> 9, chunk);
default:
return 128*1024 >> 9;
}
}
static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
{
struct imsm_map *lo = get_imsm_map(dev, 0);
struct imsm_map *hi = get_imsm_map(dev, 1);
__u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
__u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
return max((__u32) 1, hi_chunk / lo_chunk);
}
static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
{
struct imsm_map *lo = get_imsm_map(dev, 0);
int level = get_imsm_raid_level(lo);
if (level == 1 || level == 10) {
struct imsm_map *hi = get_imsm_map(dev, 1);
return hi->num_domains;
} else
return num_stripes_per_unit_resync(dev);
}
static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
{
/* named 'imsm_' because raid0, raid1 and raid10
* counter-intuitively have the same number of data disks
*/
struct imsm_map *map = get_imsm_map(dev, second_map);
switch (get_imsm_raid_level(map)) {
case 0:
case 1:
case 10:
return map->num_members;
case 5:
return map->num_members - 1;
default:
dprintf("%s: unsupported raid level\n", __func__);
return 0;
}
}
static __u32 parity_segment_depth(struct imsm_dev *dev)
{
struct imsm_map *map = get_imsm_map(dev, 0);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
switch(get_imsm_raid_level(map)) {
case 1:
case 10:
return chunk * map->num_domains;
case 5:
return chunk * map->num_members;
default:
return chunk;
}
}
static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
{
struct imsm_map *map = get_imsm_map(dev, 1);
__u32 chunk = __le32_to_cpu(map->blocks_per_strip);
__u32 strip = block / chunk;
switch (get_imsm_raid_level(map)) {
case 1:
case 10: {
__u32 vol_strip = (strip * map->num_domains) + 1;
__u32 vol_stripe = vol_strip / map->num_members;
return vol_stripe * chunk + block % chunk;
} case 5: {
__u32 stripe = strip / (map->num_members - 1);
return stripe * chunk + block % chunk;
}
default:
return 0;
}
}
static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
{
/* calculate the conversion factor between per member 'blocks'
* (md/{resync,rebuild}_start) and imsm migration units, return
* 0 for the 'not migrating' and 'unsupported migration' cases
*/
if (!dev->vol.migr_state)
return 0;
switch (migr_type(dev)) {
case MIGR_GEN_MIGR:
case MIGR_VERIFY:
case MIGR_REPAIR:
case MIGR_INIT: {
struct imsm_map *map = get_imsm_map(dev, 0);
__u32 stripes_per_unit;
__u32 blocks_per_unit;
__u32 parity_depth;
__u32 migr_chunk;
__u32 block_map;
__u32 block_rel;
__u32 segment;
__u32 stripe;
__u8 disks;
/* yes, this is really the translation of migr_units to
* per-member blocks in the 'resync' case
*/
stripes_per_unit = num_stripes_per_unit_resync(dev);
migr_chunk = migr_strip_blocks_resync(dev);
disks = imsm_num_data_members(dev, 0);
blocks_per_unit = stripes_per_unit * migr_chunk * disks;
stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
segment = blocks_per_unit / stripe;
block_rel = blocks_per_unit - segment * stripe;
parity_depth = parity_segment_depth(dev);
block_map = map_migr_block(dev, block_rel);
return block_map + parity_depth * segment;
}
case MIGR_REBUILD: {
__u32 stripes_per_unit;
__u32 migr_chunk;
stripes_per_unit = num_stripes_per_unit_rebuild(dev);
migr_chunk = migr_strip_blocks_rebuild(dev);
return migr_chunk * stripes_per_unit;
}
case MIGR_STATE_CHANGE:
default:
return 0;
}
}
static int imsm_level_to_layout(int level)
{
switch (level) {
case 0:
case 1:
return 0;
case 5:
case 6:
return ALGORITHM_LEFT_ASYMMETRIC;
case 10:
return 0x102;
}
return UnSet;
}
static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
{
struct intel_super *super = st->sb;
struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *prev_map = get_imsm_map(dev, 1);
struct imsm_map *map_to_analyse = map;
struct dl *dl;
char *devname;
int map_disks = info->array.raid_disks;
if (prev_map)
map_to_analyse = prev_map;
for (dl = super->disks; dl; dl = dl->next)
if (dl->raiddisk == info->disk.raid_disk)
break;
info->container_member = super->current_vol;
info->array.raid_disks = map_to_analyse->num_members;
info->array.level = get_imsm_raid_level(map_to_analyse);
info->array.layout = imsm_level_to_layout(info->array.level);
info->array.md_minor = -1;
info->array.ctime = 0;
info->array.utime = 0;
info->array.chunk_size =
__le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
info->array.state = !dev->vol.dirty;
info->custom_array_size = __le32_to_cpu(dev->size_high);
info->custom_array_size <<= 32;
info->custom_array_size |= __le32_to_cpu(dev->size_low);
if (prev_map && map->map_state == prev_map->map_state) {
info->reshape_active = 1;
info->new_level = get_imsm_raid_level(map);
info->new_layout = imsm_level_to_layout(info->new_level);
info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
info->delta_disks = map->num_members - prev_map->num_members;
if (info->delta_disks) {
/* this needs to be applied to every array
* in the container.
*/
info->reshape_active = 2;
}
/* We shape information that we give to md might have to be
* modify to cope with md's requirement for reshaping arrays.
* For example, when reshaping a RAID0, md requires it to be
* presented as a degraded RAID4.
* Also if a RAID0 is migrating to a RAID5 we need to specify
* the array as already being RAID5, but the 'before' layout
* is a RAID4-like layout.
*/
switch (info->array.level) {
case 0:
switch(info->new_level) {
case 0:
/* conversion is happening as RAID4 */
info->array.level = 4;
info->array.raid_disks += 1;
break;
case 5:
/* conversion is happening as RAID5 */
info->array.level = 5;
info->array.layout = ALGORITHM_PARITY_N;
info->array.raid_disks += 1;
info->delta_disks -= 1;
break;
default:
/* FIXME error message */
info->array.level = UnSet;
break;
}
break;
}
} else {
info->new_level = UnSet;
info->new_layout = UnSet;
info->new_chunk = info->array.chunk_size;
info->delta_disks = 0;
}
info->disk.major = 0;
info->disk.minor = 0;
if (dl) {
info->disk.major = dl->major;
info->disk.minor = dl->minor;
}
info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
info->component_size =
__le32_to_cpu(map_to_analyse->blocks_per_member);
memset(info->uuid, 0, sizeof(info->uuid));
info->recovery_start = MaxSector;
info->reshape_progress = 0;
info->resync_start = MaxSector;
if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
dev->vol.dirty) {
info->resync_start = 0;
}
if (dev->vol.migr_state) {
switch (migr_type(dev)) {
case MIGR_REPAIR:
case MIGR_INIT: {
__u64 blocks_per_unit = blocks_per_migr_unit(dev);
__u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
info->resync_start = blocks_per_unit * units;
break;
}
case MIGR_GEN_MIGR: {
__u64 blocks_per_unit = blocks_per_migr_unit(dev);
__u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
unsigned long long array_blocks;
int used_disks;
info->reshape_progress = blocks_per_unit * units;
/* checkpoint is written per disks unit
* recalculate it to reshape position
*/
used_disks = imsm_num_data_members(dev, 0);
info->reshape_progress *= used_disks;
dprintf("IMSM: General Migration checkpoint : %llu "
"(%llu) -> read reshape progress : %llu\n",
units, blocks_per_unit, info->reshape_progress);
used_disks = imsm_num_data_members(dev, 1);
if (used_disks > 0) {
array_blocks = map->blocks_per_member *
used_disks;
/* round array size down to closest MB
*/
info->custom_array_size = (array_blocks
>> SECT_PER_MB_SHIFT)
<< SECT_PER_MB_SHIFT;
}
}
case MIGR_VERIFY:
/* we could emulate the checkpointing of
* 'sync_action=check' migrations, but for now
* we just immediately complete them
*/
case MIGR_REBUILD:
/* this is handled by container_content_imsm() */
case MIGR_STATE_CHANGE:
/* FIXME handle other migrations */
default:
/* we are not dirty, so... */
info->resync_start = MaxSector;
}
}
strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
info->name[MAX_RAID_SERIAL_LEN] = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
devname = devnum2devname(st->container_dev);
*info->text_version = '\0';
if (devname)
sprintf(info->text_version, "/%s/%d", devname, info->container_member);
free(devname);
info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
uuid_from_super_imsm(st, info->uuid);
if (dmap) {
int i, j;
for (i=0; i<map_disks; i++) {
dmap[i] = 0;
if (i < info->array.raid_disks) {
struct imsm_disk *dsk;
j = get_imsm_disk_idx(dev, i, -1);
dsk = get_imsm_disk(super, j);
if (dsk && (dsk->status & CONFIGURED_DISK))
dmap[i] = 1;
}
}
}
}
static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
{
struct dl *d;
for (d = super->missing; d; d = d->next)
if (d->index == index)
return &d->disk;
return NULL;
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
{
struct intel_super *super = st->sb;
struct imsm_disk *disk;
int map_disks = info->array.raid_disks;
int max_enough = -1;
int i;
struct imsm_super *mpb;
if (super->current_vol >= 0) {
getinfo_super_imsm_volume(st, info, map);
return;
}
/* Set raid_disks to zero so that Assemble will always pull in valid
* spares
*/
info->array.raid_disks = 0;
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
info->array.ctime = 0; /* N/A for imsm */
info->array.utime = 0;
info->array.chunk_size = 0;
info->disk.major = 0;
info->disk.minor = 0;
info->disk.raid_disk = -1;
info->reshape_active = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
strcpy(info->text_version, "imsm");
info->safe_mode_delay = 0;
info->disk.number = -1;
info->disk.state = 0;
info->name[0] = 0;
info->recovery_start = MaxSector;
/* do we have the all the insync disks that we expect? */
mpb = super->anchor;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
int failed, enough, j, missing = 0;
struct imsm_map *map;
__u8 state;
failed = imsm_count_failed(super, dev);
state = imsm_check_degraded(super, dev, failed);
map = get_imsm_map(dev, dev->vol.migr_state);
/* any newly missing disks?
* (catches single-degraded vs double-degraded)
*/
for (j = 0; j < map->num_members; j++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
__u32 idx = ord_to_idx(ord);
if (!(ord & IMSM_ORD_REBUILD) &&
get_imsm_missing(super, idx)) {
missing = 1;
break;
}
}
if (state == IMSM_T_STATE_FAILED)
enough = -1;
else if (state == IMSM_T_STATE_DEGRADED &&
(state != map->map_state || missing))
enough = 0;
else /* we're normal, or already degraded */
enough = 1;
/* in the missing/failed disk case check to see
* if at least one array is runnable
*/
max_enough = max(max_enough, enough);
}
dprintf("%s: enough: %d\n", __func__, max_enough);
info->container_enough = max_enough;
if (super->disks) {
__u32 reserved = imsm_reserved_sectors(super, super->disks);
disk = &super->disks->disk;
info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
info->component_size = reserved;
info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
/* we don't change info->disk.raid_disk here because
* this state will be finalized in mdmon after we have
* found the 'most fresh' version of the metadata
*/
info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
}
/* only call uuid_from_super_imsm when this disk is part of a populated container,
* ->compare_super may have updated the 'num_raid_devs' field for spares
*/
if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
uuid_from_super_imsm(st, info->uuid);
else
memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
/* I don't know how to compute 'map' on imsm, so use safe default */
if (map) {
int i;
for (i = 0; i < map_disks; i++)
map[i] = 1;
}
}
/* allocates memory and fills disk in mdinfo structure
* for each disk in array */
struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
{
struct mdinfo *mddev = NULL;
struct intel_super *super = st->sb;
struct imsm_disk *disk;
int count = 0;
struct dl *dl;
if (!super || !super->disks)
return NULL;
dl = super->disks;
mddev = malloc(sizeof(*mddev));
if (!mddev) {
fprintf(stderr, Name ": Failed to allocate memory.\n");
return NULL;
}
memset(mddev, 0, sizeof(*mddev));
while (dl) {
struct mdinfo *tmp;
disk = &dl->disk;
tmp = malloc(sizeof(*tmp));
if (!tmp) {
fprintf(stderr, Name ": Failed to allocate memory.\n");
if (mddev)
sysfs_free(mddev);
return NULL;
}
memset(tmp, 0, sizeof(*tmp));
if (mddev->devs)
tmp->next = mddev->devs;
mddev->devs = tmp;
tmp->disk.number = count++;
tmp->disk.major = dl->major;
tmp->disk.minor = dl->minor;
tmp->disk.state = is_configured(disk) ?
(1 << MD_DISK_ACTIVE) : 0;
tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
tmp->disk.raid_disk = -1;
dl = dl->next;
}
return mddev;
}
static int update_super_imsm(struct supertype *st, struct mdinfo *info,
char *update, char *devname, int verbose,
int uuid_set, char *homehost)
{
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* name: update the name - preserving the homehost
* uuid: Change the uuid of the array to match watch is given
*
* Following are not relevant for this imsm:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
* homehost: update the recorded homehost
* _reshape_progress: record new reshape_progress position.
*/
int rv = 1;
struct intel_super *super = st->sb;
struct imsm_super *mpb;
/* we can only update container info */
if (!super || super->current_vol >= 0 || !super->anchor)
return 1;
mpb = super->anchor;
if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
rv = -1;
else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
mpb->orig_family_num = *((__u32 *) info->update_private);
rv = 0;
} else if (strcmp(update, "uuid") == 0) {
__u32 *new_family = malloc(sizeof(*new_family));
/* update orig_family_number with the incoming random
* data, report the new effective uuid, and store the
* new orig_family_num for future updates.
