mdadm/super1.c

1238 lines
34 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2001-2006 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neilb@cse.unsw.edu.au>
* Paper: Neil Brown
* School of Computer Science and Engineering
* The University of New South Wales
* Sydney, 2052
* Australia
*/
#include "mdadm.h"
/*
* The version-1 superblock :
* All numeric fields are little-endian.
*
* total size: 256 bytes plus 2 per device.
* 1K allows 384 devices.
*/
struct mdp_superblock_1 {
/* constant array information - 128 bytes */
__u32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */
__u32 major_version; /* 1 */
__u32 feature_map; /* 0 for now */
__u32 pad0; /* always set to 0 when writing */
__u8 set_uuid[16]; /* user-space generated. */
char set_name[32]; /* set and interpreted by user-space */
__u64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/
__u32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */
__u32 layout; /* only for raid5 currently */
__u64 size; /* used size of component devices, in 512byte sectors */
__u32 chunksize; /* in 512byte sectors */
__u32 raid_disks;
__u32 bitmap_offset; /* sectors after start of superblock that bitmap starts
* NOTE: signed, so bitmap can be before superblock
* only meaningful of feature_map[0] is set.
*/
/* These are only valid with feature bit '4' */
__u32 new_level; /* new level we are reshaping to */
__u64 reshape_position; /* next address in array-space for reshape */
__u32 delta_disks; /* change in number of raid_disks */
__u32 new_layout; /* new layout */
__u32 new_chunk; /* new chunk size (bytes) */
__u8 pad1[128-124]; /* set to 0 when written */
/* constant this-device information - 64 bytes */
__u64 data_offset; /* sector start of data, often 0 */
__u64 data_size; /* sectors in this device that can be used for data */
__u64 super_offset; /* sector start of this superblock */
__u64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */
__u32 dev_number; /* permanent identifier of this device - not role in raid */
__u32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */
__u8 device_uuid[16]; /* user-space setable, ignored by kernel */
__u8 devflags; /* per-device flags. Only one defined...*/
#define WriteMostly1 1 /* mask for writemostly flag in above */
__u8 pad2[64-57]; /* set to 0 when writing */
/* array state information - 64 bytes */
__u64 utime; /* 40 bits second, 24 btes microseconds */
__u64 events; /* incremented when superblock updated */
__u64 resync_offset; /* data before this offset (from data_offset) known to be in sync */
__u32 sb_csum; /* checksum upto devs[max_dev] */
__u32 max_dev; /* size of devs[] array to consider */
__u8 pad3[64-32]; /* set to 0 when writing */
/* device state information. Indexed by dev_number.
* 2 bytes per device
* Note there are no per-device state flags. State information is rolled
* into the 'roles' value. If a device is spare or faulty, then it doesn't
* have a meaningful role.
*/
__u16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */
};
/* feature_map bits */
#define MD_FEATURE_BITMAP_OFFSET 1
#define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and
* must be honoured
*/
#define MD_FEATURE_RESHAPE_ACTIVE 4
#define MD_FEATURE_ALL (1|2|4)
#ifndef offsetof
#define offsetof(t,f) ((int)&(((t*)0)->f))
#endif
static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
{
unsigned int disk_csum, csum;
unsigned long long newcsum;
int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2;
unsigned int *isuper = (unsigned int*)sb;
int i;
/* make sure I can count... */
if (offsetof(struct mdp_superblock_1,data_offset) != 128 ||
offsetof(struct mdp_superblock_1, utime) != 192 ||
sizeof(struct mdp_superblock_1) != 256) {
fprintf(stderr, "WARNING - superblock isn't sized correctly\n");
}
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (i=0; size>=4; size -= 4 )
newcsum += __le32_to_cpu(*isuper++);
if (size == 2)
newcsum += __le16_to_cpu(*(unsigned short*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return csum;
}
#ifndef MDASSEMBLE
static void examine_super1(void *sbv, char *homehost)
{
struct mdp_superblock_1 *sb = sbv;
time_t atime;
int d;
int faulty;
int i;
