mdadm/super-intel.c

1423 lines
35 KiB
C

/*
* mdadm - Intel(R) Matrix Storage Manager Support
*
* Copyright (C) 2002-2007 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "mdadm.h"
#include "mdmon.h"
#include <values.h>
#include <scsi/sg.h>
#include <ctype.h>
/* MPB == Metadata Parameter Block */
#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
#define MPB_VERSION_RAID0 "1.0.00"
#define MPB_VERSION_RAID1 "1.1.00"
#define MPB_VERSION_RAID5 "1.2.02"
#define MAX_SIGNATURE_LENGTH 32
#define MAX_RAID_SERIAL_LEN 16
/* Disk configuration info. */
#define IMSM_MAX_DEVICES 255
struct imsm_disk {
__u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
__u32 total_blocks; /* 0xE8 - 0xEB total blocks */
__u32 scsi_id; /* 0xEC - 0xEF scsi ID */
__u32 status; /* 0xF0 - 0xF3 */
#define SPARE_DISK 0x01 /* Spare */
#define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
#define FAILED_DISK 0x04 /* Permanent failure */
#define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
#define IMSM_DISK_FILLERS 5
__u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
};
/* RAID map configuration infos. */
struct imsm_map {
__u32 pba_of_lba0; /* start address of partition */
__u32 blocks_per_member;/* blocks per member */
__u32 num_data_stripes; /* number of data stripes */
__u16 blocks_per_strip;
__u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
#define IMSM_T_STATE_NORMAL 0
#define IMSM_T_STATE_UNINITIALIZED 1
#define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
#define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
__u8 raid_level;
#define IMSM_T_RAID0 0
#define IMSM_T_RAID1 1
#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
__u8 num_members; /* number of member disks */
__u8 reserved[3];
__u32 filler[7]; /* expansion area */
__u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
top byte special */
} __attribute__ ((packed));
struct imsm_vol {
__u32 reserved[2];
__u8 migr_state; /* Normal or Migrating */
__u8 migr_type; /* Initializing, Rebuilding, ... */
__u8 dirty;
__u8 fill[1];
__u32 filler[5];
struct imsm_map map[1];
/* here comes another one if migr_state */
} __attribute__ ((packed));
struct imsm_dev {
__u8 volume[MAX_RAID_SERIAL_LEN];
__u32 size_low;
__u32 size_high;
__u32 status; /* Persistent RaidDev status */
__u32 reserved_blocks; /* Reserved blocks at beginning of volume */
#define IMSM_DEV_FILLERS 12
__u32 filler[IMSM_DEV_FILLERS];
struct imsm_vol vol;
} __attribute__ ((packed));
struct imsm_super {
__u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
__u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
__u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
__u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
__u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
__u32 reserved[2]; /* 0x30 - 0x37 */
__u8 num_disks; /* 0x38 Number of configured disks */
__u8 num_raid_devs; /* 0x39 Number of configured volumes */
__u8 fill[2]; /* 0x3A - 0x3B */
#define IMSM_FILLERS 39
__u32 filler[IMSM_FILLERS]; /* 0x3C - 0xD7 RAID_MPB_FILLERS */
struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
/* here comes imsm_dev[num_raid_devs] */
} __attribute__ ((packed));
#ifndef MDASSEMBLE
static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
#endif
static unsigned long long mpb_sectors(struct imsm_super *mpb)
{
__u32 size = __le32_to_cpu(mpb->mpb_size);
return ((size + (512-1)) & (~(512-1))) / 512;
}
/* internal representation of IMSM metadata */
struct intel_super {
union {
struct imsm_super *mpb;
void *buf;
};
int updates_pending;
struct dl {
struct dl *next;
int index;
__u8 serial[MAX_RAID_SERIAL_LEN];
int major, minor;
char *devname;
int fd;
} *disks;
};
static struct supertype *match_metadata_desc_imsm(char *arg)
{
struct supertype *st;
if (strcmp(arg, "imsm") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = malloc(sizeof(*st));