*/
if (new_family) {
memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
uuid_from_super_imsm(st, info->uuid);
*new_family = mpb->orig_family_num;
info->update_private = new_family;
rv = 0;
}
} else if (strcmp(update, "assemble") == 0)
rv = 0;
else
rv = -1;
/* successful update? recompute checksum */
if (rv == 0)
mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
return rv;
}
static size_t disks_to_mpb_size(int disks)
{
size_t size;
size = sizeof(struct imsm_super);
size += (disks - 1) * sizeof(struct imsm_disk);
size += 2 * sizeof(struct imsm_dev);
/* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
size += (4 - 2) * sizeof(struct imsm_map);
/* 4 possible disk_ord_tbl's */
size += 4 * (disks - 1) * sizeof(__u32);
return size;
}
static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
{
if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
return 0;
return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
}
static void free_devlist(struct intel_super *super)
{
struct intel_dev *dv;
while (super->devlist) {
dv = super->devlist->next;
free(super->devlist->dev);
free(super->devlist);
super->devlist = dv;
}
}
static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
{
memcpy(dest, src, sizeof_imsm_dev(src, 0));
}
static int compare_super_imsm(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct intel_super *first = st->sb;
struct intel_super *sec = tst->sb;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
/* in platform dependent environment test if the disks
* use the same Intel hba
*/
if (!check_env("IMSM_NO_PLATFORM")) {
if (!first->hba || !sec->hba ||
(first->hba->type != sec->hba->type)) {
fprintf(stderr,
"HBAs of devices does not match %s != %s\n",
first->hba ? get_sys_dev_type(first->hba->type) : NULL,
sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
return 3;
}
}
/* if an anchor does not have num_raid_devs set then it is a free
* floating spare
*/
if (first->anchor->num_raid_devs > 0 &&
sec->anchor->num_raid_devs > 0) {
/* Determine if these disks might ever have been
* related. Further disambiguation can only take place
* in load_super_imsm_all
*/
__u32 first_family = first->anchor->orig_family_num;
__u32 sec_family = sec->anchor->orig_family_num;
if (memcmp(first->anchor->sig, sec->anchor->sig,
MAX_SIGNATURE_LENGTH) != 0)
return 3;
if (first_family == 0)
first_family = first->anchor->family_num;
if (sec_family == 0)
sec_family = sec->anchor->family_num;
if (first_family != sec_family)
return 3;
}
/* if 'first' is a spare promote it to a populated mpb with sec's
* family number
*/
if (first->anchor->num_raid_devs == 0 &&
sec->anchor->num_raid_devs > 0) {
int i;
struct intel_dev *dv;
struct imsm_dev *dev;
/* we need to copy raid device info from sec if an allocation
* fails here we don't associate the spare
*/
for (i = 0; i < sec->anchor->num_raid_devs; i++) {
dv = malloc(sizeof(*dv));
if (!dv)
break;
dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
if (!dev) {
free(dv);
break;
}
dv->dev = dev;
dv->index = i;
dv->next = first->devlist;
first->devlist = dv;
}
if (i < sec->anchor->num_raid_devs) {
/* allocation failure */
free_devlist(first);
fprintf(stderr, "imsm: failed to associate spare\n");
return 3;
}
first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
first->anchor->orig_family_num = sec->anchor->orig_family_num;
first->anchor->family_num = sec->anchor->family_num;
memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
for (i = 0; i < sec->anchor->num_raid_devs; i++)
imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
}
return 0;
}
static void fd2devname(int fd, char *name)
{
struct stat st;
char path[256];
char dname[PATH_MAX];
char *nm;
int rv;
name[0] = '\0';
if (fstat(fd, &st) != 0)
return;
sprintf(path, "/sys/dev/block/%d:%d",
major(st.st_rdev), minor(st.st_rdev));
rv = readlink(path, dname, sizeof(dname));
if (rv <= 0)
return;
dname[rv] = '\0';
nm = strrchr(dname, '/');
nm++;
snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
}
extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
static int imsm_read_serial(int fd, char *devname,
__u8 serial[MAX_RAID_SERIAL_LEN])
{
unsigned char scsi_serial[255];
int rv;
int rsp_len;
int len;
char *dest;
char *src;
char *rsp_buf;
int i;
memset(scsi_serial, 0, sizeof(scsi_serial));
rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
memset(serial, 0, MAX_RAID_SERIAL_LEN);
fd2devname(fd, (char *) serial);
return 0;
}
if (rv != 0) {
if (devname)
fprintf(stderr,
Name ": Failed to retrieve serial for %s\n",
devname);
return rv;
}
rsp_len = scsi_serial[3];
if (!rsp_len) {
if (devname)
fprintf(stderr,
Name ": Failed to retrieve serial for %s\n",
devname);
return 2;
}
rsp_buf = (char *) &scsi_serial[4];
/* trim all whitespace and non-printable characters and convert
* ':' to ';'
*/
for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
src = &rsp_buf[i];
if (*src > 0x20) {
/* ':' is reserved for use in placeholder serial
* numbers for missing disks
*/
if (*src == ':')
*dest++ = ';';
else
*dest++ = *src;
}
}
len = dest - rsp_buf;
dest = rsp_buf;
/* truncate leading characters */
if (len > MAX_RAID_SERIAL_LEN) {
dest += len - MAX_RAID_SERIAL_LEN;
len = MAX_RAID_SERIAL_LEN;
}
memset(serial, 0, MAX_RAID_SERIAL_LEN);
memcpy(serial, dest, len);
return 0;
}
static int serialcmp(__u8 *s1, __u8 *s2)
{
return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
}
static void serialcpy(__u8 *dest, __u8 *src)
{
strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
}
#ifndef MDASSEMBLE
static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
{
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (serialcmp(dl->serial, serial) == 0)
break;
return dl;
}
#endif
static struct imsm_disk *
__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
{
int i;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, i);
if (serialcmp(disk->serial, serial) == 0) {
if (idx)
*idx = i;
return disk;
}
}
return NULL;
}
static int
load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
{
struct imsm_disk *disk;
struct dl *dl;
struct stat stb;
int rv;
char name[40];
__u8 serial[MAX_RAID_SERIAL_LEN];
rv = imsm_read_serial(fd, devname, serial);
if (rv != 0)
return 2;
dl = calloc(1, sizeof(*dl));
if (!dl) {
if (devname)
fprintf(stderr,
Name ": failed to allocate disk buffer for %s\n",
devname);
return 2;
}
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->disks;
dl->fd = keep_fd ? fd : -1;
assert(super->disks == NULL);
super->disks = dl;
serialcpy(dl->serial, serial);
dl->index = -2;
dl->e = NULL;
fd2devname(fd, name);
if (devname)
dl->devname = strdup(devname);
else
dl->devname = strdup(name);
/* look up this disk's index in the current anchor */
disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
if (disk) {
dl->disk = *disk;
/* only set index on disks that are a member of a
* populated contianer, i.e. one with raid_devs
*/
if (is_failed(&dl->disk))
dl->index = -2;
else if (is_spare(&dl->disk))
dl->index = -1;
}
return 0;
}
#ifndef MDASSEMBLE
/* When migrating map0 contains the 'destination' state while map1
* contains the current state. When not migrating map0 contains the
* current state. This routine assumes that map[0].map_state is set to
* the current array state before being called.
*
* Migration is indicated by one of the following states
* 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
* 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
* map1state=unitialized)
* 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
* map1state=normal)
* 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
* map1state=degraded)
*/
static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
{
struct imsm_map *dest;
struct imsm_map *src = get_imsm_map(dev, 0);
dev->vol.migr_state = 1;
set_migr_type(dev, migr_type);
dev->vol.curr_migr_unit = 0;
dest = get_imsm_map(dev, 1);
/* duplicate and then set the target end state in map[0] */
memcpy(dest, src, sizeof_imsm_map(src));
if ((migr_type == MIGR_REBUILD) ||
(migr_type == MIGR_GEN_MIGR)) {
__u32 ord;
int i;
for (i = 0; i < src->num_members; i++) {
ord = __le32_to_cpu(src->disk_ord_tbl[i]);
set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
}
}
src->map_state = to_state;
}
static void end_migration(struct imsm_dev *dev, __u8 map_state)
{
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
int i, j;
/* merge any IMSM_ORD_REBUILD bits that were not successfully
* completed in the last migration.
*
* FIXME add support for raid-level-migration
*/
for (i = 0; i < prev->num_members; i++)
for (j = 0; j < map->num_members; j++)
/* during online capacity expansion
* disks position can be changed if takeover is used
*/
if (ord_to_idx(map->disk_ord_tbl[j]) ==
ord_to_idx(prev->disk_ord_tbl[i])) {
map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
break;
}
dev->vol.migr_state = 0;
dev->vol.migr_type = 0;
dev->vol.curr_migr_unit = 0;
map->map_state = map_state;
}
#endif
static int parse_raid_devices(struct intel_super *super)
{
int i;
struct imsm_dev *dev_new;
size_t len, len_migr;
size_t max_len = 0;
size_t space_needed = 0;
struct imsm_super *mpb = super->anchor;
for (i = 0; i < super->anchor->num_raid_devs; i++) {
struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
struct intel_dev *dv;
len = sizeof_imsm_dev(dev_iter, 0);
len_migr = sizeof_imsm_dev(dev_iter, 1);
if (len_migr > len)
space_needed += len_migr - len;
dv = malloc(sizeof(*dv));
if (!dv)
return 1;
if (max_len < len_migr)
max_len = len_migr;
if (max_len > len_migr)
space_needed += max_len - len_migr;
dev_new = malloc(max_len);
if (!dev_new) {
free(dv);
return 1;
}
imsm_copy_dev(dev_new, dev_iter);
dv->dev = dev_new;
dv->index = i;
dv->next = super->devlist;
super->devlist = dv;
}
/* ensure that super->buf is large enough when all raid devices
* are migrating
*/
if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
void *buf;
len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
if (posix_memalign(&buf, 512, len) != 0)
return 1;
memcpy(buf, super->buf, super->len);
memset(buf + super->len, 0, len - super->len);
free(super->buf);
super->buf = buf;
super->len = len;
}
return 0;
}
/* retrieve a pointer to the bbm log which starts after all raid devices */
struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
{
void *ptr = NULL;
if (__le32_to_cpu(mpb->bbm_log_size)) {
ptr = mpb;
ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
}
return ptr;
}
static void __free_imsm(struct intel_super *super, int free_disks);
/* load_imsm_mpb - read matrix metadata
* allocates super->mpb to be freed by free_imsm
*/
static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
{
unsigned long long dsize;
unsigned long long sectors;
struct stat;
struct imsm_super *anchor;
__u32 check_sum;
get_dev_size(fd, NULL, &dsize);
if (dsize < 1024) {
if (devname)
fprintf(stderr,
Name ": %s: device to small for imsm\n",
devname);
return 1;
}
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (posix_memalign((void**)&anchor, 512, 512) != 0) {
if (devname)
fprintf(stderr,
Name ": Failed to allocate imsm anchor buffer"
" on %s\n", devname);
return 1;
}
if (read(fd, anchor, 512) != 512) {
if (devname)
fprintf(stderr,
Name ": Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
free(anchor);
return 1;
}
if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
if (devname)
fprintf(stderr,
Name ": no IMSM anchor on %s\n", devname);
free(anchor);
return 2;
}
__free_imsm(super, 0);
/* reload capability and hba */
/* capability and hba must be updated with new super allocation */
find_intel_hba_capability(fd, super, devname);
super->len = ROUND_UP(anchor->mpb_size, 512);
if (posix_memalign(&super->buf, 512, super->len) != 0) {
if (devname)
fprintf(stderr,
Name ": unable to allocate %zu byte mpb buffer\n",
super->len);
free(anchor);
return 2;
}
memcpy(super->buf, anchor, 512);
sectors = mpb_sectors(anchor) - 1;
free(anchor);
if (!sectors) {
check_sum = __gen_imsm_checksum(super->anchor);
if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
if (devname)
fprintf(stderr,
Name ": IMSM checksum %x != %x on %s\n",
check_sum,
__le32_to_cpu(super->anchor->check_sum),
devname);
return 2;
}
return 0;
}
/* read the extended mpb */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to extended mpb on %s: %s\n",
devname, strerror(errno));
return 1;
}
if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
if (devname)
fprintf(stderr,
Name ": Cannot read extended mpb on %s: %s\n",
devname, strerror(errno));
return 2;
}
check_sum = __gen_imsm_checksum(super->anchor);
if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
if (devname)
fprintf(stderr,
Name ": IMSM checksum %x != %x on %s\n",
check_sum, __le32_to_cpu(super->anchor->check_sum),
devname);
return 3;
}
/* FIXME the BBM log is disk specific so we cannot use this global
* buffer for all disks. Ok for now since we only look at the global
* bbm_log_size parameter to gate assembly
*/
super->bbm_log = __get_imsm_bbm_log(super->anchor);
return 0;
}
static int
load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
{
int err;
err = load_imsm_mpb(fd, super, devname);
if (err)
return err;
err = load_imsm_disk(fd, super, devname, keep_fd);
if (err)
return err;
err = parse_raid_devices(super);
return err;
}
static void __free_imsm_disk(struct dl *d)
{
if (d->fd >= 0)
close(d->fd);
if (d->devname)
free(d->devname);
if (d->e)
free(d->e);
free(d);
}
static void free_imsm_disks(struct intel_super *super)
{
struct dl *d;
while (super->disks) {
d = super->disks;
super->disks = d->next;
__free_imsm_disk(d);
}
while (super->disk_mgmt_list) {
d = super->disk_mgmt_list;
super->disk_mgmt_list = d->next;
__free_imsm_disk(d);
}
while (super->missing) {
d = super->missing;
super->missing = d->next;
__free_imsm_disk(d);
}
}
/* free all the pieces hanging off of a super pointer */
static void __free_imsm(struct intel_super *super, int free_disks)
{
struct intel_hba *elem, *next;
if (super->buf) {
free(super->buf);
super->buf = NULL;
}
/* unlink capability description */
super->orom = NULL;
if (free_disks)
free_imsm_disks(super);
free_devlist(super);
elem = super->hba;
while (elem) {
if (elem->path)
free((void *)elem->path);
next = elem->next;
free(elem);
elem = next;
}
super->hba = NULL;
}
static void free_imsm(struct intel_super *super)
{
__free_imsm(super, 1);
free(super);
}
static void free_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
if (!super)
return;
free_imsm(super);
st->sb = NULL;
}
static struct intel_super *alloc_super(void)
{
struct intel_super *super = malloc(sizeof(*super));
if (super) {
memset(super, 0, sizeof(*super));
super->current_vol = -1;
super->create_offset = ~((__u32 ) 0);
}
return super;
}
/*
* find and allocate hba and OROM/EFI based on valid fd of RAID component device
*/
static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
{
struct sys_dev *hba_name;
int rv = 0;
if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
super->orom = NULL;
super->hba = NULL;
return 0;
}
hba_name = find_disk_attached_hba(fd, NULL);
if (!hba_name) {
if (devname)
fprintf(stderr,
Name ": %s is not attached to Intel(R) RAID controller.\n",
devname);
return 1;
}
rv = attach_hba_to_super(super, hba_name);
if (rv == 2) {
if (devname) {
struct intel_hba *hba = super->hba;
fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
"controller (%s),\n"
" but the container is assigned to Intel(R) "
"%s RAID controller (",
devname,
hba_name->path,
hba_name->pci_id ? : "Err!",
get_sys_dev_type(hba_name->type));
while (hba) {
fprintf(stderr, "%s", hba->pci_id ? : "Err!");
if (hba->next)
fprintf(stderr, ", ");
hba = hba->next;
}
fprintf(stderr, ").\n"
" Mixing devices attached to different controllers "
"is not allowed.\n");
}
free_sys_dev(&hba_name);
return 2;
}
super->orom = find_imsm_capability(hba_name->type);
free_sys_dev(&hba_name);
if (!super->orom)
return 3;
return 0;
}
#ifndef MDASSEMBLE
/* find_missing - helper routine for load_super_imsm_all that identifies
* disks that have disappeared from the system. This routine relies on
* the mpb being uptodate, which it is at load time.
*/
static int find_missing(struct intel_super *super)
{
int i;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
struct imsm_disk *disk;
for (i = 0; i < mpb->num_disks; i++) {
disk = __get_imsm_disk(mpb, i);
dl = serial_to_dl(disk->serial, super);
if (dl)
continue;
dl = malloc(sizeof(*dl));
if (!dl)
return 1;
dl->major = 0;
dl->minor = 0;
dl->fd = -1;
dl->devname = strdup("missing");
dl->index = i;
serialcpy(dl->serial, disk->serial);
dl->disk = *disk;
dl->e = NULL;
dl->next = super->missing;
super->missing = dl;
}
return 0;
}
static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
{
struct intel_disk *idisk = disk_list;
while (idisk) {
if (serialcmp(idisk->disk.serial, serial) == 0)
break;
idisk = idisk->next;
}
return idisk;
}
static int __prep_thunderdome(struct intel_super **table, int tbl_size,
struct intel_super *super,
struct intel_disk **disk_list)
{
struct imsm_disk *d = &super->disks->disk;
struct imsm_super *mpb = super->anchor;
int i, j;
for (i = 0; i < tbl_size; i++) {
struct imsm_super *tbl_mpb = table[i]->anchor;
struct imsm_disk *tbl_d = &table[i]->disks->disk;
if (tbl_mpb->family_num == mpb->family_num) {
if (tbl_mpb->check_sum == mpb->check_sum) {
dprintf("%s: mpb from %d:%d matches %d:%d\n",
__func__, super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
break;
}
if (((is_configured(d) && !is_configured(tbl_d)) ||
is_configured(d) == is_configured(tbl_d)) &&
tbl_mpb->generation_num < mpb->generation_num) {
/* current version of the mpb is a
* better candidate than the one in
* super_table, but copy over "cross
* generational" status
*/
struct intel_disk *idisk;
dprintf("%s: mpb from %d:%d replaces %d:%d\n",
__func__, super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
idisk = disk_list_get(tbl_d->serial, *disk_list);
if (idisk && is_failed(&idisk->disk))
tbl_d->status |= FAILED_DISK;
break;
} else {
struct intel_disk *idisk;
struct imsm_disk *disk;
/* tbl_mpb is more up to date, but copy
* over cross generational status before
* returning
*/
disk = __serial_to_disk(d->serial, mpb, NULL);
if (disk && is_failed(disk))
d->status |= FAILED_DISK;
idisk = disk_list_get(d->serial, *disk_list);
if (idisk) {
idisk->owner = i;
if (disk && is_configured(disk))
idisk->disk.status |= CONFIGURED_DISK;
}
dprintf("%s: mpb from %d:%d prefer %d:%d\n",
__func__, super->disks->major,
super->disks->minor,
table[i]->disks->major,
table[i]->disks->minor);
return tbl_size;
}
}
}
if (i >= tbl_size)
table[tbl_size++] = super;
else
table[i] = super;
/* update/extend the merged list of imsm_disk records */
for (j = 0; j < mpb->num_disks; j++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, j);
struct intel_disk *idisk;
idisk = disk_list_get(disk->serial, *disk_list);
if (idisk) {
idisk->disk.status |= disk->status;
if (is_configured(&idisk->disk) ||
is_failed(&idisk->disk))
idisk->disk.status &= ~(SPARE_DISK);
} else {
idisk = calloc(1, sizeof(*idisk));
if (!idisk)
return -1;
idisk->owner = IMSM_UNKNOWN_OWNER;
idisk->disk = *disk;
idisk->next = *disk_list;
*disk_list = idisk;
}
if (serialcmp(idisk->disk.serial, d->serial) == 0)
idisk->owner = i;
}
return tbl_size;
}
static struct intel_super *
validate_members(struct intel_super *super, struct intel_disk *disk_list,
const int owner)
{
struct imsm_super *mpb = super->anchor;
int ok_count = 0;
int i;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk = __get_imsm_disk(mpb, i);
struct intel_disk *idisk;
idisk = disk_list_get(disk->serial, disk_list);
if (idisk) {
if (idisk->owner == owner ||
idisk->owner == IMSM_UNKNOWN_OWNER)
ok_count++;
else
dprintf("%s: '%.16s' owner %d != %d\n",
__func__, disk->serial, idisk->owner,
owner);
} else {
dprintf("%s: unknown disk %x [%d]: %.16s\n",
__func__, __le32_to_cpu(mpb->family_num), i,
disk->serial);
break;
}
}
if (ok_count == mpb->num_disks)
return super;
return NULL;
}
static void show_conflicts(__u32 family_num, struct intel_super *super_list)
{
struct intel_super *s;
for (s = super_list; s; s = s->next) {
if (family_num != s->anchor->family_num)
continue;
fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
__le32_to_cpu(family_num), s->disks->devname);
}
}
static struct intel_super *
imsm_thunderdome(struct intel_super **super_list, int len)
{
struct intel_super *super_table[len];
struct intel_disk *disk_list = NULL;
struct intel_super *champion, *spare;
struct intel_super *s, **del;
int tbl_size = 0;
int conflict;
int i;
memset(super_table, 0, sizeof(super_table));
for (s = *super_list; s; s = s->next)
tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
for (i = 0; i < tbl_size; i++) {
struct imsm_disk *d;
struct intel_disk *idisk;
struct imsm_super *mpb = super_table[i]->anchor;
s = super_table[i];
d = &s->disks->disk;
/* 'd' must appear in merged disk list for its
* configuration to be valid
*/
idisk = disk_list_get(d->serial, disk_list);
if (idisk && idisk->owner == i)
s = validate_members(s, disk_list, i);
else
s = NULL;
if (!s)
dprintf("%s: marking family: %#x from %d:%d offline\n",
__func__, mpb->family_num,
super_table[i]->disks->major,
super_table[i]->disks->minor);
super_table[i] = s;
}
/* This is where the mdadm implementation differs from the Windows
* driver which has no strict concept of a container. We can only
* assemble one family from a container, so when returning a prodigal
* array member to this system the code will not be able to disambiguate
* the container contents that should be assembled ("foreign" versus
* "local"). It requires user intervention to set the orig_family_num
* to a new value to establish a new container. The Windows driver in
* this situation fixes up the volume name in place and manages the
* foreign array as an independent entity.