char *c;
int l = homehost ? strlen(homehost) : 0;
printf(" Magic : %08x\n", __le32_to_cpu(sb->magic));
printf(" Version : %02d\n", 1);
printf(" Feature Map : 0x%x\n", __le32_to_cpu(sb->feature_map));
printf(" Array UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n");
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
printf("\n");
atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL;
printf(" Creation Time : %.24s\n", ctime(&atime));
c=map_num(pers, __le32_to_cpu(sb->level));
printf(" Raid Level : %s\n", c?c:"-unknown-");
printf(" Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks));
printf("\n");
printf(" Device Size : %llu%s\n", (unsigned long long)sb->data_size, human_size(sb->data_size<<9));
if (__le32_to_cpu(sb->level) >= 0) {
int ddsks=0;
switch(__le32_to_cpu(sb->level)) {
case 1: ddsks=1;break;
case 4:
case 5: ddsks = sb->raid_disks-1; break;
case 6: ddsks = sb->raid_disks-2; break;
case 10: ddsks = sb->raid_disks / (sb->layout&255) / ((sb->layout>>8)&255);
}
if (ddsks)
printf(" Array Size : %llu%s\n", ddsks*(unsigned long long)sb->size, human_size(ddsks*sb->size<<9));
if (sb->size != sb->data_size)
printf(" Used Size : %llu%s\n", (unsigned long long)sb->size, human_size(sb->size<<9));
}
if (sb->data_offset)
printf(" Data Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->data_offset));
if (sb->super_offset)
printf(" Super Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->super_offset));
if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)
printf("Recovery Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->recovery_offset));
printf(" State : %s\n", (__le64_to_cpu(sb->resync_offset)+1)? "active":"clean");
printf(" Device UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->device_uuid[i]);
}
printf("\n");
printf("\n");
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
printf("Internal Bitmap : %ld sectors from superblock\n",
(long)__le32_to_cpu(sb->bitmap_offset));
}
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) {
printf(" Reshape pos'n : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->reshape_position)/2,
human_size(__le64_to_cpu(sb->reshape_position)<<9));
if (__le32_to_cpu(sb->delta_disks)) {
printf(" Delta Devices : %d", __le32_to_cpu(sb->delta_disks));
if (__le32_to_cpu(sb->delta_disks))
printf(" (%d->%d)\n",
__le32_to_cpu(sb->raid_disks)-__le32_to_cpu(sb->delta_disks),
__le32_to_cpu(sb->raid_disks));
else
printf(" (%d->%d)\n", __le32_to_cpu(sb->raid_disks),
__le32_to_cpu(sb->raid_disks)+__le32_to_cpu(sb->delta_disks));
}
if (__le32_to_cpu(sb->new_level) != __le32_to_cpu(sb->level)) {
c = map_num(pers, __le32_to_cpu(sb->new_level));
printf(" New Level : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->new_layout) != __le32_to_cpu(sb->layout)) {
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->new_layout));
printf(" New Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
printf(" New Layout : near=%d, %s=%d\n",
__le32_to_cpu(sb->new_layout)&255,
(__le32_to_cpu(sb->new_layout)&0x10000)?"offset":"far",
(__le32_to_cpu(sb->new_layout)>>8)&255);
}
}
if (__le32_to_cpu(sb->new_chunk) != __le32_to_cpu(sb->chunksize))
printf(" New Chunksize : %dK\n", __le32_to_cpu(sb->new_chunk)/2);
printf("\n");
}
if (sb->devflags) {
printf(" Flags :");
if (sb->devflags & WriteMostly1)
printf(" write-mostly");
printf("\n");
}
atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL;
printf(" Update Time : %.24s\n", ctime(&atime));
if (calc_sb_1_csum(sb) == sb->sb_csum)
printf(" Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum));
else
printf(" Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum),
__le32_to_cpu(calc_sb_1_csum(sb)));
printf(" Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events));
printf("\n");
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->layout));
printf(" Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
int lo = __le32_to_cpu(sb->layout);
printf(" Layout : near=%d, %s=%d\n",
lo&255,
(lo&0x10000)?"offset":"far",
(lo>>8)&255);
}
switch(__le32_to_cpu(sb->level)) {
case 0:
case 4:
case 5:
case 6:
case 10:
printf(" Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
case -1:
printf(" Rounding : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
default: break;
}
printf("\n");
printf(" Array State : ");
for (d=0; d<__le32_to_cpu(sb->raid_disks); d++) {
int cnt = 0;
int me = 0;
int i;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == d) {
if (i == __le32_to_cpu(sb->dev_number))
me = 1;
cnt++;
}
}
if (cnt > 1) printf("?");
else if (cnt == 1 && me) printf("U");
else if (cnt == 1) printf("u");
else printf ("_");
}
faulty = 0;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == 0xFFFE)
faulty++;
}
if (faulty) printf(" %d failed", faulty);
printf("\n");
}
static void brief_examine_super1(void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
int i;
char *nm;
nm = strchr(sb->set_name, ':');
if (nm)
nm++;
else if (sb->set_name[0])
nm = sb->set_name;
else
nm = "??";
char *c=map_num(pers, __le32_to_cpu(sb->level));
printf("ARRAY /dev/md/%s level=%s metadata=1 num-devices=%d UUID=",
nm,
c?c:"-unknown-", sb->raid_disks);
for (i=0; i<16; i++) {
printf("%02x", sb->set_uuid[i]);
if ((i&3)==0 && i != 0) printf(":");
}
if (sb->set_name[0])
printf(" name=%.32s", sb->set_name);
printf("\n");
}
static void detail_super1(void *sbv, char *homehost)
{
struct mdp_superblock_1 *sb = sbv;
int i;
int l = homehost ? strlen(homehost) : 0;
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
printf("\n UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events));
}
static void brief_detail_super1(void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
int i;
if (sb->set_name[0])
printf(" name=%.32s", sb->set_name);
printf(" UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
}
#endif
static int match_home1(void *sbv, char *homehost)
{
struct mdp_superblock_1 *sb = sbv;
int l = homehost ? strlen(homehost) : 0;
return (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0);
}
static void uuid_from_super1(int uuid[4], void * sbv)
{
struct mdp_superblock_1 *super = sbv;
char *cuuid = (char*)uuid;
int i;
for (i=0; i<16; i++)
cuuid[i] = super->set_uuid[i];
}
static void getinfo_super1(struct mdinfo *info, void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
int working = 0;
int i;
int role;
info->array.major_version = 1;
info->array.minor_version = __le32_to_cpu(sb->feature_map);
info->array.patch_version = 0;
info->array.raid_disks = __le32_to_cpu(sb->raid_disks);
info->array.level = __le32_to_cpu(sb->level);
info->array.layout = __le32_to_cpu(sb->layout);
info->array.md_minor = -1;
info->array.ctime = __le64_to_cpu(sb->ctime);
info->array.utime = __le64_to_cpu(sb->utime);
info->array.chunk_size = __le32_to_cpu(sb->chunksize)*512;
info->data_offset = __le64_to_cpu(sb->data_offset);
info->component_size = __le64_to_cpu(sb->size);
info->disk.major = 0;
info->disk.minor = 0;
info->disk.number = __le32_to_cpu(sb->dev_number);
if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) ||
__le32_to_cpu(sb->max_dev) > 512)
role = 0xfffe;
else
role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]);
info->disk.raid_disk = -1;
switch(role) {
case 0xFFFF:
info->disk.state = 2; /* spare: ACTIVE, not sync, not faulty */
break;
case 0xFFFE:
info->disk.state = 1; /* faulty */
break;
default:
info->disk.state = 6; /* active and in sync */
info->disk.raid_disk = role;
}
info->events = __le64_to_cpu(sb->events);
memcpy(info->uuid, sb->set_uuid, 16);
strncpy(info->name, sb->set_name, 32);
info->name[32] = 0;
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) {
info->reshape_active = 1;
info->reshape_progress = __le64_to_cpu(sb->reshape_position);
info->new_level = __le32_to_cpu(sb->new_level);
info->delta_disks = __le32_to_cpu(sb->delta_disks);
info->new_layout = __le32_to_cpu(sb->new_layout);
info->new_chunk = __le32_to_cpu(sb->new_chunk)<<9;
} else
info->reshape_active = 0;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
role = __le16_to_cpu(sb->dev_roles[i]);
if (/*role == 0xFFFF || */role < info->array.raid_disks)
working++;
}
info->array.working_disks = working;
}
static int update_super1(struct mdinfo *info, void *sbv, char *update,
char *devname, int verbose,
int uuid_set, char *homehost)
{
/* NOTE: for 'assemble' and 'force' we need to return non-zero if any change was made.