st->ss = &super_imsm;
st->max_devs = IMSM_MAX_DEVICES;
st->minor_version = 0;
st->sb = NULL;
return st;
}
static struct supertype *match_metadata_desc_imsm_raid(char *arg)
{
struct supertype *st;
if (strcmp(arg, "imsm/raid") != 0 &&
strcmp(arg, "raid") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = malloc(sizeof(*st));
st->ss = &super_imsm_raid;
st->max_devs = IMSM_MAX_DEVICES;
st->minor_version = 0;
st->sb = NULL;
return st;
}
static __u8 *get_imsm_version(struct imsm_super *mpb)
{
return &mpb->sig[MPB_SIG_LEN];
}
static struct imsm_disk *get_imsm_disk(struct imsm_super *mpb, __u8 index)
{
if (index > mpb->num_disks - 1)
return NULL;
return &mpb->disk[index];
}
static __u32 gen_imsm_checksum(struct imsm_super *mpb)
{
__u32 end = mpb->mpb_size / sizeof(end);
__u32 *p = (__u32 *) mpb;
__u32 sum = 0;
while (end--)
sum += __le32_to_cpu(*p++);
return sum - __le32_to_cpu(mpb->check_sum);
}
static size_t sizeof_imsm_dev(struct imsm_dev *dev)
{
size_t size = sizeof(*dev);
/* each map has disk_ord_tbl[num_members - 1] additional space */
size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
/* migrating means an additional map */
if (dev->vol.migr_state) {
size += sizeof(struct imsm_map);
size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
}
return size;
}
static struct imsm_dev *get_imsm_dev(struct imsm_super *mpb, __u8 index)
{
int offset;
int i;
void *_mpb = mpb;
if (index > mpb->num_raid_devs - 1)
return NULL;
/* devices start after all disks */
offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
for (i = 0; i <= index; i++)
if (i == index)
return _mpb + offset;
else
offset += sizeof_imsm_dev(_mpb + offset);
return NULL;
}
static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
{
__u32 *ord_tbl = &map->disk_ord_tbl[slot];
/* top byte is 'special' */
return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
}
static int get_imsm_raid_level(struct imsm_map *map)
{
if (map->raid_level == 1) {
if (map->num_members == 2)
return 1;
else
return 10;
}
return map->raid_level;
}
#ifndef MDASSEMBLE
static void print_imsm_dev(struct imsm_dev *dev, int index)
{
__u64 sz;
int slot;
struct imsm_map *map = dev->vol.map;
printf("\n");
printf("[%s]:\n", dev->volume);
printf(" RAID Level : %d\n", get_imsm_raid_level(map));
printf(" Members : %d\n", map->num_members);
for (slot = 0; slot < map->num_members; slot++)
if (index == get_imsm_disk_idx(map, slot))
break;
if (slot < map->num_members)
printf(" This Slot : %d\n", slot);
else
printf(" This Slot : ?\n");
sz = __le32_to_cpu(dev->size_high);
sz <<= 32;
sz += __le32_to_cpu(dev->size_low);
printf(" Array Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
sz = __le32_to_cpu(map->blocks_per_member);
printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
printf(" Sector Offset : %u\n",
__le32_to_cpu(map->pba_of_lba0));
printf(" Num Stripes : %u\n",
__le32_to_cpu(map->num_data_stripes));
printf(" Chunk Size : %u KiB\n",
__le16_to_cpu(map->blocks_per_strip) / 2);
printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
printf(" Map State : %s\n", map_state_str[map->map_state]);
}
static void print_imsm_disk(struct imsm_super *mpb, int index)
{
struct imsm_disk *disk = get_imsm_disk(mpb, index);
char str[MAX_RAID_SERIAL_LEN];
__u32 s;
__u64 sz;
printf("\n");
snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
printf(" Disk%02d Serial : %s\n", index, str);
s = __le32_to_cpu(disk->status);
printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
s&CONFIGURED_DISK ? " active" : "",
s&FAILED_DISK ? " failed" : "",
s&USABLE_DISK ? " usable" : "");
printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
sz = __le32_to_cpu(disk->total_blocks) - mpb_sectors(mpb);
printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
human_size(sz * 512));
}