*/
s = NULL;
spare = NULL;
conflict = 0;
for (i = 0; i < tbl_size; i++) {
struct intel_super *tbl_ent = super_table[i];
int is_spare = 0;
if (!tbl_ent)
continue;
if (tbl_ent->anchor->num_raid_devs == 0) {
spare = tbl_ent;
is_spare = 1;
}
if (s && !is_spare) {
show_conflicts(tbl_ent->anchor->family_num, *super_list);
conflict++;
} else if (!s && !is_spare)
s = tbl_ent;
}
if (!s)
s = spare;
if (!s) {
champion = NULL;
goto out;
}
champion = s;
if (conflict)
fprintf(stderr, "Chose family %#x on '%s', "
"assemble conflicts to new container with '--update=uuid'\n",
__le32_to_cpu(s->anchor->family_num), s->disks->devname);
/* collect all dl's onto 'champion', and update them to
* champion's version of the status
*/
for (s = *super_list; s; s = s->next) {
struct imsm_super *mpb = champion->anchor;
struct dl *dl = s->disks;
if (s == champion)
continue;
for (i = 0; i < mpb->num_disks; i++) {
struct imsm_disk *disk;
disk = __serial_to_disk(dl->serial, mpb, &dl->index);
if (disk) {
dl->disk = *disk;
/* only set index on disks that are a member of
* a populated contianer, i.e. one with
* raid_devs
*/
if (is_failed(&dl->disk))
dl->index = -2;
else if (is_spare(&dl->disk))
dl->index = -1;
break;
}
}
if (i >= mpb->num_disks) {
struct intel_disk *idisk;
idisk = disk_list_get(dl->serial, disk_list);
if (idisk && is_spare(&idisk->disk) &&
!is_failed(&idisk->disk) && !is_configured(&idisk->disk))
dl->index = -1;
else {
dl->index = -2;
continue;
}
}
dl->next = champion->disks;
champion->disks = dl;
s->disks = NULL;
}
/* delete 'champion' from super_list */
for (del = super_list; *del; ) {
if (*del == champion) {
*del = (*del)->next;
break;
} else
del = &(*del)->next;
}
champion->next = NULL;
out:
while (disk_list) {
struct intel_disk *idisk = disk_list;
disk_list = disk_list->next;
free(idisk);
}
return champion;
}
static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
char *devname)
{
struct mdinfo *sra;
struct intel_super *super_list = NULL;
struct intel_super *super = NULL;
int devnum = fd2devnum(fd);
struct mdinfo *sd;
int retry;
int err = 0;
int i;
/* check if 'fd' an opened container */
sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "imsm") != 0) {
err = 1;
goto error;
}
/* load all mpbs */
for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
struct intel_super *s = alloc_super();
char nm[32];
int dfd;
int rv;
err = 1;
if (!s)
goto error;
s->next = super_list;
super_list = s;
err = 2;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0)
goto error;
rv = find_intel_hba_capability(dfd, s, devname);
/* no orom/efi or non-intel hba of the disk */
if (rv != 0)
goto error;
err = load_and_parse_mpb(dfd, s, NULL, 1);
/* retry the load if we might have raced against mdmon */
if (err == 3 && mdmon_running(devnum))
for (retry = 0; retry < 3; retry++) {
usleep(3000);
err = load_and_parse_mpb(dfd, s, NULL, 1);
if (err != 3)
break;
}
if (err)
goto error;
}
/* all mpbs enter, maybe one leaves */
super = imsm_thunderdome(&super_list, i);
if (!super) {
err = 1;
goto error;
}
if (find_missing(super) != 0) {
free_imsm(super);
err = 2;
goto error;
}
err = 0;
error:
while (super_list) {
struct intel_super *s = super_list;
super_list = super_list->next;
free_imsm(s);
}
sysfs_free(sra);
if (err)
return err;
*sbp = super;
st->container_dev = devnum;
if (err == 0 && st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
return 0;
}
static int load_container_imsm(struct supertype *st, int fd, char *devname)
{
return load_super_imsm_all(st, fd, &st->sb, devname);
}
#endif
static int load_super_imsm(struct supertype *st, int fd, char *devname)
{
struct intel_super *super;
int rv;
if (test_partition(fd))
/* IMSM not allowed on partitions */
return 1;
free_super_imsm(st);
super = alloc_super();
if (!super) {
fprintf(stderr,
Name ": malloc of %zu failed.\n",
sizeof(*super));
return 1;
}
/* Load hba and capabilities if they exist.
* But do not preclude loading metadata in case capabilities or hba are
* non-compliant and ignore_hw_compat is set.
*/
rv = find_intel_hba_capability(fd, super, devname);
/* no orom/efi or non-intel hba of the disk */
if ((rv != 0) && (st->ignore_hw_compat == 0)) {
if (devname)
fprintf(stderr,
Name ": No OROM/EFI properties for %s\n", devname);
free_imsm(super);
return 2;
}
rv = load_and_parse_mpb(fd, super, devname, 0);
if (rv) {
if (devname)
fprintf(stderr,
Name ": Failed to load all information "
"sections on %s\n", devname);
free_imsm(super);
return rv;
}
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
return 0;
}
static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
{
if (info->level == 1)
return 128;
return info->chunk_size >> 9;
}
static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
{
__u32 num_stripes;
num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
num_stripes /= num_domains;
return num_stripes;
}
static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
{
if (info->level == 1)
return info->size * 2;
else
return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
}
static void imsm_update_version_info(struct intel_super *super)
{
/* update the version and attributes */
struct imsm_super *mpb = super->anchor;
char *version;
struct imsm_dev *dev;
struct imsm_map *map;
int i;
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
if (__le32_to_cpu(dev->size_high) > 0)
mpb->attributes |= MPB_ATTRIB_2TB;
/* FIXME detect when an array spans a port multiplier */
#if 0
mpb->attributes |= MPB_ATTRIB_PM;
#endif
if (mpb->num_raid_devs > 1 ||
mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
version = MPB_VERSION_ATTRIBS;
switch (get_imsm_raid_level(map)) {
case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
}
} else {
if (map->num_members >= 5)
version = MPB_VERSION_5OR6_DISK_ARRAY;
else if (dev->status == DEV_CLONE_N_GO)
version = MPB_VERSION_CNG;
else if (get_imsm_raid_level(map) == 5)
version = MPB_VERSION_RAID5;
else if (map->num_members >= 3)
version = MPB_VERSION_3OR4_DISK_ARRAY;
else if (get_imsm_raid_level(map) == 1)
version = MPB_VERSION_RAID1;
else
version = MPB_VERSION_RAID0;
}
strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
}
}
static int check_name(struct intel_super *super, char *name, int quiet)
{
struct imsm_super *mpb = super->anchor;
char *reason = NULL;
int i;
if (strlen(name) > MAX_RAID_SERIAL_LEN)
reason = "must be 16 characters or less";
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
reason = "already exists";
break;
}
}
if (reason && !quiet)
fprintf(stderr, Name ": imsm volume name %s\n", reason);
return !reason;
}
static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
/* We are creating a volume inside a pre-existing container.
* so st->sb is already set.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct intel_dev *dv;
struct imsm_dev *dev;
struct imsm_vol *vol;
struct imsm_map *map;
int idx = mpb->num_raid_devs;
int i;
unsigned long long array_blocks;
size_t size_old, size_new;
__u32 num_data_stripes;
if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
fprintf(stderr, Name": This imsm-container already has the "
"maximum of %d volumes\n", super->orom->vpa);
return 0;
}
/* ensure the mpb is large enough for the new data */
size_old = __le32_to_cpu(mpb->mpb_size);
size_new = disks_to_mpb_size(info->nr_disks);
if (size_new > size_old) {
void *mpb_new;
size_t size_round = ROUND_UP(size_new, 512);
if (posix_memalign(&mpb_new, 512, size_round) != 0) {
fprintf(stderr, Name": could not allocate new mpb\n");
return 0;
}
memcpy(mpb_new, mpb, size_old);
free(mpb);
mpb = mpb_new;
super->anchor = mpb_new;
mpb->mpb_size = __cpu_to_le32(size_new);
memset(mpb_new + size_old, 0, size_round - size_old);
}
super->current_vol = idx;
/* when creating the first raid device in this container set num_disks
* to zero, i.e. delete this spare and add raid member devices in
* add_to_super_imsm_volume()
*/
if (super->current_vol == 0)
mpb->num_disks = 0;
if (!check_name(super, name, 0))
return 0;
dv = malloc(sizeof(*dv));
if (!dv) {
fprintf(stderr, Name ": failed to allocate device list entry\n");
return 0;
}
dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
if (!dev) {
free(dv);
fprintf(stderr, Name": could not allocate raid device\n");
return 0;
}
strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
if (info->level == 1)
array_blocks = info_to_blocks_per_member(info);
else
array_blocks = calc_array_size(info->level, info->raid_disks,
info->layout, info->chunk_size,
info->size*2);
/* round array size down to closest MB */
array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
dev->size_low = __cpu_to_le32((__u32) array_blocks);
dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
vol = &dev->vol;
vol->migr_state = 0;
set_migr_type(dev, MIGR_INIT);
vol->dirty = 0;
vol->curr_migr_unit = 0;
map = get_imsm_map(dev, 0);
map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
map->failed_disk_num = ~0;
map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
IMSM_T_STATE_NORMAL;
map->ddf = 1;
if (info->level == 1 && info->raid_disks > 2) {
free(dev);
free(dv);
fprintf(stderr, Name": imsm does not support more than 2 disks"
"in a raid1 volume\n");
return 0;
}
map->raid_level = info->level;
if (info->level == 10) {
map->raid_level = 1;
map->num_domains = info->raid_disks / 2;
} else if (info->level == 1)
map->num_domains = info->raid_disks;
else
map->num_domains = 1;
num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
map->num_data_stripes = __cpu_to_le32(num_data_stripes);
map->num_members = info->raid_disks;
for (i = 0; i < map->num_members; i++) {
/* initialized in add_to_super */
set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
}
mpb->num_raid_devs++;
dv->dev = dev;
dv->index = super->current_vol;
dv->next = super->devlist;
super->devlist = dv;
imsm_update_version_info(super);
return 1;
}
static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
/* This is primarily called by Create when creating a new array.
* We will then get add_to_super called for each component, and then
* write_init_super called to write it out to each device.
* For IMSM, Create can create on fresh devices or on a pre-existing
* array.
* To create on a pre-existing array a different method will be called.
* This one is just for fresh drives.
*/
struct intel_super *super;
struct imsm_super *mpb;
size_t mpb_size;
char *version;
if (st->sb)
return init_super_imsm_volume(st, info, size, name, homehost, uuid);
if (info)
mpb_size = disks_to_mpb_size(info->nr_disks);
else
mpb_size = 512;
super = alloc_super();
if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
free(super);
super = NULL;
}
if (!super) {
fprintf(stderr, Name
": %s could not allocate superblock\n", __func__);
return 0;
}
memset(super->buf, 0, mpb_size);
mpb = super->buf;
mpb->mpb_size = __cpu_to_le32(mpb_size);
st->sb = super;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
version = (char *) mpb->sig;
strcpy(version, MPB_SIGNATURE);
version += strlen(MPB_SIGNATURE);
strcpy(version, MPB_VERSION_RAID0);
return 1;
}
#ifndef MDASSEMBLE
static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
struct imsm_dev *dev;
struct imsm_map *map;
int slot;
dev = get_imsm_dev(super, super->current_vol);
map = get_imsm_map(dev, 0);
if (! (dk->state & (1<<MD_DISK_SYNC))) {
fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
devname);
return 1;
}
if (fd == -1) {
/* we're doing autolayout so grab the pre-marked (in
* validate_geometry) raid_disk
*/
for (dl = super->disks; dl; dl = dl->next)
if (dl->raiddisk == dk->raid_disk)
break;
} else {
for (dl = super->disks; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
}
if (!dl) {
fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
return 1;
}
/* add a pristine spare to the metadata */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
/* Check the device has not already been added */
slot = get_imsm_disk_slot(map, dl->index);
if (slot >= 0 &&
(get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
fprintf(stderr, Name ": %s has been included in this array twice\n",
devname);
return 1;
}
set_imsm_ord_tbl_ent(map, dk->number, dl->index);
dl->disk.status = CONFIGURED_DISK;
/* if we are creating the first raid device update the family number */
if (super->current_vol == 0) {
__u32 sum;
struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
if (!_dev || !_disk) {
fprintf(stderr, Name ": BUG mpb setup error\n");
return 1;
}
*_dev = *dev;
*_disk = dl->disk;
sum = random32();
sum += __gen_imsm_checksum(mpb);
mpb->family_num = __cpu_to_le32(sum);
mpb->orig_family_num = mpb->family_num;
}
return 0;
}
static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname)
{
struct intel_super *super = st->sb;
struct dl *dd;
unsigned long long size;
__u32 id;
int rv;
struct stat stb;
/* If we are on an RAID enabled platform check that the disk is
* attached to the raid controller.
* We do not need to test disks attachment for container based additions,
* they shall be already tested when container was created/assembled.
*/
rv = find_intel_hba_capability(fd, super, devname);
/* no orom/efi or non-intel hba of the disk */
if (rv != 0) {
dprintf("capability: %p fd: %d ret: %d\n",
super->orom, fd, rv);
return 1;
}
if (super->current_vol >= 0)
return add_to_super_imsm_volume(st, dk, fd, devname);
fstat(fd, &stb);
dd = malloc(sizeof(*dd));
if (!dd) {
fprintf(stderr,
Name ": malloc failed %s:%d.\n", __func__, __LINE__);
return 1;
}
memset(dd, 0, sizeof(*dd));
dd->major = major(stb.st_rdev);
dd->minor = minor(stb.st_rdev);
dd->index = -1;
dd->devname = devname ? strdup(devname) : NULL;
dd->fd = fd;
dd->e = NULL;
dd->action = DISK_ADD;
rv = imsm_read_serial(fd, devname, dd->serial);
if (rv) {
fprintf(stderr,
Name ": failed to retrieve scsi serial, aborting\n");
free(dd);
abort();
}
get_dev_size(fd, NULL, &size);
size /= 512;
serialcpy(dd->disk.serial, dd->serial);
dd->disk.total_blocks = __cpu_to_le32(size);
dd->disk.status = SPARE_DISK;
if (sysfs_disk_to_scsi_id(fd, &id) == 0)
dd->disk.scsi_id = __cpu_to_le32(id);
else
dd->disk.scsi_id = __cpu_to_le32(0);
if (st->update_tail) {
dd->next = super->disk_mgmt_list;
super->disk_mgmt_list = dd;
} else {
dd->next = super->disks;
super->disks = dd;
super->updates_pending++;
}
return 0;
}
static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
{
struct intel_super *super = st->sb;
struct dl *dd;
/* remove from super works only in mdmon - for communication
* manager - monitor. Check if communication memory buffer
* is prepared.