* For others, the return value is ignored.
*/
int rv = 0;
struct mdp_superblock_1 *sb = sbv;
if (strcmp(update, "force")==0) {
if (sb->events != __cpu_to_le64(info->events))
rv = 1;
sb->events = __cpu_to_le64(info->events);
switch(__le32_to_cpu(sb->level)) {
case 5: case 4: case 6:
/* need to force clean */
if (sb->resync_offset != ~0ULL)
rv = 1;
sb->resync_offset = ~0ULL;
}
}
if (strcmp(update, "assemble")==0) {
int d = info->disk.number;
int want;
if (info->disk.state == 6)
want = __cpu_to_le32(info->disk.raid_disk);
else
want = 0xFFFF;
if (sb->dev_roles[d] != want) {
sb->dev_roles[d] = want;
rv = 1;
}
}
#if 0
if (strcmp(update, "newdev") == 0) {
int d = info->disk.number;
memset(&sb->disks[d], 0, sizeof(sb->disks[d]));
sb->disks[d].number = d;
sb->disks[d].major = info->disk.major;
sb->disks[d].minor = info->disk.minor;
sb->disks[d].raid_disk = info->disk.raid_disk;
sb->disks[d].state = info->disk.state;
sb->this_disk = sb->disks[d];
}
#endif
if (strcmp(update, "grow") == 0) {
sb->raid_disks = __cpu_to_le32(info->array.raid_disks);
/* FIXME */
}
if (strcmp(update, "resync") == 0) {
/* make sure resync happens */
sb->resync_offset = ~0ULL;
}
if (strcmp(update, "uuid") == 0) {
memcpy(sb->set_uuid, info->uuid, 16);
if (__le32_to_cpu(sb->feature_map)&MD_FEATURE_BITMAP_OFFSET) {
struct bitmap_super_s *bm;
bm = (struct bitmap_super_s*)(sbv+1024);
memcpy(bm->uuid, info->uuid, 16);
}
}
if (strcmp(update, "homehost") == 0 &&
homehost) {
char *c;
update = "name";
c = strchr(sb->set_name, ':');
if (c)
strncpy(info->name, c+1, 31 - (c-sb->set_name));
else
strncpy(info->name, sb->set_name, 32);
info->name[33] = 0;
}
if (strcmp(update, "name") == 0) {
if (info->name[0] == 0)
sprintf(info->name, "%d", info->array.md_minor);
memset(sb->set_name, 0, sizeof(sb->set_name));
if (homehost &&
strchr(info->name, ':') == NULL &&
strlen(homehost)+1+strlen(info->name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, info->name);
} else
strcpy(sb->set_name, info->name);
}
if (strcmp(update, "_reshape_progress")==0)
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
sb->sb_csum = calc_sb_1_csum(sb);
return rv;
}
static __u64 event_super1(void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
return __le64_to_cpu(sb->events);
}
static int init_super1(struct supertype *st, void **sbp, mdu_array_info_t *info,
unsigned long long size, char *name, char *homehost)
{
struct mdp_superblock_1 *sb = malloc(1024 + sizeof(bitmap_super_t));
int spares;
int rfd;
char defname[10];
memset(sb, 0, 1024);
if (info->major_version == -1) {
/* zeroing superblock */
*sbp = sb;
return 0;
}
spares = info->working_disks - info->active_disks;
if (info->raid_disks + spares > 384) {
fprintf(stderr, Name ": too many devices requested: %d+%d > %d\n",
info->raid_disks , spares, 384);
return 0;
}
sb->magic = __cpu_to_le32(MD_SB_MAGIC);
sb->major_version = __cpu_to_le32(1);
sb->feature_map = 0;
sb->pad0 = 0;
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->set_uuid, 16) != 16) {
*(__u32*)(sb->set_uuid) = random();
*(__u32*)(sb->set_uuid+4) = random();
*(__u32*)(sb->set_uuid+8) = random();
*(__u32*)(sb->set_uuid+12) = random();
}
if (rfd >= 0) close(rfd);
if (name == NULL || *name == 0) {
sprintf(defname, "%d", info->md_minor);
name = defname;
}
memset(sb->set_name, 0, 32);
if (homehost &&
strchr(name, ':')== NULL &&
strlen(homehost)+1+strlen(name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, name);
} else
strcpy(sb->set_name, name);
sb->ctime = __cpu_to_le64((unsigned long long)time(0));
sb->level = __cpu_to_le32(info->level);
sb->layout = __cpu_to_le32(info->layout);
sb->size = __cpu_to_le64(size*2ULL);