static void examine_super_imsm(struct supertype *st, char *homehost)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->mpb;
char str[MAX_SIGNATURE_LENGTH];
int i;
__u32 sum;
snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
printf(" Magic : %s\n", str);
snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
printf(" Version : %s\n", get_imsm_version(mpb));
printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
sum = __le32_to_cpu(mpb->check_sum);
printf(" Checksum : %08x %s\n", sum,
gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
printf(" Disks : %d\n", mpb->num_disks);
printf(" RAID Devices : %d\n", mpb->num_raid_devs);
print_imsm_disk(mpb, super->disks->index);
for (i = 0; i < mpb->num_raid_devs; i++)
print_imsm_dev(get_imsm_dev(mpb, i), super->disks->index);
for (i = 0; i < mpb->num_disks; i++) {
if (i == super->disks->index)
continue;
print_imsm_disk(mpb, i);
}
}
static void brief_examine_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->mpb;
printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
__le32_to_cpu(mpb->family_num));
}
static void detail_super_imsm(struct supertype *st, char *homehost)
{
printf("%s\n", __FUNCTION__);
}
static void brief_detail_super_imsm(struct supertype *st)
{
printf("%s\n", __FUNCTION__);
}
#endif
static int match_home_imsm(struct supertype *st, char *homehost)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
{
printf("%s\n", __FUNCTION__);
}
static void
get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
{
__u8 *v = get_imsm_version(mpb);
__u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
char major[] = { 0, 0, 0 };
char minor[] = { 0 ,0, 0 };
char patch[] = { 0, 0, 0 };
char *ver_parse[] = { major, minor, patch };
int i, j;
i = j = 0;
while (*v != '\0' && v < end) {
if (*v != '.' && j < 2)
ver_parse[i][j++] = *v;
else {
i++;
j = 0;
}
v++;
}
*m = strtol(minor, NULL, 0);
*p = strtol(patch, NULL, 0);
}
static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
{
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->mpb;
struct imsm_disk *disk;
__u32 s;
int i, j;
info->array.major_version = 2000;
get_imsm_numerical_version(mpb, &info->array.minor_version,
&info->array.patch_version);
info->array.raid_disks = mpb->num_disks;
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
info->array.ctime = __le32_to_cpu(mpb->generation_num); //??
info->array.utime = 0;
info->array.chunk_size = 0;
info->disk.major = 0;
info->disk.minor = 0;
info->disk.number = super->disks->index;
info->disk.raid_disk = -1;
/* is this disk a member of a raid device? */
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(mpb, i);
struct imsm_map *map = dev->vol.map;
for (j = 0; j < map->num_members; j++) {
__u32 index = get_imsm_disk_idx(map, j);
if (index == super->disks->index) {
info->disk.raid_disk = super->disks->index;
break;
}
}
if (info->disk.raid_disk != -1)
break;
}
disk = get_imsm_disk(mpb, super->disks->index);
s = __le32_to_cpu(disk->status);
info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
info->reshape_active = 0;
strcpy(info->text_version, "imsm");
}
static void getinfo_super_imsm_raid(struct supertype *st, struct mdinfo *info)
{
printf("%s\n", __FUNCTION__);
sprintf(info->text_version, "/%s/%d",
devnum2devname(st->container_dev),
info->container_member); // FIXME is this even set here?
}
static int update_super_imsm(struct supertype *st, struct mdinfo *info,
char *update, char *devname, int verbose,
int uuid_set, char *homehost)
{
/* FIXME */
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* name: update the name - preserving the homehost
*
* Following are not relevant for this imsm:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
* uuid: Change the uuid of the array to match watch is given
* homehost: update the recorded homehost
* _reshape_progress: record new reshape_progress position.