*/
if (!st->update_tail) {
fprintf(stderr,
Name ": %s shall be used in mdmon context only"
"(line %d).\n", __func__, __LINE__);
return 1;
}
dd = malloc(sizeof(*dd));
if (!dd) {
fprintf(stderr,
Name ": malloc failed %s:%d.\n", __func__, __LINE__);
return 1;
}
memset(dd, 0, sizeof(*dd));
dd->major = dk->major;
dd->minor = dk->minor;
dd->index = -1;
dd->fd = -1;
dd->disk.status = SPARE_DISK;
dd->action = DISK_REMOVE;
dd->next = super->disk_mgmt_list;
super->disk_mgmt_list = dd;
return 0;
}
static int store_imsm_mpb(int fd, struct imsm_super *mpb);
static union {
char buf[512];
struct imsm_super anchor;
} spare_record __attribute__ ((aligned(512)));
/* spare records have their own family number and do not have any defined raid
* devices
*/
static int write_super_imsm_spares(struct intel_super *super, int doclose)
{
struct imsm_super *mpb = super->anchor;
struct imsm_super *spare = &spare_record.anchor;
__u32 sum;
struct dl *d;
spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
spare->generation_num = __cpu_to_le32(1UL),
spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
spare->num_disks = 1,
spare->num_raid_devs = 0,
spare->cache_size = mpb->cache_size,
spare->pwr_cycle_count = __cpu_to_le32(1),
snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
MPB_SIGNATURE MPB_VERSION_RAID0);
for (d = super->disks; d; d = d->next) {
if (d->index != -1)
continue;
spare->disk[0] = d->disk;
sum = __gen_imsm_checksum(spare);
spare->family_num = __cpu_to_le32(sum);
spare->orig_family_num = 0;
sum = __gen_imsm_checksum(spare);
spare->check_sum = __cpu_to_le32(sum);
if (store_imsm_mpb(d->fd, spare)) {
fprintf(stderr, "%s: failed for device %d:%d %s\n",
__func__, d->major, d->minor, strerror(errno));
return 1;
}
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
return 0;
}
static int write_super_imsm(struct supertype *st, int doclose)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *d;
__u32 generation;
__u32 sum;
int spares = 0;
int i;
__u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
int num_disks = 0;
/* 'generation' is incremented everytime the metadata is written */
generation = __le32_to_cpu(mpb->generation_num);
generation++;
mpb->generation_num = __cpu_to_le32(generation);
/* fix up cases where previous mdadm releases failed to set
* orig_family_num
*/
if (mpb->orig_family_num == 0)
mpb->orig_family_num = mpb->family_num;
for (d = super->disks; d; d = d->next) {
if (d->index == -1)
spares++;
else {
mpb->disk[d->index] = d->disk;
num_disks++;
}
}
for (d = super->missing; d; d = d->next) {
mpb->disk[d->index] = d->disk;
num_disks++;
}
mpb->num_disks = num_disks;
mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = __get_imsm_dev(mpb, i);
struct imsm_dev *dev2 = get_imsm_dev(super, i);
if (dev && dev2) {
imsm_copy_dev(dev, dev2);
mpb_size += sizeof_imsm_dev(dev, 0);
}
}
mpb_size += __le32_to_cpu(mpb->bbm_log_size);
mpb->mpb_size = __cpu_to_le32(mpb_size);
/* recalculate checksum */
sum = __gen_imsm_checksum(mpb);
mpb->check_sum = __cpu_to_le32(sum);
/* write the mpb for disks that compose raid devices */
for (d = super->disks; d ; d = d->next) {
if (d->index < 0)
continue;
if (store_imsm_mpb(d->fd, mpb))
fprintf(stderr, "%s: failed for device %d:%d %s\n",
__func__, d->major, d->minor, strerror(errno));
if (doclose) {
close(d->fd);
d->fd = -1;
}
}
if (spares)
return write_super_imsm_spares(super, doclose);
return 0;
}
static int create_array(struct supertype *st, int dev_idx)
{
size_t len;
struct imsm_update_create_array *u;
struct intel_super *super = st->sb;
struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
struct imsm_map *map = get_imsm_map(dev, 0);
struct disk_info *inf;
struct imsm_disk *disk;
int i;
len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
sizeof(*inf) * map->num_members;
u = malloc(len);
if (!u) {
fprintf(stderr, "%s: failed to allocate update buffer\n",
__func__);
return 1;
}
u->type = update_create_array;
u->dev_idx = dev_idx;
imsm_copy_dev(&u->dev, dev);
inf = get_disk_info(u);
for (i = 0; i < map->num_members; i++) {
int idx = get_imsm_disk_idx(dev, i, -1);
disk = get_imsm_disk(super, idx);
serialcpy(inf[i].serial, disk->serial);
}
append_metadata_update(st, u, len);
return 0;
}
static int mgmt_disk(struct supertype *st)
{
struct intel_super *super = st->sb;
size_t len;
struct imsm_update_add_remove_disk *u;
if (!super->disk_mgmt_list)
return 0;
len = sizeof(*u);
u = malloc(len);
if (!u) {
fprintf(stderr, "%s: failed to allocate update buffer\n",
__func__);
return 1;
}
u->type = update_add_remove_disk;
append_metadata_update(st, u, len);
return 0;
}
static int write_init_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
int current_vol = super->current_vol;
/* we are done with current_vol reset it to point st at the container */
super->current_vol = -1;
if (st->update_tail) {
/* queue the recently created array / added disk
* as a metadata update */
int rv;
/* determine if we are creating a volume or adding a disk */
if (current_vol < 0) {
/* in the mgmt (add/remove) disk case we are running
* in mdmon context, so don't close fd's
*/
return mgmt_disk(st);
} else
rv = create_array(st, current_vol);
return rv;
} else {
struct dl *d;
for (d = super->disks; d; d = d->next)
Kill(d->devname, NULL, 0, 1, 1);
return write_super_imsm(st, 1);
}
}
#endif
static int store_super_imsm(struct supertype *st, int fd)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super ? super->anchor : NULL;
if (!mpb)
return 1;
#ifndef MDASSEMBLE
return store_imsm_mpb(fd, mpb);
#else
return 1;
#endif
}
static int imsm_bbm_log_size(struct imsm_super *mpb)
{
return __le32_to_cpu(mpb->bbm_log_size);
}
#ifndef MDASSEMBLE
static int validate_geometry_imsm_container(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size, char *dev,
unsigned long long *freesize,
int verbose)
{
int fd;
unsigned long long ldsize;
struct intel_super *super=NULL;
int rv = 0;
if (level != LEVEL_CONTAINER)
return 0;
if (!dev)
return 1;
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, dev, &ldsize)) {
close(fd);
return 0;
}
/* capabilities retrieve could be possible
* note that there is no fd for the disks in array.
*/
super = alloc_super();
if (!super) {
fprintf(stderr,
Name ": malloc of %zu failed.\n",
sizeof(*super));
close(fd);
return 0;
}
rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
if (rv != 0) {
#if DEBUG
char str[256];
fd2devname(fd, str);
dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
fd, str, super->orom, rv, raiddisks);
#endif
/* no orom/efi or non-intel hba of the disk */
close(fd);
free_imsm(super);
return 0;
}
close(fd);
if (super->orom && raiddisks > super->orom->tds) {
if (verbose)
fprintf(stderr, Name ": %d exceeds maximum number of"
" platform supported disks: %d\n",
raiddisks, super->orom->tds);
free_imsm(super);
return 0;
}
*freesize = avail_size_imsm(st, ldsize >> 9);
free_imsm(super);
return 1;
}
static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
{
const unsigned long long base_start = e[*idx].start;
unsigned long long end = base_start + e[*idx].size;
int i;
if (base_start == end)
return 0;
*idx = *idx + 1;
for (i = *idx; i < num_extents; i++) {
/* extend overlapping extents */
if (e[i].start >= base_start &&
e[i].start <= end) {
if (e[i].size == 0)
return 0;
if (e[i].start + e[i].size > end)
end = e[i].start + e[i].size;
} else if (e[i].start > end) {
*idx = i;
break;
}
}
return end - base_start;
}
static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
{
/* build a composite disk with all known extents and generate a new
* 'maxsize' given the "all disks in an array must share a common start
* offset" constraint
*/
struct extent *e = calloc(sum_extents, sizeof(*e));
struct dl *dl;
int i, j;
int start_extent;
unsigned long long pos;
unsigned long long start = 0;
unsigned long long maxsize;
unsigned long reserve;
if (!e)
return 0;
/* coalesce and sort all extents. also, check to see if we need to
* reserve space between member arrays
*/
j = 0;
for (dl = super->disks; dl; dl = dl->next) {
if (!dl->e)
continue;
for (i = 0; i < dl->extent_cnt; i++)
e[j++] = dl->e[i];
}
qsort(e, sum_extents, sizeof(*e), cmp_extent);
/* merge extents */
i = 0;
j = 0;
while (i < sum_extents) {
e[j].start = e[i].start;
e[j].size = find_size(e, &i, sum_extents);
j++;
if (e[j-1].size == 0)
break;
}
pos = 0;
maxsize = 0;
start_extent = 0;
i = 0;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize) {
maxsize = esize;
start = pos;
start_extent = i;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
free(e);
if (maxsize == 0)
return 0;
/* FIXME assumes volume at offset 0 is the first volume in a
* container
*/
if (start_extent > 0)
reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
else
reserve = 0;
if (maxsize < reserve)
return 0;
super->create_offset = ~((__u32) 0);
if (start + reserve > super->create_offset)
return 0; /* start overflows create_offset */
super->create_offset = start + reserve;
return maxsize - reserve;
}
static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
{
if (level < 0 || level == 6 || level == 4)
return 0;
/* if we have an orom prevent invalid raid levels */
if (orom)
switch (level) {
case 0: return imsm_orom_has_raid0(orom);
case 1:
if (raiddisks > 2)
return imsm_orom_has_raid1e(orom);
return imsm_orom_has_raid1(orom) && raiddisks == 2;
case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
}
else
return 1; /* not on an Intel RAID platform so anything goes */
return 0;
}
#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
/*
* validate volume parameters with OROM/EFI capabilities
*/
static int
validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
int raiddisks, int *chunk, int verbose)
{
#if DEBUG
verbose = 1;
#endif
/* validate container capabilities */
if (super->orom && raiddisks > super->orom->tds) {
if (verbose)
fprintf(stderr, Name ": %d exceeds maximum number of"
" platform supported disks: %d\n",
raiddisks, super->orom->tds);
return 0;
}
/* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
if (super->orom && (!is_raid_level_supported(super->orom, level,
raiddisks))) {
pr_vrb(": platform does not support raid%d with %d disk%s\n",
level, raiddisks, raiddisks > 1 ? "s" : "");
return 0;
}
if (super->orom && level != 1) {
if (chunk && (*chunk == 0 || *chunk == UnSet))
*chunk = imsm_orom_default_chunk(super->orom);
else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
pr_vrb(": platform does not support a chunk size of: "
"%d\n", *chunk);
return 0;
}
}
if (layout != imsm_level_to_layout(level)) {
if (level == 5)
pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
else if (level == 10)
pr_vrb(": imsm raid 10 only supports the n2 layout\n");
else
pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
layout, level);
return 0;
}
return 1;
}
/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
* FIX ME add ahci details
*/
static int validate_geometry_imsm_volume(struct supertype *st, int level,
int layout, int raiddisks, int *chunk,
unsigned long long size, char *dev,
unsigned long long *freesize,
int verbose)
{
struct stat stb;
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
unsigned long long pos = 0;
unsigned long long maxsize;
struct extent *e;
int i;
/* We must have the container info already read in. */
if (!super)
return 0;
if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
fprintf(stderr, Name ": RAID gemetry validation failed. "
"Cannot proceed with the action(s).\n");
return 0;
}
if (!dev) {
/* General test: make sure there is space for
* 'raiddisks' device extents of size 'size' at a given
* offset
*/
unsigned long long minsize = size;
unsigned long long start_offset = MaxSector;
int dcnt = 0;
if (minsize == 0)
minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
for (dl = super->disks; dl ; dl = dl->next) {
int found = 0;
pos = 0;
i = 0;
e = get_extents(super, dl);
if (!e) continue;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= minsize)
found = 1;
if (found && start_offset == MaxSector) {
start_offset = pos;
break;
} else if (found && pos != start_offset) {
found = 0;
break;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
if (found)
dcnt++;
free(e);
}
if (dcnt < raiddisks) {
if (verbose)
fprintf(stderr, Name ": imsm: Not enough "
"devices with space for this array "
"(%d < %d)\n",
dcnt, raiddisks);
return 0;
}
return 1;
}
/* This device must be a member of the set */
if (stat(dev, &stb) < 0)
return 0;
if ((S_IFMT & stb.st_mode) != S_IFBLK)
return 0;
for (dl = super->disks ; dl ; dl = dl->next) {
if (dl->major == (int)major(stb.st_rdev) &&
dl->minor == (int)minor(stb.st_rdev))
break;
}
if (!dl) {
if (verbose)
fprintf(stderr, Name ": %s is not in the "
"same imsm set\n", dev);
return 0;
} else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
/* If a volume is present then the current creation attempt
* cannot incorporate new spares because the orom may not
* understand this configuration (all member disks must be
* members of each array in the container).
*/
fprintf(stderr, Name ": %s is a spare and a volume"
" is already defined for this container\n", dev);
fprintf(stderr, Name ": The option-rom requires all member"
" disks to be a member of all volumes\n");
return 0;
}
/* retrieve the largest free space block */
e = get_extents(super, dl);
maxsize = 0;
i = 0;
if (e) {
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize)
maxsize = esize;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
dl->e = e;
dl->extent_cnt = i;
} else {
if (verbose)
fprintf(stderr, Name ": unable to determine free space for: %s\n",
dev);
return 0;
}
if (maxsize < size) {
if (verbose)
fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
dev, maxsize, size);
return 0;
}
/* count total number of extents for merge */
i = 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl->e)
i += dl->extent_cnt;
maxsize = merge_extents(super, i);
if (maxsize < size || maxsize == 0) {
if (verbose)
fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
maxsize, size);
return 0;
}
*freesize = maxsize;
return 1;
}
static int reserve_space(struct supertype *st, int raiddisks,
unsigned long long size, int chunk,
unsigned long long *freesize)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct dl *dl;
int i;
int extent_cnt;
struct extent *e;
unsigned long long maxsize;
unsigned long long minsize;
int cnt;
int used;
/* find the largest common start free region of the possible disks */
used = 0;
extent_cnt = 0;
cnt = 0;
for (dl = super->disks; dl; dl = dl->next) {
dl->raiddisk = -1;
if (dl->index >= 0)
used++;
/* don't activate new spares if we are orom constrained
* and there is already a volume active in the container
*/
if (super->orom && dl->index < 0 && mpb->num_raid_devs)
continue;
e = get_extents(super, dl);
if (!e)
continue;
for (i = 1; e[i-1].size; i++)
;
dl->e = e;
dl->extent_cnt = i;
extent_cnt += i;
cnt++;
}
maxsize = merge_extents(super, extent_cnt);
minsize = size;
if (size == 0)
/* chunk is in K */
minsize = chunk * 2;
if (cnt < raiddisks ||
(super->orom && used && used != raiddisks) ||
maxsize < minsize ||
maxsize == 0) {
fprintf(stderr, Name ": not enough devices with space to create array.\n");
return 0; /* No enough free spaces large enough */
}
if (size == 0) {
size = maxsize;
if (chunk) {
size /= 2 * chunk;
size *= 2 * chunk;
}
}
cnt = 0;
for (dl = super->disks; dl; dl = dl->next)
if (dl->e)
dl->raiddisk = cnt++;
*freesize = size;
return 1;
}
static int validate_geometry_imsm(struct supertype *st, int level, int layout,
int raiddisks, int *chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose)
{
int fd, cfd;
struct mdinfo *sra;
int is_member = 0;
/* load capability
* if given unused devices create a container
* if given given devices in a container create a member volume
*/
if (level == LEVEL_CONTAINER) {
/* Must be a fresh device to add to a container */
return validate_geometry_imsm_container(st, level, layout,
raiddisks,
chunk?*chunk:0, size,
dev, freesize,
verbose);
}
if (!dev) {
if (st->sb && freesize) {
/* we are being asked to automatically layout a
* new volume based on the current contents of
* the container. If the the parameters can be
* satisfied reserve_space will record the disks,
* start offset, and size of the volume to be
* created. add_to_super and getinfo_super
* detect when autolayout is in progress.