sb->chunksize = __cpu_to_le32(info->chunk_size>>9);
sb->raid_disks = __cpu_to_le32(info->raid_disks);
sb->data_offset = __cpu_to_le64(0);
sb->data_size = __cpu_to_le64(0);
sb->super_offset = __cpu_to_le64(0);
sb->recovery_offset = __cpu_to_le64(0);
sb->utime = sb->ctime;
sb->events = __cpu_to_le64(1);
if (info->state & (1<<MD_SB_CLEAN))
sb->resync_offset = ~0ULL;
else
sb->resync_offset = 0;
sb->max_dev = __cpu_to_le32((1024- sizeof(struct mdp_superblock_1))/
sizeof(sb->dev_roles[0]));
memset(sb->pad3, 0, sizeof(sb->pad3));
memset(sb->dev_roles, 0xff, 1024 - sizeof(struct mdp_superblock_1));
*sbp = sb;
return 1;
}
/* Add a device to the superblock being created */
static void add_to_super1(void *sbv, mdu_disk_info_t *dk)
{
struct mdp_superblock_1 *sb = sbv;
__u16 *rp = sb->dev_roles + dk->number;
if ((dk->state & 6) == 6) /* active, sync */
*rp = __cpu_to_le16(dk->raid_disk);
else if ((dk->state & ~2) == 0) /* active or idle -> spare */
*rp = 0xffff;
else
*rp = 0xfffe;
}
static void locate_bitmap1(struct supertype *st, int fd, void *sbv);
static int store_super1(struct supertype *st, int fd, void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
unsigned long long sb_offset;
int sbsize;
unsigned long size;
unsigned long long dsize;
#ifdef BLKGETSIZE64
if (ioctl(fd, BLKGETSIZE64, &dsize) != 0)
#endif
{
if (ioctl(fd, BLKGETSIZE, &size))
return 1;
else
dsize = (unsigned long long)size;
} else
dsize >>= 9;
if (dsize < 24)
return 2;
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
if (sb_offset != __le64_to_cpu(sb->super_offset) &&
0 != __le64_to_cpu(sb->super_offset)
) {
fprintf(stderr, Name ": internal error - sb_offset is wrong\n");
abort();
}
if (lseek64(fd, sb_offset << 9, 0)< 0LL)
return 3;
sbsize = sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev);
if (write(fd, sb, sbsize) != sbsize)
return 4;
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
struct bitmap_super_s *bm = (struct bitmap_super_s*)
(((char*)sb)+1024);
if (__le32_to_cpu(bm->magic) == BITMAP_MAGIC) {
locate_bitmap1(st, fd, sbv);
if (write(fd, bm, sizeof(*bm)) != sizeof(*bm))
return 5;
}
}
fsync(fd);
return 0;
}
static int load_super1(struct supertype *st, int fd, void **sbp, char *devname);
static int write_init_super1(struct supertype *st, void *sbv,
mdu_disk_info_t *dinfo, char *devname)
{
struct mdp_superblock_1 *sb = sbv;
void *refsbv = NULL;
int fd = open(devname, O_RDWR | O_EXCL);
int rfd;
int rv;
unsigned long size, space;
unsigned long long dsize, array_size;
long long sb_offset;
if (fd < 0) {
fprintf(stderr, Name ": Failed to open %s to write superblock\n",
devname);
return -1;
}
sb->dev_number = __cpu_to_le32(dinfo->number);
if (dinfo->state & (1<<MD_DISK_WRITEMOSTLY))
sb->devflags |= WriteMostly1;
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
*(__u32*)(sb->device_uuid) = random();
*(__u32*)(sb->device_uuid+4) = random();
*(__u32*)(sb->device_uuid+8) = random();
*(__u32*)(sb->device_uuid+12) = random();
}
if (rfd >= 0) close(rfd);
sb->events = 0;
if (load_super1(st, fd, &refsbv, NULL)==0) {
struct mdp_superblock_1 *refsb = refsbv;
memcpy(sb->device_uuid, refsb->device_uuid, 16);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) {
/* same array, so preserve events and dev_number */
sb->events = refsb->events;
sb->dev_number = refsb->dev_number;
}
free(refsb);
}
#ifdef BLKGETSIZE64
if (ioctl(fd, BLKGETSIZE64, &dsize) != 0)
#endif
{
if (ioctl(fd, BLKGETSIZE, &size))
return 1;
else
dsize = size;
} else
dsize >>= 9;
if (dsize < 24) {
close(fd);
return 2;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
* Depending on the array size, we might leave extra space
* for a bitmap.
*/
array_size = __le64_to_cpu(sb->size);
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
sb->super_offset = __cpu_to_le64(sb_offset);
sb->data_offset = __cpu_to_le64(0);
if (sb_offset-64*2 >= array_size && array_size > 8*1024*1024*2)
sb->data_size = __cpu_to_le64(sb_offset-64*2);
else
sb->data_size = __cpu_to_le64(sb_offset);
break;
case 1:
sb->super_offset = __cpu_to_le64(0);
if (dsize - 64*2 >= array_size && array_size > 8*1024*1024*2)
space = 64*2;
else
space = 4*2;
sb->data_offset = __cpu_to_le64(space); /* leave space for super and bitmap */
sb->data_size = __cpu_to_le64(dsize - space);
break;
case 2:
sb_offset = 4*2;
if (dsize - 4*2 - 64*2 >= array_size && array_size > 8*1024*1024*2)
space = 64*2;
else
space = 4*2;
sb->super_offset = __cpu_to_le64(sb_offset);
sb->data_offset = __cpu_to_le64(sb_offset+space);
sb->data_size = __cpu_to_le64(dsize - 4*2 - space);
break;
default:
return -EINVAL;
}
sb->sb_csum = calc_sb_1_csum(sb);
rv = store_super1(st, fd, sb);
if (rv)
fprintf(stderr, Name ": failed to write superblock to %s\n", devname);
if (rv == 0 && (__le32_to_cpu(sb->feature_map) & 1))
rv = st->ss->write_bitmap(st, fd, sbv);
close(fd);
return rv;
}
static int compare_super1(void **firstp, void *secondv)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct mdp_superblock_1 *first = *firstp;
struct mdp_superblock_1 *second = secondv;
if (second->magic != __cpu_to_le32(MD_SB_MAGIC))
return 1;
if (second->major_version != __cpu_to_le32(1))
return 1;
if (!first) {
first = malloc(1024+sizeof(bitmap_super_t));
memcpy(first, second, 1024+sizeof(bitmap_super_t));
*firstp = first;
return 0;
}
if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0)
return 2;
if (first->ctime != second->ctime ||
first->level != second->level ||
first->layout != second->layout ||
first->size != second->size ||
first->chunksize != second->chunksize ||
first->raid_disks != second->raid_disks)
return 3;
return 0;
}
static int load_super1(struct supertype *st, int fd, void **sbp, char *devname)
{
unsigned long size;
unsigned long long dsize;
unsigned long long sb_offset;
struct mdp_superblock_1 *super;
int uuid[4];
struct bitmap_super_s *bsb;
if (st->ss == NULL) {
int bestvers = -1;
__u64 bestctime = 0;
/* guess... choose latest ctime */
st->ss = &super1;
for (st->minor_version = 0; st->minor_version <= 2 ; st->minor_version++) {
switch(load_super1(st, fd, sbp, devname)) {
case 0: super = *sbp;
if (bestvers == -1 ||
bestctime < __le64_to_cpu(super->ctime)) {
bestvers = st->minor_version;
bestctime = __le64_to_cpu(super->ctime);
}
free(super);
*sbp = NULL;
break;
case 1: st->ss = NULL; return 1; /*bad device */
case 2: break; /* bad, try next */
}
}
if (bestvers != -1) {
int rv;
st->minor_version = bestvers;
st->ss = &super1;
st->max_devs = 384;
rv = load_super1(st, fd, sbp, devname);
if (rv) st->ss = NULL;
return rv;
}
st->ss = NULL;
return 2;
}
#ifdef BLKGETSIZE64
if (ioctl(fd, BLKGETSIZE64, &dsize) != 0)
#endif
{
if (ioctl(fd, BLKGETSIZE, &size)) {
if (devname)
fprintf(stderr, Name ": cannot find device size for %s: %s\n",
devname, strerror(errno));
return 1;
}
dsize = size;
} else
dsize >>= 9;
if (dsize < 24) {
if (devname)
fprintf(stderr, Name ": %s is too small for md: size is %llu sectors.\n",