*/
if (!validate_geometry_imsm_orom(st->sb, level, layout,
raiddisks, chunk,
verbose))
return 0;
return reserve_space(st, raiddisks, size,
chunk?*chunk:0, freesize);
}
return 1;
}
if (st->sb) {
/* creating in a given container */
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk, size,
dev, freesize, verbose);
}
/* This device needs to be a device in an 'imsm' container */
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd >= 0) {
if (verbose)
fprintf(stderr,
Name ": Cannot create this array on device %s\n",
dev);
close(fd);
return 0;
}
if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
if (verbose)
fprintf(stderr, Name ": Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
/* Well, it is in use by someone, maybe an 'imsm' container. */
cfd = open_container(fd);
close(fd);
if (cfd < 0) {
if (verbose)
fprintf(stderr, Name ": Cannot use %s: It is busy\n",
dev);
return 0;
}
sra = sysfs_read(cfd, 0, GET_VERSION);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "imsm") == 0)
is_member = 1;
sysfs_free(sra);
if (is_member) {
/* This is a member of a imsm container. Load the container
* and try to create a volume
*/
struct intel_super *super;
if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
st->sb = super;
st->container_dev = fd2devnum(cfd);
close(cfd);
return validate_geometry_imsm_volume(st, level, layout,
raiddisks, chunk,
size, dev,
freesize, verbose);
}
}
if (verbose)
fprintf(stderr, Name ": failed container membership check\n");
close(cfd);
return 0;
}
static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
{
struct intel_super *super = st->sb;
if (level && *level == UnSet)
*level = LEVEL_CONTAINER;
if (level && layout && *layout == UnSet)
*layout = imsm_level_to_layout(*level);
if (chunk && (*chunk == UnSet || *chunk == 0) &&
super && super->orom)
*chunk = imsm_orom_default_chunk(super->orom);
}
static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
static int kill_subarray_imsm(struct supertype *st)
{
/* remove the subarray currently referenced by ->current_vol */
__u8 i;
struct intel_dev **dp;
struct intel_super *super = st->sb;
__u8 current_vol = super->current_vol;
struct imsm_super *mpb = super->anchor;
if (super->current_vol < 0)
return 2;
super->current_vol = -1; /* invalidate subarray cursor */
/* block deletions that would change the uuid of active subarrays
*
* FIXME when immutable ids are available, but note that we'll
* also need to fixup the invalidated/active subarray indexes in
* mdstat
*/
for (i = 0; i < mpb->num_raid_devs; i++) {
char subarray[4];
if (i < current_vol)
continue;
sprintf(subarray, "%u", i);
if (is_subarray_active(subarray, st->devname)) {
fprintf(stderr,
Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
current_vol, i);
return 2;
}
}
if (st->update_tail) {
struct imsm_update_kill_array *u = malloc(sizeof(*u));
if (!u)
return 2;
u->type = update_kill_array;
u->dev_idx = current_vol;
append_metadata_update(st, u, sizeof(*u));
return 0;
}
for (dp = &super->devlist; *dp;)
if ((*dp)->index == current_vol) {
*dp = (*dp)->next;
} else {
handle_missing(super, (*dp)->dev);
if ((*dp)->index > current_vol)
(*dp)->index--;
dp = &(*dp)->next;
}
/* no more raid devices, all active components are now spares,
* but of course failed are still failed
*/
if (--mpb->num_raid_devs == 0) {
struct dl *d;
for (d = super->disks; d; d = d->next)
if (d->index > -2) {
d->index = -1;
d->disk.status = SPARE_DISK;
}
}
super->updates_pending++;
return 0;
}
static int update_subarray_imsm(struct supertype *st, char *subarray,
char *update, struct mddev_ident *ident)
{
/* update the subarray currently referenced by ->current_vol */
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
if (strcmp(update, "name") == 0) {
char *name = ident->name;
char *ep;
int vol;
if (is_subarray_active(subarray, st->devname)) {
fprintf(stderr,
Name ": Unable to update name of active subarray\n");
return 2;
}
if (!check_name(super, name, 0))
return 2;
vol = strtoul(subarray, &ep, 10);
if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
return 2;
if (st->update_tail) {
struct imsm_update_rename_array *u = malloc(sizeof(*u));
if (!u)
return 2;
u->type = update_rename_array;
u->dev_idx = vol;
snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
append_metadata_update(st, u, sizeof(*u));
} else {
struct imsm_dev *dev;
int i;
dev = get_imsm_dev(super, vol);
snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
handle_missing(super, dev);
}
super->updates_pending++;
}
} else
return 2;
return 0;
}
static int is_gen_migration(struct imsm_dev *dev)
{
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) == MIGR_GEN_MIGR)
return 1;
return 0;
}
#endif /* MDASSEMBLE */
static int is_rebuilding(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) != MIGR_REBUILD)
return 0;
migr_map = get_imsm_map(dev, 1);
if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
return 1;
else
return 0;
}
static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
{
struct mdinfo *rebuild = NULL;
struct mdinfo *d;
__u32 units;
if (!is_rebuilding(dev))
return;
/* Find the rebuild target, but punt on the dual rebuild case */
for (d = array->devs; d; d = d->next)
if (d->recovery_start == 0) {
if (rebuild)
return;
rebuild = d;
}
if (!rebuild) {
/* (?) none of the disks are marked with
* IMSM_ORD_REBUILD, so assume they are missing and the
* disk_ord_tbl was not correctly updated
*/
dprintf("%s: failed to locate out-of-sync disk\n", __func__);
return;
}
units = __le32_to_cpu(dev->vol.curr_migr_unit);
rebuild->recovery_start = units * blocks_per_migr_unit(dev);
}
static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
{
/* Given a container loaded by load_super_imsm_all,
* extract information about all the arrays into
* an mdinfo tree.
* If 'subarray' is given, just extract info about that array.
*
* For each imsm_dev create an mdinfo, fill it in,
* then look for matching devices in super->disks
* and create appropriate device mdinfo.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
struct mdinfo *rest = NULL;
unsigned int i;
int bbm_errors = 0;
struct dl *d;
int spare_disks = 0;
/* check for bad blocks */
if (imsm_bbm_log_size(super->anchor))
bbm_errors = 1;
/* count spare devices, not used in maps
*/
for (d = super->disks; d; d = d->next)
if (d->index == -1)
spare_disks++;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev;
struct imsm_map *map;
struct imsm_map *map2;
struct mdinfo *this;
int slot, chunk;
char *ep;
if (subarray &&
(i != strtoul(subarray, &ep, 10) || *ep != '\0'))
continue;
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
map2 = get_imsm_map(dev, 1);
/* do not publish arrays that are in the middle of an
* unsupported migration
*/
if (dev->vol.migr_state &&
(migr_type(dev) == MIGR_STATE_CHANGE)) {
fprintf(stderr, Name ": cannot assemble volume '%.16s':"
" unsupported migration in progress\n",
dev->volume);
continue;
}
/* do not publish arrays that are not support by controller's
* OROM/EFI
*/
chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
#ifndef MDASSEMBLE
if (!validate_geometry_imsm_orom(super,
get_imsm_raid_level(map), /* RAID level */
imsm_level_to_layout(get_imsm_raid_level(map)),
map->num_members, /* raid disks */
&chunk,
1 /* verbose */)) {
fprintf(stderr, Name ": RAID gemetry validation failed. "
"Cannot proceed with the action(s).\n");
continue;
}
#endif /* MDASSEMBLE */
this = malloc(sizeof(*this));
if (!this) {
fprintf(stderr, Name ": failed to allocate %zu bytes\n",
sizeof(*this));
break;
}
memset(this, 0, sizeof(*this));
this->next = rest;
super->current_vol = i;
getinfo_super_imsm_volume(st, this, NULL);
for (slot = 0 ; slot < map->num_members; slot++) {
unsigned long long recovery_start;
struct mdinfo *info_d;
struct dl *d;
int idx;
int skip;
__u32 ord;
skip = 0;
idx = get_imsm_disk_idx(dev, slot, 0);
ord = get_imsm_ord_tbl_ent(dev, slot, -1);
for (d = super->disks; d ; d = d->next)
if (d->index == idx)
break;
recovery_start = MaxSector;
if (d == NULL)
skip = 1;
if (d && is_failed(&d->disk))
skip = 1;
if (ord & IMSM_ORD_REBUILD)
recovery_start = 0;
/*
* if we skip some disks the array will be assmebled degraded;
* reset resync start to avoid a dirty-degraded
* situation when performing the intial sync
*
* FIXME handle dirty degraded
*/
if ((skip || recovery_start == 0) && !dev->vol.dirty)
this->resync_start = MaxSector;
if (skip)
continue;
info_d = calloc(1, sizeof(*info_d));
if (!info_d) {
fprintf(stderr, Name ": failed to allocate disk"
" for volume %.16s\n", dev->volume);
info_d = this->devs;
while (info_d) {
struct mdinfo *d = info_d->next;
free(info_d);
info_d = d;
}
free(this);
this = rest;
break;
}
info_d->next = this->devs;
this->devs = info_d;
info_d->disk.number = d->index;
info_d->disk.major = d->major;
info_d->disk.minor = d->minor;
info_d->disk.raid_disk = slot;
info_d->recovery_start = recovery_start;
if (map2) {
if (slot < map2->num_members)
info_d->disk.state = (1 << MD_DISK_ACTIVE);
else
this->array.spare_disks++;
} else {
if (slot < map->num_members)
info_d->disk.state = (1 << MD_DISK_ACTIVE);
else
this->array.spare_disks++;
}
if (info_d->recovery_start == MaxSector)
this->array.working_disks++;
info_d->events = __le32_to_cpu(mpb->generation_num);
info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
info_d->component_size = __le32_to_cpu(map->blocks_per_member);
}
/* now that the disk list is up-to-date fixup recovery_start */
update_recovery_start(dev, this);
this->array.spare_disks += spare_disks;
rest = this;
}
/* if array has bad blocks, set suitable bit in array status */
if (bbm_errors)
rest->array.state |= (1<<MD_SB_BBM_ERRORS);
return rest;
}
static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
{
struct imsm_map *map = get_imsm_map(dev, 0);
if (!failed)
return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
switch (get_imsm_raid_level(map)) {
case 0:
return IMSM_T_STATE_FAILED;
break;
case 1:
if (failed < map->num_members)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
case 10:
{
/**
* check to see if any mirrors have failed, otherwise we
* are degraded. Even numbered slots are mirrored on
* slot+1
*/
int i;
/* gcc -Os complains that this is unused */
int insync = insync;
for (i = 0; i < map->num_members; i++) {
__u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
int idx = ord_to_idx(ord);
struct imsm_disk *disk;
/* reset the potential in-sync count on even-numbered
* slots. num_copies is always 2 for imsm raid10
*/
if ((i & 1) == 0)
insync = 2;
disk = get_imsm_disk(super, idx);
if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
insync--;
/* no in-sync disks left in this mirror the
* array has failed
*/
if (insync == 0)
return IMSM_T_STATE_FAILED;
}
return IMSM_T_STATE_DEGRADED;
}
case 5:
if (failed < 2)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
default:
break;
}
return map->map_state;
}
static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
{
int i;
int failed = 0;
struct imsm_disk *disk;
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
__u32 ord;
int idx;
/* at the beginning of migration we set IMSM_ORD_REBUILD on
* disks that are being rebuilt. New failures are recorded to
* map[0]. So we look through all the disks we started with and
* see if any failures are still present, or if any new ones
* have arrived
*
* FIXME add support for online capacity expansion and
* raid-level-migration
*/
for (i = 0; i < prev->num_members; i++) {
ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
idx = ord_to_idx(ord);
disk = get_imsm_disk(super, idx);
if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
failed++;
}
return failed;
}
#ifndef MDASSEMBLE
static int imsm_open_new(struct supertype *c, struct active_array *a,
char *inst)
{
struct intel_super *super = c->sb;
struct imsm_super *mpb = super->anchor;
if (atoi(inst) >= mpb->num_raid_devs) {
fprintf(stderr, "%s: subarry index %d, out of range\n",
__func__, atoi(inst));
return -ENODEV;
}
dprintf("imsm: open_new %s\n", inst);
a->info.container_member = atoi(inst);
return 0;
}
static int is_resyncing(struct imsm_dev *dev)
{
struct imsm_map *migr_map;
if (!dev->vol.migr_state)
return 0;
if (migr_type(dev) == MIGR_INIT ||
migr_type(dev) == MIGR_REPAIR)
return 1;
if (migr_type(dev) == MIGR_GEN_MIGR)
return 0;
migr_map = get_imsm_map(dev, 1);
if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
(dev->vol.migr_type != MIGR_GEN_MIGR))
return 1;
else
return 0;
}
/* return true if we recorded new information */
static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
{
__u32 ord;
int slot;
struct imsm_map *map;
/* new failures are always set in map[0] */
map = get_imsm_map(dev, 0);
slot = get_imsm_disk_slot(map, idx);
if (slot < 0)
return 0;
ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
return 0;
disk->status |= FAILED_DISK;
set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
if (map->failed_disk_num == 0xff)
map->failed_disk_num = slot;
return 1;
}
static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
{
mark_failure(dev, disk, idx);
if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
return;
disk->scsi_id = __cpu_to_le32(~(__u32)0);
memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
}
static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
{
__u8 map_state;
struct dl *dl;
int failed;
if (!super->missing)
return;
failed = imsm_count_failed(super, dev);
map_state = imsm_check_degraded(super, dev, failed);
dprintf("imsm: mark missing\n");
end_migration(dev, map_state);
for (dl = super->missing; dl; dl = dl->next)
mark_missing(dev, &dl->disk, dl->index);
super->updates_pending++;
}
static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
{
int used_disks = imsm_num_data_members(dev, 0);
unsigned long long array_blocks;
struct imsm_map *map;
if (used_disks == 0) {
/* when problems occures
* return current array_blocks value
*/
array_blocks = __le32_to_cpu(dev->size_high);
array_blocks = array_blocks << 32;
array_blocks += __le32_to_cpu(dev->size_low);
return array_blocks;
}
/* set array size in metadata
*/
map = get_imsm_map(dev, 0);
array_blocks = map->blocks_per_member * used_disks;
/* round array size down to closest MB
*/
array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
dev->size_low = __cpu_to_le32((__u32)array_blocks);
dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
return array_blocks;
}
static void imsm_set_disk(struct active_array *a, int n, int state);
static void imsm_progress_container_reshape(struct intel_super *super)
{
/* if no device has a migr_state, but some device has a
* different number of members than the previous device, start
* changing the number of devices in this device to match
* previous.
*/
struct imsm_super *mpb = super->anchor;
int prev_disks = -1;
int i;
int copy_map_size;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(super, i);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *map2;
int prev_num_members;
if (dev->vol.migr_state)
return;
if (prev_disks == -1)
prev_disks = map->num_members;
if (prev_disks == map->num_members)
continue;
/* OK, this array needs to enter reshape mode.
* i.e it needs a migr_state
*/
copy_map_size = sizeof_imsm_map(map);
prev_num_members = map->num_members;
map->num_members = prev_disks;
dev->vol.migr_state = 1;
dev->vol.curr_migr_unit = 0;
dev->vol.migr_type = MIGR_GEN_MIGR;
for (i = prev_num_members;
i < map->num_members; i++)
set_imsm_ord_tbl_ent(map, i, i);
map2 = get_imsm_map(dev, 1);
/* Copy the current map */
memcpy(map2, map, copy_map_size);
map2->num_members = prev_num_members;
imsm_set_array_size(dev);
super->updates_pending++;
}
}
/* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
* states are handled in imsm_set_disk() with one exception, when a
* resync is stopped due to a new failure this routine will set the
* 'degraded' state for the array.
*/
static int imsm_set_array_state(struct active_array *a, int consistent)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
int failed = imsm_count_failed(super, dev);
__u8 map_state = imsm_check_degraded(super, dev, failed);
__u32 blocks_per_unit;
if (dev->vol.migr_state &&
dev->vol.migr_type == MIGR_GEN_MIGR) {
/* array state change is blocked due to reshape action
* We might need to
* - abort the reshape (if last_checkpoint is 0 and action!= reshape)
* - finish the reshape (if last_checkpoint is big and action != reshape)
* - update curr_migr_unit
*/
if (a->curr_action == reshape) {
/* still reshaping, maybe update curr_migr_unit */
goto mark_checkpoint;
} else {
if (a->last_checkpoint == 0 && a->prev_action == reshape) {
/* for some reason we aborted the reshape.
* Better clean up
*/
struct imsm_map *map2 = get_imsm_map(dev, 1);
dev->vol.migr_state = 0;
dev->vol.migr_type = 0;
dev->vol.curr_migr_unit = 0;
memcpy(map, map2, sizeof_imsm_map(map2));
super->updates_pending++;
}
if (a->last_checkpoint >= a->info.component_size) {
unsigned long long array_blocks;
int used_disks;
struct mdinfo *mdi;
used_disks = imsm_num_data_members(dev, 0);
if (used_disks > 0) {
array_blocks =
map->blocks_per_member *
used_disks;
/* round array size down to closest MB
*/
array_blocks = (array_blocks
>> SECT_PER_MB_SHIFT)
<< SECT_PER_MB_SHIFT;
a->info.custom_array_size = array_blocks;
/* encourage manager to update array
* size
*/
a->check_reshape = 1;
}
/* finalize online capacity expansion/reshape */
for (mdi = a->info.devs; mdi; mdi = mdi->next)
imsm_set_disk(a,
mdi->disk.raid_disk,
mdi->curr_state);
imsm_progress_container_reshape(super);
}
}
}
/* before we activate this array handle any missing disks */
if (consistent == 2)
handle_missing(super, dev);
if (consistent == 2 &&
(!is_resync_complete(&a->info) ||
map_state != IMSM_T_STATE_NORMAL ||
dev->vol.migr_state))
consistent = 0;
if (is_resync_complete(&a->info)) {
/* complete intialization / resync,
* recovery and interrupted recovery is completed in
* ->set_disk
*/
if (is_resyncing(dev)) {
dprintf("imsm: mark resync done\n");
end_migration(dev, map_state);
super->updates_pending++;
a->last_checkpoint = 0;
}
} else if (!is_resyncing(dev) && !failed) {
/* mark the start of the init process if nothing is failed */
dprintf("imsm: mark resync start\n");
if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
else
migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
super->updates_pending++;
}
mark_checkpoint:
/* check if we can update curr_migr_unit from resync_start, recovery_start */
blocks_per_unit = blocks_per_migr_unit(dev);
if (blocks_per_unit) {
__u32 units32;
__u64 units;
units = a->last_checkpoint / blocks_per_unit;
units32 = units;
/* check that we did not overflow 32-bits, and that
* curr_migr_unit needs updating
*/
if (units32 == units &&
__le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
dprintf("imsm: mark checkpoint (%u)\n", units32);
dev->vol.curr_migr_unit = __cpu_to_le32(units32);
super->updates_pending++;
}
}
/* mark dirty / clean */
if (dev->vol.dirty != !consistent) {
dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
if (consistent)
dev->vol.dirty = 0;
else
dev->vol.dirty = 1;
super->updates_pending++;
}
return consistent;
}
static void imsm_set_disk(struct active_array *a, int n, int state)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_disk *disk;
int failed;
__u32 ord;
__u8 map_state;
if (n > map->num_members)
fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
n, map->num_members - 1);
if (n < 0)
return;
dprintf("imsm: set_disk %d:%x\n", n, state);
ord = get_imsm_ord_tbl_ent(dev, n, -1);
disk = get_imsm_disk(super, ord_to_idx(ord));
/* check for new failures */
if (state & DS_FAULTY) {
if (mark_failure(dev, disk, ord_to_idx(ord)))
super->updates_pending++;
}
/* check if in_sync */
if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
struct imsm_map *migr_map = get_imsm_map(dev, 1);
set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
super->updates_pending++;
}
failed = imsm_count_failed(super, dev);
map_state = imsm_check_degraded(super, dev, failed);
/* check if recovery complete, newly degraded, or failed */
if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
end_migration(dev, map_state);
map = get_imsm_map(dev, 0);
map->failed_disk_num = ~0;
super->updates_pending++;
a->last_checkpoint = 0;
} else if (map_state == IMSM_T_STATE_DEGRADED &&
map->map_state != map_state &&
!dev->vol.migr_state) {
dprintf("imsm: mark degraded\n");
map->map_state = map_state;
super->updates_pending++;
a->last_checkpoint = 0;
} else if (map_state == IMSM_T_STATE_FAILED &&
map->map_state != map_state) {
dprintf("imsm: mark failed\n");
end_migration(dev, map_state);
super->updates_pending++;
a->last_checkpoint = 0;
} else if (is_gen_migration(dev)) {
dprintf("imsm: Detected General Migration in state: ");
if (map_state == IMSM_T_STATE_NORMAL) {
end_migration(dev, map_state);
map = get_imsm_map(dev, 0);
map->failed_disk_num = ~0;
dprintf("normal\n");
} else {
if (map_state == IMSM_T_STATE_DEGRADED) {
printf("degraded\n");
end_migration(dev, map_state);
} else {
dprintf("failed\n");
}
map->map_state = map_state;
}
super->updates_pending++;
}
}
static int store_imsm_mpb(int fd, struct imsm_super *mpb)
{
void *buf = mpb;
__u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
unsigned long long dsize;
unsigned long long sectors;
get_dev_size(fd, NULL, &dsize);
if (mpb_size > 512) {
/* -1 to account for anchor */
sectors = mpb_sectors(mpb) - 1;
/* write the extended mpb to the sectors preceeding the anchor */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
return 1;
if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
!= 512 * sectors)
return 1;
}
/* first block is stored on second to last sector of the disk */
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
return 1;
if (write(fd, buf, 512) != 512)
return 1;
return 0;
}
static void imsm_sync_metadata(struct supertype *container)
{
struct intel_super *super = container->sb;
dprintf("sync metadata: %d\n", super->updates_pending);
if (!super->updates_pending)
return;
write_super_imsm(container, 0);
super->updates_pending = 0;
}
static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int i = get_imsm_disk_idx(dev, idx, -1);
struct dl *dl;
for (dl = super->disks; dl; dl = dl->next)
if (dl->index == i)
break;
if (dl && is_failed(&dl->disk))
dl = NULL;
if (dl)
dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
return dl;
}
static struct dl *imsm_add_spare(struct intel_super *super, int slot,
struct active_array *a, int activate_new,
struct mdinfo *additional_test_list)
{
struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
int idx = get_imsm_disk_idx(dev, slot, -1);
struct imsm_super *mpb = super->anchor;
struct imsm_map *map;
unsigned long long pos;
struct mdinfo *d;
struct extent *ex;
int i, j;
int found;
__u32 array_start = 0;
__u32 array_end = 0;
struct dl *dl;
struct mdinfo *test_list;
for (dl = super->disks; dl; dl = dl->next) {
/* If in this array, skip */
for (d = a->info.devs ; d ; d = d->next)
if (d->state_fd >= 0 &&
d->disk.major == dl->major &&
d->disk.minor == dl->minor) {
dprintf("%x:%x already in array\n",
dl->major, dl->minor);
break;
}
if (d)
continue;
test_list = additional_test_list;
while (test_list) {
if (test_list->disk.major == dl->major &&
test_list->disk.minor == dl->minor) {
dprintf("%x:%x already in additional test list\n",
dl->major, dl->minor);
break;
}
test_list = test_list->next;
}
if (test_list)
continue;
/* skip in use or failed drives */
if (is_failed(&dl->disk) || idx == dl->index ||
dl->index == -2) {
dprintf("%x:%x status (failed: %d index: %d)\n",
dl->major, dl->minor, is_failed(&dl->disk), idx);
continue;
}
/* skip pure spares when we are looking for partially
* assimilated drives
*/
if (dl->index == -1 && !activate_new)
continue;
/* Does this unused device have the requisite free space?
* It needs to be able to cover all member volumes
*/
ex = get_extents(super, dl);
if (!ex) {
dprintf("cannot get extents\n");
continue;
}
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
/* check if this disk is already a member of
* this array
*/
if (get_imsm_disk_slot(map, dl->index) >= 0)
continue;
found = 0;
j = 0;
pos = 0;
array_start = __le32_to_cpu(map->pba_of_lba0);
array_end = array_start +
__le32_to_cpu(map->blocks_per_member) - 1;
do {
/* check that we can start at pba_of_lba0 with
* blocks_per_member of space
*/
if (array_start >= pos && array_end < ex[j].start) {
found = 1;
break;
}
pos = ex[j].start + ex[j].size;
j++;
} while (ex[j-1].size);
if (!found)
break;
}
free(ex);
if (i < mpb->num_raid_devs) {
dprintf("%x:%x does not have %u to %u available\n",
dl->major, dl->minor, array_start, array_end);
/* No room */
continue;
}
return dl;
}
return dl;
}
static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
{
struct imsm_dev *dev2;
struct imsm_map *map;
struct dl *idisk;
int slot;
int idx;
__u8 state;
dev2 = get_imsm_dev(cont->sb, dev_idx);
if (dev2) {
state = imsm_check_degraded(cont->sb, dev2, failed);
if (state == IMSM_T_STATE_FAILED) {
map = get_imsm_map(dev2, 0);
if (!map)
return 1;
for (slot = 0; slot < map->num_members; slot++) {
/*
* Check if failed disks are deleted from intel
* disk list or are marked to be deleted
*/
idx = get_imsm_disk_idx(dev2, slot, -1);
idisk = get_imsm_dl_disk(cont->sb, idx);
/*
* Do not rebuild the array if failed disks
* from failed sub-array are not removed from
* container.
*/
if (idisk &&
is_failed(&idisk->disk) &&
(idisk->action != DISK_REMOVE))
return 0;
}
}
}
return 1;
}
static struct mdinfo *imsm_activate_spare(struct active_array *a,
struct metadata_update **updates)
{
/**
* Find a device with unused free space and use it to replace a
* failed/vacant region in an array. We replace failed regions one a
* array at a time. The result is that a new spare disk will be added
* to the first failed array and after the monitor has finished
* propagating failures the remainder will be consumed.
*
* FIXME add a capability for mdmon to request spares from another
* container.
*/
struct intel_super *super = a->container->sb;
int inst = a->info.container_member;
struct imsm_dev *dev = get_imsm_dev(super, inst);
struct imsm_map *map = get_imsm_map(dev, 0);
int failed = a->info.array.raid_disks;
struct mdinfo *rv = NULL;
struct mdinfo *d;
struct mdinfo *di;
struct metadata_update *mu;
struct dl *dl;
struct imsm_update_activate_spare *u;
int num_spares = 0;
int i;
int allowed;
for (d = a->info.devs ; d ; d = d->next) {
if ((d->curr_state & DS_FAULTY) &&
d->state_fd >= 0)
/* wait for Removal to happen */
return NULL;
if (d->state_fd >= 0)
failed--;
}
dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
inst, failed, a->info.array.raid_disks, a->info.array.level);
if (dev->vol.migr_state &&
dev->vol.migr_type == MIGR_GEN_MIGR)
/* No repair during migration */
return NULL;
if (a->info.array.level == 4)
/* No repair for takeovered array
* imsm doesn't support raid4
*/
return NULL;
if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
return NULL;
/*
* If there are any failed disks check state of the other volume.
* Block rebuild if the another one is failed until failed disks
* are removed from container.
*/
if (failed) {
dprintf("found failed disks in %s, check if there another"
"failed sub-array.\n",
dev->volume);
/* check if states of the other volumes allow for rebuild */
for (i = 0; i < super->anchor->num_raid_devs; i++) {
if (i != inst) {
allowed = imsm_rebuild_allowed(a->container,
i, failed);
if (!allowed)
return NULL;
}
}
}
/* For each slot, if it is not working, find a spare */
for (i = 0; i < a->info.array.raid_disks; i++) {
for (d = a->info.devs ; d ; d = d->next)
if (d->disk.raid_disk == i)
break;
dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
if (d && (d->state_fd >= 0))
continue;
/*
* OK, this device needs recovery. Try to re-add the
* previous occupant of this slot, if this fails see if
* we can continue the assimilation of a spare that was
* partially assimilated, finally try to activate a new
* spare.
*/
dl = imsm_readd(super, i, a);
if (!dl)
dl = imsm_add_spare(super, i, a, 0, NULL);
if (!dl)
dl = imsm_add_spare(super, i, a, 1, NULL);
if (!dl)
continue;
/* found a usable disk with enough space */
di = malloc(sizeof(*di));
if (!di)
continue;
memset(di, 0, sizeof(*di));
/* dl->index will be -1 in the case we are activating a
* pristine spare. imsm_process_update() will create a
* new index in this case. Once a disk is found to be
* failed in all member arrays it is kicked from the
* metadata
*/
di->disk.number = dl->index;
/* (ab)use di->devs to store a pointer to the device
* we chose
*/
di->devs = (struct mdinfo *) dl;
di->disk.raid_disk = i;
di->disk.major = dl->major;
di->disk.minor = dl->minor;
di->disk.state = 0;
di->recovery_start = 0;
di->data_offset = __le32_to_cpu(map->pba_of_lba0);
di->component_size = a->info.component_size;
di->container_member = inst;
super->random = random32();
di->next = rv;
rv = di;
num_spares++;
dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
i, di->data_offset);
break;
}
if (!rv)
/* No spares found */
return rv;
/* Now 'rv' has a list of devices to return.