devname, dsize);
return 1;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
ioctl(fd, BLKFLSBUF, 0); /* make sure we read current data */
if (lseek64(fd, sb_offset << 9, 0)< 0LL) {
if (devname)
fprintf(stderr, Name ": Cannot seek to superblock on %s: %s\n",
devname, strerror(errno));
return 1;
}
super = malloc(1024 + sizeof(bitmap_super_t));
if (read(fd, super, 1024) != 1024) {
if (devname)
fprintf(stderr, Name ": Cannot read superblock on %s\n",
devname);
free(super);
return 1;
}
if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) {
if (devname)
fprintf(stderr, Name ": No super block found on %s (Expected magic %08x, got %08x)\n",
devname, MD_SB_MAGIC, __le32_to_cpu(super->magic));
free(super);
return 2;
}
if (__le32_to_cpu(super->major_version) != 1) {
if (devname)
fprintf(stderr, Name ": Cannot interpret superblock on %s - version is %d\n",
devname, __le32_to_cpu(super->major_version));
free(super);
return 2;
}
if (__le64_to_cpu(super->super_offset) != sb_offset) {
if (devname)
fprintf(stderr, Name ": No superblock found on %s (super_offset is wrong)\n",
devname);
free(super);
return 2;
}
*sbp = super;
/* Now check on the bitmap superblock */
if ((__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) == 0)
return 0;
/* Read the bitmap superblock and make sure it looks
* valid. If it doesn't clear the bit. An --assemble --force
* should get that written out.
*/
locate_bitmap1(st, fd, super);
if (read(fd, ((char*)super)+1024, sizeof(struct bitmap_super_s))
!= sizeof(struct bitmap_super_s))
goto no_bitmap;
uuid_from_super1(uuid, super);
bsb = (struct bitmap_super_s *)(((char*)super)+1024);
if (__le32_to_cpu(bsb->magic) != BITMAP_MAGIC ||
memcmp(bsb->uuid, uuid, 16) != 0)
goto no_bitmap;
return 0;
no_bitmap:
super->feature_map = __cpu_to_le32(__le32_to_cpu(super->feature_map) & ~1);
return 0;
}
static struct supertype *match_metadata_desc1(char *arg)
{
struct supertype *st = malloc(sizeof(*st));
if (!st) return st;
st->ss = &super1;
st->max_devs = 384;
if (strcmp(arg, "1") == 0 ||
strcmp(arg, "1.0") == 0 ||
strcmp(arg, "default/large") == 0) {
st->minor_version = 0;
return st;
}
if (strcmp(arg, "1.1") == 0) {
st->minor_version = 1;
return st;
}
if (strcmp(arg, "1.2") == 0) {
st->minor_version = 2;
return st;
}
free(st);
return NULL;
}
/* find available size on device with this devsize, using
* superblock type st, and reserving 'reserve' sectors for
* a possible bitmap
*/
static __u64 avail_size1(struct supertype *st, __u64 devsize)
{
if (devsize < 24)
return 0;
/* if the device is bigger than 8Gig, save 64k for bitmap usage,
* if biffer than 200Gig, save 128k
*/
if (devsize > 200*1024*1024*2)
devsize -= 128*2;
else if (devsize > 8*1024*1024*2)
devsize -= 64*2;
switch(st->minor_version) {
case 0:
/* at end */
return ((devsize - 8*2 ) & ~(4*2-1));
case 1:
/* at start, 4K for superblock and possible bitmap */
return devsize - 4*2;
case 2:
/* 4k from start, 4K for superblock and possible bitmap */
return devsize - (4+4)*2;
}
return 0;
}
static int
add_internal_bitmap1(struct supertype *st, void *sbv,
int chunk, int delay, int write_behind, unsigned long long size,
int may_change, int major)
{
/*
* If not may_change, then this is a 'Grow', and the bitmap
* must fit after the superblock.