* Create a metadata_update record to update the
* disk_ord_tbl for the array
*/
mu = malloc(sizeof(*mu));
if (mu) {
mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
if (mu->buf == NULL) {
free(mu);
mu = NULL;
}
}
if (!mu) {
while (rv) {
struct mdinfo *n = rv->next;
free(rv);
rv = n;
}
return NULL;
}
mu->space = NULL;
mu->space_list = NULL;
mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
mu->next = *updates;
u = (struct imsm_update_activate_spare *) mu->buf;
for (di = rv ; di ; di = di->next) {
u->type = update_activate_spare;
u->dl = (struct dl *) di->devs;
di->devs = NULL;
u->slot = di->disk.raid_disk;
u->array = inst;
u->next = u + 1;
u++;
}
(u-1)->next = NULL;
*updates = mu;
return rv;
}
static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
{
struct imsm_dev *dev = get_imsm_dev(super, idx);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
struct disk_info *inf = get_disk_info(u);
struct imsm_disk *disk;
int i;
int j;
for (i = 0; i < map->num_members; i++) {
disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
for (j = 0; j < new_map->num_members; j++)
if (serialcmp(disk->serial, inf[j].serial) == 0)
return 1;
}
return 0;
}
static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
{
struct dl *dl = NULL;
for (dl = super->disks; dl; dl = dl->next)
if ((dl->major == major) && (dl->minor == minor))
return dl;
return NULL;
}
static int remove_disk_super(struct intel_super *super, int major, int minor)
{
struct dl *prev = NULL;
struct dl *dl;
prev = NULL;
for (dl = super->disks; dl; dl = dl->next) {
if ((dl->major == major) && (dl->minor == minor)) {
/* remove */
if (prev)
prev->next = dl->next;
else
super->disks = dl->next;
dl->next = NULL;
__free_imsm_disk(dl);
dprintf("%s: removed %x:%x\n",
__func__, major, minor);
break;
}
prev = dl;
}
return 0;
}
static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
static int add_remove_disk_update(struct intel_super *super)
{
int check_degraded = 0;
struct dl *disk = NULL;
/* add/remove some spares to/from the metadata/contrainer */
while (super->disk_mgmt_list) {
struct dl *disk_cfg;
disk_cfg = super->disk_mgmt_list;
super->disk_mgmt_list = disk_cfg->next;
disk_cfg->next = NULL;
if (disk_cfg->action == DISK_ADD) {
disk_cfg->next = super->disks;
super->disks = disk_cfg;
check_degraded = 1;
dprintf("%s: added %x:%x\n",
__func__, disk_cfg->major,
disk_cfg->minor);
} else if (disk_cfg->action == DISK_REMOVE) {
dprintf("Disk remove action processed: %x.%x\n",
disk_cfg->major, disk_cfg->minor);
disk = get_disk_super(super,
disk_cfg->major,
disk_cfg->minor);
if (disk) {
/* store action status */
disk->action = DISK_REMOVE;
/* remove spare disks only */
if (disk->index == -1) {
remove_disk_super(super,
disk_cfg->major,
disk_cfg->minor);
}
}
/* release allocate disk structure */
__free_imsm_disk(disk_cfg);
}
}
return check_degraded;
}
static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
struct intel_super *super,
void ***space_list)
{
struct dl *new_disk;
struct intel_dev *id;
int i;
int delta_disks = u->new_raid_disks - u->old_raid_disks;
int disk_count = u->old_raid_disks;
void **tofree = NULL;
int devices_to_reshape = 1;
struct imsm_super *mpb = super->anchor;
int ret_val = 0;
unsigned int dev_id;
dprintf("imsm: apply_reshape_container_disks_update()\n");
/* enable spares to use in array */
for (i = 0; i < delta_disks; i++) {
new_disk = get_disk_super(super,
major(u->new_disks[i]),
minor(u->new_disks[i]));
dprintf("imsm: new disk for reshape is: %i:%i "
"(%p, index = %i)\n",
major(u->new_disks[i]), minor(u->new_disks[i]),
new_disk, new_disk->index);
if ((new_disk == NULL) ||
((new_disk->index >= 0) &&
(new_disk->index < u->old_raid_disks)))
goto update_reshape_exit;
new_disk->index = disk_count++;
/* slot to fill in autolayout
*/
new_disk->raiddisk = new_disk->index;
new_disk->disk.status |=
CONFIGURED_DISK;
new_disk->disk.status &= ~SPARE_DISK;
}
dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
mpb->num_raid_devs);
/* manage changes in volume
*/
for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
void **sp = *space_list;
struct imsm_dev *newdev;
struct imsm_map *newmap, *oldmap;
for (id = super->devlist ; id; id = id->next) {
if (id->index == dev_id)
break;
}
if (id == NULL)
break;
if (!sp)
continue;
*space_list = *sp;
newdev = (void*)sp;
/* Copy the dev, but not (all of) the map */
memcpy(newdev, id->dev, sizeof(*newdev));
oldmap = get_imsm_map(id->dev, 0);
newmap = get_imsm_map(newdev, 0);
/* Copy the current map */
memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
/* update one device only
*/
if (devices_to_reshape) {
dprintf("imsm: modifying subdev: %i\n",
id->index);
devices_to_reshape--;
newdev->vol.migr_state = 1;
newdev->vol.curr_migr_unit = 0;
newdev->vol.migr_type = MIGR_GEN_MIGR;
newmap->num_members = u->new_raid_disks;
for (i = 0; i < delta_disks; i++) {
set_imsm_ord_tbl_ent(newmap,
u->old_raid_disks + i,
u->old_raid_disks + i);
}
/* New map is correct, now need to save old map
*/
newmap = get_imsm_map(newdev, 1);
memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
imsm_set_array_size(newdev);
}
sp = (void **)id->dev;
id->dev = newdev;
*sp = tofree;
tofree = sp;
}
if (tofree)
*space_list = tofree;
ret_val = 1;
update_reshape_exit:
return ret_val;
}
static int apply_takeover_update(struct imsm_update_takeover *u,
struct intel_super *super,
void ***space_list)
{
struct imsm_dev *dev = NULL;
struct intel_dev *dv;
struct imsm_dev *dev_new;
struct imsm_map *map;
struct dl *dm, *du;
int i;
for (dv = super->devlist; dv; dv = dv->next)
if (dv->index == (unsigned int)u->subarray) {
dev = dv->dev;
break;
}
if (dev == NULL)
return 0;
map = get_imsm_map(dev, 0);
if (u->direction == R10_TO_R0) {
/* Number of failed disks must be half of initial disk number */
if (imsm_count_failed(super, dev) != (map->num_members / 2))
return 0;
/* iterate through devices to mark removed disks as spare */
for (dm = super->disks; dm; dm = dm->next) {
if (dm->disk.status & FAILED_DISK) {
int idx = dm->index;
/* update indexes on the disk list */
/* FIXME this loop-with-the-loop looks wrong, I'm not convinced
the index values will end up being correct.... NB */
for (du = super->disks; du; du = du->next)
if (du->index > idx)
du->index--;
/* mark as spare disk */
dm->disk.status = SPARE_DISK;
dm->index = -1;
}
}
/* update map */
map->num_members = map->num_members / 2;
map->map_state = IMSM_T_STATE_NORMAL;
map->num_domains = 1;
map->raid_level = 0;
map->failed_disk_num = -1;
}
if (u->direction == R0_TO_R10) {
void **space;
/* update slots in current disk list */
for (dm = super->disks; dm; dm = dm->next) {
if (dm->index >= 0)
dm->index *= 2;
}
/* create new *missing* disks */
for (i = 0; i < map->num_members; i++) {
space = *space_list;
if (!space)
continue;
*space_list = *space;
du = (void *)space;
memcpy(du, super->disks, sizeof(*du));
du->fd = -1;
du->minor = 0;
du->major = 0;
du->index = (i * 2) + 1;
sprintf((char *)du->disk.serial,
" MISSING_%d", du->index);
sprintf((char *)du->serial,
"MISSING_%d", du->index);
du->next = super->missing;
super->missing = du;
}
/* create new dev and map */
space = *space_list;
if (!space)
return 0;
*space_list = *space;
dev_new = (void *)space;
memcpy(dev_new, dev, sizeof(*dev));
/* update new map */
map = get_imsm_map(dev_new, 0);
map->num_members = map->num_members * 2;
map->map_state = IMSM_T_STATE_DEGRADED;
map->num_domains = 2;
map->raid_level = 1;
/* replace dev<->dev_new */
dv->dev = dev_new;
}
/* update disk order table */
for (du = super->disks; du; du = du->next)
if (du->index >= 0)
set_imsm_ord_tbl_ent(map, du->index, du->index);
for (du = super->missing; du; du = du->next)
if (du->index >= 0) {
set_imsm_ord_tbl_ent(map, du->index, du->index);
mark_missing(dev_new, &du->disk, du->index);
}
return 1;
}
static void imsm_process_update(struct supertype *st,
struct metadata_update *update)
{
/**
* crack open the metadata_update envelope to find the update record
* update can be one of:
* update_reshape_container_disks - all the arrays in the container
* are being reshaped to have more devices. We need to mark
* the arrays for general migration and convert selected spares
* into active devices.
* update_activate_spare - a spare device has replaced a failed
* device in an array, update the disk_ord_tbl. If this disk is
* present in all member arrays then also clear the SPARE_DISK
* flag
* update_create_array
* update_kill_array
* update_rename_array
* update_add_remove_disk
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb;
enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
/* update requires a larger buf but the allocation failed */
if (super->next_len && !super->next_buf) {
super->next_len = 0;
return;
}
if (super->next_buf) {
memcpy(super->next_buf, super->buf, super->len);
free(super->buf);
super->len = super->next_len;
super->buf = super->next_buf;
super->next_len = 0;
super->next_buf = NULL;
}
mpb = super->anchor;
switch (type) {
case update_takeover: {
struct imsm_update_takeover *u = (void *)update->buf;
if (apply_takeover_update(u, super, &update->space_list)) {
imsm_update_version_info(super);
super->updates_pending++;
}
break;
}
case update_reshape_container_disks: {
struct imsm_update_reshape *u = (void *)update->buf;
if (apply_reshape_container_disks_update(
u, super, &update->space_list))
super->updates_pending++;
break;
}
case update_activate_spare: {
struct imsm_update_activate_spare *u = (void *) update->buf;
struct imsm_dev *dev = get_imsm_dev(super, u->array);
struct imsm_map *map = get_imsm_map(dev, 0);
struct imsm_map *migr_map;
struct active_array *a;
struct imsm_disk *disk;
__u8 to_state;
struct dl *dl;
unsigned int found;
int failed;
int victim = get_imsm_disk_idx(dev, u->slot, -1);
int i;
for (dl = super->disks; dl; dl = dl->next)
if (dl == u->dl)
break;
if (!dl) {
fprintf(stderr, "error: imsm_activate_spare passed "
"an unknown disk (index: %d)\n",
u->dl->index);
return;
}
super->updates_pending++;
/* count failures (excluding rebuilds and the victim)
* to determine map[0] state
*/
failed = 0;
for (i = 0; i < map->num_members; i++) {
if (i == u->slot)
continue;
disk = get_imsm_disk(super,
get_imsm_disk_idx(dev, i, -1));
if (!disk || is_failed(disk))
failed++;
}
/* adding a pristine spare, assign a new index */
if (dl->index < 0) {
dl->index = super->anchor->num_disks;
super->anchor->num_disks++;
}
disk = &dl->disk;
disk->status |= CONFIGURED_DISK;
disk->status &= ~SPARE_DISK;
/* mark rebuild */
to_state = imsm_check_degraded(super, dev, failed);
map->map_state = IMSM_T_STATE_DEGRADED;
migrate(dev, to_state, MIGR_REBUILD);
migr_map = get_imsm_map(dev, 1);
set_imsm_ord_tbl_ent(map, u->slot, dl->index);
set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
/* update the family_num to mark a new container
* generation, being careful to record the existing
* family_num in orig_family_num to clean up after
* earlier mdadm versions that neglected to set it.
*/
if (mpb->orig_family_num == 0)
mpb->orig_family_num = mpb->family_num;
mpb->family_num += super->random;
/* count arrays using the victim in the metadata */
found = 0;
for (a = st->arrays; a ; a = a->next) {
dev = get_imsm_dev(super, a->info.container_member);
map = get_imsm_map(dev, 0);
if (get_imsm_disk_slot(map, victim) >= 0)
found++;
}
/* delete the victim if it is no longer being
* utilized anywhere
*/
if (!found) {
struct dl **dlp;
/* We know that 'manager' isn't touching anything,
* so it is safe to delete
*/
for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
/* victim may be on the missing list */
if (!*dlp)
for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
if ((*dlp)->index == victim)
break;
imsm_delete(super, dlp, victim);
}
break;
}
case update_create_array: {
/* someone wants to create a new array, we need to be aware of
* a few races/collisions:
* 1/ 'Create' called by two separate instances of mdadm
* 2/ 'Create' versus 'activate_spare': mdadm has chosen
* devices that have since been assimilated via
* activate_spare.
* In the event this update can not be carried out mdadm will
* (FIX ME) notice that its update did not take hold.
*/
struct imsm_update_create_array *u = (void *) update->buf;
struct intel_dev *dv;
struct imsm_dev *dev;
struct imsm_map *map, *new_map;
unsigned long long start, end;
unsigned long long new_start, new_end;
int i;
struct disk_info *inf;
struct dl *dl;
/* handle racing creates: first come first serve */
if (u->dev_idx < mpb->num_raid_devs) {
dprintf("%s: subarray %d already defined\n",
__func__, u->dev_idx);
goto create_error;
}
/* check update is next in sequence */
if (u->dev_idx != mpb->num_raid_devs) {
dprintf("%s: can not create array %d expected index %d\n",
__func__, u->dev_idx, mpb->num_raid_devs);
goto create_error;
}
new_map = get_imsm_map(&u->dev, 0);
new_start = __le32_to_cpu(new_map->pba_of_lba0);
new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
inf = get_disk_info(u);
/* handle activate_spare versus create race:
* check to make sure that overlapping arrays do not include
* overalpping disks
*/
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
start = __le32_to_cpu(map->pba_of_lba0);
end = start + __le32_to_cpu(map->blocks_per_member);
if ((new_start >= start && new_start <= end) ||
(start >= new_start && start <= new_end))
/* overlap */;
else
continue;
if (disks_overlap(super, i, u)) {
dprintf("%s: arrays overlap\n", __func__);
goto create_error;
}
}
/* check that prepare update was successful */
if (!update->space) {
dprintf("%s: prepare update failed\n", __func__);
goto create_error;
}
/* check that all disks are still active before committing
* changes. FIXME: could we instead handle this by creating a
* degraded array? That's probably not what the user expects,
* so better to drop this update on the floor.
*/
for (i = 0; i < new_map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (!dl) {
dprintf("%s: disk disappeared\n", __func__);
goto create_error;
}
}
super->updates_pending++;
/* convert spares to members and fixup ord_tbl */
for (i = 0; i < new_map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (dl->index == -1) {
dl->index = mpb->num_disks;
mpb->num_disks++;
dl->disk.status |= CONFIGURED_DISK;
dl->disk.status &= ~SPARE_DISK;
}
set_imsm_ord_tbl_ent(new_map, i, dl->index);
}
dv = update->space;
dev = dv->dev;
update->space = NULL;
imsm_copy_dev(dev, &u->dev);
dv->index = u->dev_idx;
dv->next = super->devlist;
super->devlist = dv;
mpb->num_raid_devs++;
imsm_update_version_info(super);
break;
create_error:
/* mdmon knows how to release update->space, but not
* ((struct intel_dev *) update->space)->dev
*/
if (update->space) {
dv = update->space;
free(dv->dev);
}
break;
}
case update_kill_array: {
struct imsm_update_kill_array *u = (void *) update->buf;
int victim = u->dev_idx;
struct active_array *a;
struct intel_dev **dp;
struct imsm_dev *dev;
/* sanity check that we are not affecting the uuid of
* active arrays, or deleting an active array
*
* FIXME when immutable ids are available, but note that
* we'll also need to fixup the invalidated/active
* subarray indexes in mdstat
*/
for (a = st->arrays; a; a = a->next)
if (a->info.container_member >= victim)
break;
/* by definition if mdmon is running at least one array
* is active in the container, so checking
* mpb->num_raid_devs is just extra paranoia
*/
dev = get_imsm_dev(super, victim);
if (a || !dev || mpb->num_raid_devs == 1) {
dprintf("failed to delete subarray-%d\n", victim);
break;
}
for (dp = &super->devlist; *dp;)
if ((*dp)->index == (unsigned)super->current_vol) {
*dp = (*dp)->next;
} else {
if ((*dp)->index > (unsigned)victim)
(*dp)->index--;
dp = &(*dp)->next;
}
mpb->num_raid_devs--;
super->updates_pending++;
break;
}
case update_rename_array: {
struct imsm_update_rename_array *u = (void *) update->buf;
char name[MAX_RAID_SERIAL_LEN+1];
int target = u->dev_idx;
struct active_array *a;
struct imsm_dev *dev;
/* sanity check that we are not affecting the uuid of
* an active array
*/
snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
name[MAX_RAID_SERIAL_LEN] = '\0';
for (a = st->arrays; a; a = a->next)
if (a->info.container_member == target)
break;
dev = get_imsm_dev(super, u->dev_idx);
if (a || !dev || !check_name(super, name, 1)) {
dprintf("failed to rename subarray-%d\n", target);
break;
}
snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
super->updates_pending++;
break;
}
case update_add_remove_disk: {
/* we may be able to repair some arrays if disks are
* being added, check teh status of add_remove_disk
* if discs has been added.
*/
if (add_remove_disk_update(super)) {
struct active_array *a;
super->updates_pending++;
for (a = st->arrays; a; a = a->next)
a->check_degraded = 1;
}
break;
}
default:
fprintf(stderr, "error: unsuported process update type:"
"(type: %d)\n", type);
}
}
static void imsm_prepare_update(struct supertype *st,
struct metadata_update *update)
{
/**
* Allocate space to hold new disk entries, raid-device entries or a new
* mpb if necessary. The manager synchronously waits for updates to
* complete in the monitor, so new mpb buffers allocated here can be
* integrated by the monitor thread without worrying about live pointers
* in the manager thread.
*/
enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
size_t buf_len;
size_t len = 0;
switch (type) {
case update_takeover: {
struct imsm_update_takeover *u = (void *)update->buf;
if (u->direction == R0_TO_R10) {
void **tail = (void **)&update->space_list;
struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
struct imsm_map *map = get_imsm_map(dev, 0);
int num_members = map->num_members;
void *space;
int size, i;
int err = 0;
/* allocate memory for added disks */
for (i = 0; i < num_members; i++) {
size = sizeof(struct dl);
space = malloc(size);
if (!space) {
err++;
break;
}
*tail = space;
tail = space;
*tail = NULL;
}
/* allocate memory for new device */
size = sizeof_imsm_dev(super->devlist->dev, 0) +
(num_members * sizeof(__u32));
space = malloc(size);
if (!space)
err++;
else {
*tail = space;
tail = space;
*tail = NULL;
}
if (!err) {
len = disks_to_mpb_size(num_members * 2);
} else {
/* if allocation didn't success, free buffer */
while (update->space_list) {
void **sp = update->space_list;
update->space_list = *sp;
free(sp);
}
}
}
break;
}
case update_reshape_container_disks: {
/* Every raid device in the container is about to
* gain some more devices, and we will enter a
* reconfiguration.
* So each 'imsm_map' will be bigger, and the imsm_vol
* will now hold 2 of them.
* Thus we need new 'struct imsm_dev' allocations sized
* as sizeof_imsm_dev but with more devices in both maps.