* If may_change, then this is create, and we can put the bitmap
* before the superblock if we like, or may move the start.
* For now, just squeeze the bitmap into 3k and don't change anything.
*
* size is in sectors, chunk is in bytes !!!
*/
unsigned long long bits;
unsigned long long max_bits = (3*512 - sizeof(bitmap_super_t)) * 8;
unsigned long long min_chunk;
struct mdp_superblock_1 *sb = sbv;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + 1024);
if (st->minor_version && !may_change &&
__le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset) < 8)
return 0; /* doesn't fit */
min_chunk = 4096; /* sub-page chunks don't work yet.. */
bits = (size*512)/min_chunk +1;
while (bits > max_bits) {
min_chunk *= 2;
bits = (bits+1)/2;
}
if (chunk == UnSet)
chunk = min_chunk;
else if (chunk < min_chunk)
return 0; /* chunk size too small */
if (chunk == 0) /* rounding problem */
return 0;
sb->bitmap_offset = __cpu_to_le32(2);
sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | 1);
memset(bms, 0, sizeof(*bms));
bms->magic = __cpu_to_le32(BITMAP_MAGIC);
bms->version = __cpu_to_le32(major);
uuid_from_super1((int*)bms->uuid, sb);
bms->chunksize = __cpu_to_le32(chunk);
bms->daemon_sleep = __cpu_to_le32(delay);
bms->sync_size = __cpu_to_le64(size);
bms->write_behind = __cpu_to_le32(write_behind);
return 1;
}
static void locate_bitmap1(struct supertype *st, int fd, void *sbv)
{
unsigned long long offset;
struct mdp_superblock_1 *sb;
int mustfree = 0;
if (!sbv) {
if (st->ss->load_super(st, fd, &sbv, NULL))
return; /* no error I hope... */
mustfree = 1;
}
sb = sbv;
offset = __le64_to_cpu(sb->super_offset);
offset += (long) __le32_to_cpu(sb->bitmap_offset);
if (mustfree)
free(sb);
lseek64(fd, offset<<9, 0);
}
static int write_bitmap1(struct supertype *st, int fd, void *sbv)
{
struct mdp_superblock_1 *sb = sbv;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb)+1024);
int rv = 0;
int towrite, n;
char buf[4096];
locate_bitmap1(st, fd, sbv);
if (write(fd, ((char*)sb)+1024, sizeof(bitmap_super_t)) !=
sizeof(bitmap_super_t))
return -2;
towrite = __le64_to_cpu(bms->sync_size) / (__le32_to_cpu(bms->chunksize)>>9);
towrite = (towrite+7) >> 3; /* bits to bytes */
memset(buf, 0xff, sizeof(buf));
while (towrite > 0) {
n = towrite;
if (n > sizeof(buf))
n = sizeof(buf);
n = write(fd, buf, n);
if (n > 0)
towrite -= n;
else
break;
}
fsync(fd);
if (towrite)
rv = -2;
return rv;
}
struct superswitch super1 = {
#ifndef MDASSEMBLE
.examine_super = examine_super1,
.brief_examine_super = brief_examine_super1,
.detail_super = detail_super1,
.brief_detail_super = brief_detail_super1,
#endif
.match_home = match_home1,
.uuid_from_super = uuid_from_super1,
.getinfo_super = getinfo_super1,
.update_super = update_super1,
.event_super = event_super1,
.init_super = init_super1,
.add_to_super = add_to_super1,
.store_super = store_super1,
.write_init_super = write_init_super1,
.compare_super = compare_super1,
.load_super = load_super1,
.match_metadata_desc = match_metadata_desc1,
.avail_size = avail_size1,
.add_internal_bitmap = add_internal_bitmap1,
.locate_bitmap = locate_bitmap1,
.write_bitmap = write_bitmap1,
.major = 1,
#if __BYTE_ORDER == BIG_ENDIAN
.swapuuid = 0,
#else
.swapuuid = 1,
#endif
};