*/
struct imsm_update_reshape *u = (void *)update->buf;
struct intel_dev *dl;
void **space_tail = (void**)&update->space_list;
dprintf("imsm: imsm_prepare_update() for update_reshape\n");
for (dl = super->devlist; dl; dl = dl->next) {
int size = sizeof_imsm_dev(dl->dev, 1);
void *s;
if (u->new_raid_disks > u->old_raid_disks)
size += sizeof(__u32)*2*
(u->new_raid_disks - u->old_raid_disks);
s = malloc(size);
if (!s)
break;
*space_tail = s;
space_tail = s;
*space_tail = NULL;
}
len = disks_to_mpb_size(u->new_raid_disks);
dprintf("New anchor length is %llu\n", (unsigned long long)len);
break;
}
case update_create_array: {
struct imsm_update_create_array *u = (void *) update->buf;
struct intel_dev *dv;
struct imsm_dev *dev = &u->dev;
struct imsm_map *map = get_imsm_map(dev, 0);
struct dl *dl;
struct disk_info *inf;
int i;
int activate = 0;
inf = get_disk_info(u);
len = sizeof_imsm_dev(dev, 1);
/* allocate a new super->devlist entry */
dv = malloc(sizeof(*dv));
if (dv) {
dv->dev = malloc(len);
if (dv->dev)
update->space = dv;
else {
free(dv);
update->space = NULL;
}
}
/* count how many spares will be converted to members */
for (i = 0; i < map->num_members; i++) {
dl = serial_to_dl(inf[i].serial, super);
if (!dl) {
/* hmm maybe it failed?, nothing we can do about
* it here
*/
continue;
}
if (count_memberships(dl, super) == 0)
activate++;
}
len += activate * sizeof(struct imsm_disk);
break;
default:
break;
}
}
/* check if we need a larger metadata buffer */
if (super->next_buf)
buf_len = super->next_len;
else
buf_len = super->len;
if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
/* ok we need a larger buf than what is currently allocated
* if this allocation fails process_update will notice that
* ->next_len is set and ->next_buf is NULL
*/
buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
if (super->next_buf)
free(super->next_buf);
super->next_len = buf_len;
if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
memset(super->next_buf, 0, buf_len);
else
super->next_buf = NULL;
}
}
/* must be called while manager is quiesced */
static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
{
struct imsm_super *mpb = super->anchor;
struct dl *iter;
struct imsm_dev *dev;
struct imsm_map *map;
int i, j, num_members;
__u32 ord;
dprintf("%s: deleting device[%d] from imsm_super\n",
__func__, index);
/* shift all indexes down one */
for (iter = super->disks; iter; iter = iter->next)
if (iter->index > (int)index)
iter->index--;
for (iter = super->missing; iter; iter = iter->next)
if (iter->index > (int)index)
iter->index--;
for (i = 0; i < mpb->num_raid_devs; i++) {
dev = get_imsm_dev(super, i);
map = get_imsm_map(dev, 0);
num_members = map->num_members;
for (j = 0; j < num_members; j++) {
/* update ord entries being careful not to propagate
* ord-flags to the first map
*/
ord = get_imsm_ord_tbl_ent(dev, j, -1);
if (ord_to_idx(ord) <= index)
continue;
map = get_imsm_map(dev, 0);
set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
map = get_imsm_map(dev, 1);
if (map)
set_imsm_ord_tbl_ent(map, j, ord - 1);
}
}
mpb->num_disks--;
super->updates_pending++;
if (*dlp) {
struct dl *dl = *dlp;
*dlp = (*dlp)->next;
__free_imsm_disk(dl);
}
}
static char disk_by_path[] = "/dev/disk/by-path/";
static const char *imsm_get_disk_controller_domain(const char *path)
{
char disk_path[PATH_MAX];
char *drv=NULL;
struct stat st;
strncpy(disk_path, disk_by_path, PATH_MAX - 1);
strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
if (stat(disk_path, &st) == 0) {
struct sys_dev* hba;
char *path=NULL;
path = devt_to_devpath(st.st_rdev);
if (path == NULL)
return "unknown";
hba = find_disk_attached_hba(-1, path);
if (hba && hba->type == SYS_DEV_SAS)
drv = "isci";
else if (hba && hba->type == SYS_DEV_SATA)
drv = "ahci";
else
drv = "unknown";
dprintf("path: %s hba: %s attached: %s\n",
path, (hba) ? hba->path : "NULL", drv);
free(path);
if (hba)
free_sys_dev(&hba);
}
return drv;
}
static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
{
char subdev_name[20];
struct mdstat_ent *mdstat;
sprintf(subdev_name, "%d", subdev);
mdstat = mdstat_by_subdev(subdev_name, container);
if (!mdstat)
return -1;
*minor = mdstat->devnum;
free_mdstat(mdstat);
return 0;
}
static int imsm_reshape_is_allowed_on_container(struct supertype *st,
struct geo_params *geo,
int *old_raid_disks)
{
/* currently we only support increasing the number of devices
* for a container. This increases the number of device for each
* member array. They must all be RAID0 or RAID5.
*/
int ret_val = 0;
struct mdinfo *info, *member;
int devices_that_can_grow = 0;
dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
"st->devnum = (%i)\n",
st->devnum);
if (geo->size != -1 ||
geo->level != UnSet ||
geo->layout != UnSet ||
geo->chunksize != 0 ||
geo->raid_disks == UnSet) {
dprintf("imsm: Container operation is allowed for "
"raid disks number change only.\n");
return ret_val;
}
info = container_content_imsm(st, NULL);
for (member = info; member; member = member->next) {
int result;
int minor;
dprintf("imsm: checking device_num: %i\n",
member->container_member);
if (geo->raid_disks <= member->array.raid_disks) {
/* we work on container for Online Capacity Expansion
* only so raid_disks has to grow
*/
dprintf("imsm: for container operation raid disks "
"increase is required\n");
break;
}
if ((info->array.level != 0) &&
(info->array.level != 5)) {
/* we cannot use this container with other raid level
*/
dprintf("imsm: for container operation wrong"
" raid level (%i) detected\n",
info->array.level);
break;
} else {
/* check for platform support
* for this raid level configuration
*/
struct intel_super *super = st->sb;
if (!is_raid_level_supported(super->orom,
member->array.level,
geo->raid_disks)) {
dprintf("platform does not support raid%d with"
" %d disk%s\n",
info->array.level,
geo->raid_disks,
geo->raid_disks > 1 ? "s" : "");
break;
}
}
if (*old_raid_disks &&
info->array.raid_disks != *old_raid_disks)
break;
*old_raid_disks = info->array.raid_disks;
/* All raid5 and raid0 volumes in container
* have to be ready for Online Capacity Expansion
* so they need to be assembled. We have already
* checked that no recovery etc is happening.
*/
result = imsm_find_array_minor_by_subdev(member->container_member,
st->container_dev,
&minor);
if (result < 0) {
dprintf("imsm: cannot find array\n");
break;
}
devices_that_can_grow++;
}
sysfs_free(info);
if (!member && devices_that_can_grow)
ret_val = 1;
if (ret_val)
dprintf("\tContainer operation allowed\n");
else
dprintf("\tError: %i\n", ret_val);
return ret_val;
}
/* Function: get_spares_for_grow
* Description: Allocates memory and creates list of spare devices
* avaliable in container. Checks if spare drive size is acceptable.
* Parameters: Pointer to the supertype structure
* Returns: Pointer to the list of spare devices (mdinfo structure) on success,
* NULL if fail
*/
static struct mdinfo *get_spares_for_grow(struct supertype *st)
{
unsigned long long min_size = min_acceptable_spare_size_imsm(st);
return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
}
/******************************************************************************
* function: imsm_create_metadata_update_for_reshape
* Function creates update for whole IMSM container.
*
******************************************************************************/
static int imsm_create_metadata_update_for_reshape(
struct supertype *st,
struct geo_params *geo,
int old_raid_disks,
struct imsm_update_reshape **updatep)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
int update_memory_size = 0;
struct imsm_update_reshape *u = NULL;
struct mdinfo *spares = NULL;
int i;
int delta_disks = 0;
struct mdinfo *dev;
dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
geo->raid_disks);
delta_disks = geo->raid_disks - old_raid_disks;
/* size of all update data without anchor */
update_memory_size = sizeof(struct imsm_update_reshape);
/* now add space for spare disks that we need to add. */
update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
u = calloc(1, update_memory_size);
if (u == NULL) {
dprintf("error: "
"cannot get memory for imsm_update_reshape update\n");
return 0;
}
u->type = update_reshape_container_disks;
u->old_raid_disks = old_raid_disks;
u->new_raid_disks = geo->raid_disks;
/* now get spare disks list
*/
spares = get_spares_for_grow(st);
if (spares == NULL
|| delta_disks > spares->array.spare_disks) {
fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
"for %s.\n", geo->dev_name);
goto abort;
}
/* we have got spares
* update disk list in imsm_disk list table in anchor
*/
dprintf("imsm: %i spares are available.\n\n",
spares->array.spare_disks);
dev = spares->devs;
for (i = 0; i < delta_disks; i++) {
struct dl *dl;
if (dev == NULL)
break;
u->new_disks[i] = makedev(dev->disk.major,
dev->disk.minor);
dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
dl->index = mpb->num_disks;
mpb->num_disks++;
dev = dev->next;
}
abort:
/* free spares
*/
sysfs_free(spares);
dprintf("imsm: reshape update preparation :");
if (i == delta_disks) {
dprintf(" OK\n");
*updatep = u;
return update_memory_size;
}
free(u);
dprintf(" Error\n");
return 0;
}
static void imsm_update_metadata_locally(struct supertype *st,
void *buf, int len)
{
struct metadata_update mu;
mu.buf = buf;
mu.len = len;
mu.space = NULL;
mu.space_list = NULL;
mu.next = NULL;
imsm_prepare_update(st, &mu);
imsm_process_update(st, &mu);
while (mu.space_list) {
void **space = mu.space_list;
mu.space_list = *space;
free(space);
}
}
/***************************************************************************
* Function: imsm_analyze_change
* Description: Function analyze change for single volume
* and validate if transition is supported
* Parameters: Geometry parameters, supertype structure
* Returns: Operation type code on success, -1 if fail
****************************************************************************/
enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
struct geo_params *geo)
{
struct mdinfo info;
int change = -1;
int check_devs = 0;
int chunk;
getinfo_super_imsm_volume(st, &info, NULL);
if ((geo->level != info.array.level) &&
(geo->level >= 0) &&
(geo->level != UnSet)) {
switch (info.array.level) {
case 0:
if (geo->level == 5) {
change = CH_MIGRATION;
check_devs = 1;
}
if (geo->level == 10) {
change = CH_TAKEOVER;
check_devs = 1;
}
break;
case 1:
if (geo->level == 0) {
change = CH_TAKEOVER;
check_devs = 1;
}
break;
case 5:
if (geo->level == 0)
change = CH_MIGRATION;
break;
case 10:
if (geo->level == 0) {
change = CH_TAKEOVER;
check_devs = 1;
}
break;
}
if (change == -1) {
fprintf(stderr,
Name " Error. Level Migration from %d to %d "
"not supported!\n",
info.array.level, geo->level);
goto analyse_change_exit;
}
} else
geo->level = info.array.level;
if ((geo->layout != info.array.layout)
&& ((geo->layout != UnSet) && (geo->layout != -1))) {
change = CH_MIGRATION;
if ((info.array.layout == 0)
&& (info.array.level == 5)
&& (geo->layout == 5)) {
/* reshape 5 -> 4 */
} else if ((info.array.layout == 5)
&& (info.array.level == 5)
&& (geo->layout == 0)) {
/* reshape 4 -> 5 */
geo->layout = 0;
geo->level = 5;
} else {
fprintf(stderr,
Name " Error. Layout Migration from %d to %d "
"not supported!\n",
info.array.layout, geo->layout);
change = -1;
goto analyse_change_exit;
}
} else
geo->layout = info.array.layout;
if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
&& (geo->chunksize != info.array.chunk_size))
change = CH_MIGRATION;
else
geo->chunksize = info.array.chunk_size;
chunk = geo->chunksize / 1024;
if (!validate_geometry_imsm(st,
geo->level,
geo->layout,
geo->raid_disks,
&chunk,
geo->size,
0, 0, 1))
change = -1;
if (check_devs) {
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->anchor;
if (mpb->num_raid_devs > 1) {
fprintf(stderr,
Name " Error. Cannot perform operation on %s"
"- for this operation it MUST be single "
"array in container\n",
geo->dev_name);
change = -1;
}
}
analyse_change_exit:
return change;
}
int imsm_takeover(struct supertype *st, struct geo_params *geo)
{
struct intel_super *super = st->sb;
struct imsm_update_takeover *u;
u = malloc(sizeof(struct imsm_update_takeover));
if (u == NULL)
return 1;
u->type = update_takeover;
u->subarray = super->current_vol;
/* 10->0 transition */
if (geo->level == 0)
u->direction = R10_TO_R0;
/* 0->10 transition */
if (geo->level == 10)
u->direction = R0_TO_R10;
/* update metadata locally */
imsm_update_metadata_locally(st, u,
sizeof(struct imsm_update_takeover));
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u,
sizeof(struct imsm_update_takeover));
else
free(u);
return 0;
}
static int imsm_reshape_super(struct supertype *st, long long size, int level,
int layout, int chunksize, int raid_disks,
int delta_disks, char *backup, char *dev,
int verbose)
{
int ret_val = 1;
struct geo_params geo;
dprintf("imsm: reshape_super called.\n");
memset(&geo, 0, sizeof(struct geo_params));
geo.dev_name = dev;
geo.dev_id = st->devnum;
geo.size = size;
geo.level = level;
geo.layout = layout;
geo.chunksize = chunksize;
geo.raid_disks = raid_disks;
if (delta_disks != UnSet)
geo.raid_disks += delta_disks;
dprintf("\tfor level : %i\n", geo.level);
dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
if (experimental() == 0)
return ret_val;
if (st->container_dev == st->devnum) {
/* On container level we can only increase number of devices. */
dprintf("imsm: info: Container operation\n");
int old_raid_disks = 0;
if (imsm_reshape_is_allowed_on_container(
st, &geo, &old_raid_disks)) {
struct imsm_update_reshape *u = NULL;
int len;
len = imsm_create_metadata_update_for_reshape(
st, &geo, old_raid_disks, &u);
if (len <= 0) {
dprintf("imsm: Cannot prepare update\n");
goto exit_imsm_reshape_super;
}
ret_val = 0;
/* update metadata locally */
imsm_update_metadata_locally(st, u, len);
/* and possibly remotely */
if (st->update_tail)
append_metadata_update(st, u, len);
else
free(u);
} else {
fprintf(stderr, Name ": (imsm) Operation "
"is not allowed on this container\n");
}
} else {
/* On volume level we support following operations
* - takeover: raid10 -> raid0; raid0 -> raid10
* - chunk size migration
* - migration: raid5 -> raid0; raid0 -> raid5
*/
struct intel_super *super = st->sb;
struct intel_dev *dev = super->devlist;
int change, devnum;
dprintf("imsm: info: Volume operation\n");
/* find requested device */
while (dev) {
imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
if (devnum == geo.dev_id)
break;
dev = dev->next;
}
if (dev == NULL) {
fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
geo.dev_name, geo.dev_id);
goto exit_imsm_reshape_super;
}
super->current_vol = dev->index;
change = imsm_analyze_change(st, &geo);
switch (change) {
case CH_TAKEOVER:
ret_val = imsm_takeover(st, &geo);
break;
case CH_MIGRATION:
ret_val = 0;
break;
default:
ret_val = 1;
}
}
exit_imsm_reshape_super:
dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
return ret_val;
}
static int imsm_manage_reshape(
int afd, struct mdinfo *sra, struct reshape *reshape,
struct supertype *st, unsigned long stripes,
int *fds, unsigned long long *offsets,
int dests, int *destfd, unsigned long long *destoffsets)
{
/* Just use child_monitor for now */
return child_monitor(
afd, sra, reshape, st, stripes,
fds, offsets, dests, destfd, destoffsets);
}
#endif /* MDASSEMBLE */
struct superswitch super_imsm = {
#ifndef MDASSEMBLE
.examine_super = examine_super_imsm,
.brief_examine_super = brief_examine_super_imsm,
.brief_examine_subarrays = brief_examine_subarrays_imsm,
.export_examine_super = export_examine_super_imsm,
.detail_super = detail_super_imsm,
.brief_detail_super = brief_detail_super_imsm,
.write_init_super = write_init_super_imsm,
.validate_geometry = validate_geometry_imsm,
.add_to_super = add_to_super_imsm,
.remove_from_super = remove_from_super_imsm,
.detail_platform = detail_platform_imsm,
.kill_subarray = kill_subarray_imsm,
.update_subarray = update_subarray_imsm,
.load_container = load_container_imsm,
.default_geometry = default_geometry_imsm,
.get_disk_controller_domain = imsm_get_disk_controller_domain,
.reshape_super = imsm_reshape_super,
.manage_reshape = imsm_manage_reshape,
#endif
.match_home = match_home_imsm,
.uuid_from_super= uuid_from_super_imsm,
.getinfo_super = getinfo_super_imsm,
.getinfo_super_disks = getinfo_super_disks_imsm,
.update_super = update_super_imsm,
.avail_size = avail_size_imsm,
.min_acceptable_spare_size = min_acceptable_spare_size_imsm,
.compare_super = compare_super_imsm,
.load_super = load_super_imsm,
.init_super = init_super_imsm,
.store_super = store_super_imsm,
.free_super = free_super_imsm,
.match_metadata_desc = match_metadata_desc_imsm,
.container_content = container_content_imsm,
.external = 1,
.name = "imsm",
#ifndef MDASSEMBLE
/* for mdmon */
.open_new = imsm_open_new,
.set_array_state= imsm_set_array_state,
.set_disk = imsm_set_disk,
.sync_metadata = imsm_sync_metadata,
.activate_spare = imsm_activate_spare,
.process_update = imsm_process_update,
.prepare_update = imsm_prepare_update,
#endif /* MDASSEMBLE */
};