*/
int rv = 0;
//struct intel_super *super = st->sb;
//struct imsm_super *mpb = super->mpb;
if (strcmp(update, "grow") == 0) {
}
if (strcmp(update, "resync") == 0) {
/* dev->vol.dirty = 1; */
}
/* IMSM has no concept of UUID or homehost */
return rv;
}
static __u64 avail_size_imsm(struct supertype *st, __u64 size)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int compare_super_imsm(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct intel_super *first = st->sb;
struct intel_super *sec = tst->sb;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
if (memcmp(first->mpb->sig, sec->mpb->sig, MAX_SIGNATURE_LENGTH) != 0)
return 3;
if (first->mpb->family_num != sec->mpb->family_num)
return 3;
if (first->mpb->mpb_size != sec->mpb->mpb_size)
return 3;
if (first->mpb->check_sum != sec->mpb->check_sum)
return 3;
return 0;
}
extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
static int imsm_read_serial(int fd, char *devname,
__u8 serial[MAX_RAID_SERIAL_LEN])
{
unsigned char scsi_serial[255];
struct stat stb;
int sg_fd;
int minor;
char sg_path[20];
int rv;
int rsp_len;
int i, cnt;
memset(scsi_serial, 0, sizeof(scsi_serial));
fstat(fd, &stb);
minor = minor(stb.st_rdev);
minor /= 16;
sprintf(sg_path, "/dev/sg%d", minor);
sg_fd = open(sg_path, O_RDONLY);
if (sg_fd < 0) {
if (devname)
fprintf(stderr,
Name ": Failed to open %s for %s: %s\n",
sg_path, devname, strerror(errno));
return 1;
}
rv = scsi_get_serial(sg_fd, scsi_serial, sizeof(scsi_serial));
close(sg_fd);
if (rv != 0) {
if (devname)
fprintf(stderr,
Name ": Failed to retrieve serial for %s\n",
devname);
return rv;
}
rsp_len = scsi_serial[3];
for (i = 0, cnt = 0; i < rsp_len; i++) {
if (!isspace(scsi_serial[4 + i]))
serial[cnt++] = scsi_serial[4 + i];
if (cnt == MAX_RAID_SERIAL_LEN)
break;
}
serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
return 0;
}
static int
load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
{
struct imsm_super *mpb = super->mpb;
struct dl *dl;
struct stat stb;
struct imsm_disk *disk;
int rv;
int i;
dl = malloc(sizeof(*dl));
if (!dl) {
if (devname)
fprintf(stderr,
Name ": failed to allocate disk buffer for %s\n",
devname);
return 2;
}
memset(dl, 0, sizeof(*dl));
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->disks;
dl->fd = keep_fd ? fd : -1;
dl->devname = devname ? strdup(devname) : NULL;
dl->index = -1;
super->disks = dl;
rv = imsm_read_serial(fd, devname, dl->serial);
if (rv != 0)
return 2;
/* look up this disk's index */
for (i = 0; i < mpb->num_disks; i++) {
disk = get_imsm_disk(mpb, i);
if (memcmp(disk->serial, dl->serial, MAX_RAID_SERIAL_LEN) == 0)
break;
}
if (i > mpb->num_disks)
return 2;
dl->index = i;
return 0;
}
/* load_imsm_mpb - read matrix metadata
* allocates super->mpb to be freed by free_super
*/
static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
{
unsigned long long dsize;
size_t len, mpb_size;
unsigned long long sectors;
struct stat;
struct imsm_super anchor;
__u32 check_sum;
memset(super, 0, sizeof(*super));
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
len = sizeof(anchor);
if (read(fd, &anchor, len) != len) {
if (devname)
fprintf(stderr,
Name ": Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (strncmp((char *) anchor.sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
if (devname)
fprintf(stderr,
Name ": no IMSM anchor on %s\n", devname);
return 2;
}
mpb_size = __le32_to_cpu(anchor.mpb_size);
super->mpb = malloc(mpb_size < 512 ? 512 : mpb_size);
if (!super->mpb) {
if (devname)
fprintf(stderr,
Name ": unable to allocate %zu byte mpb buffer\n",
mpb_size);
return 2;
}
memcpy(super->buf, &anchor, sizeof(anchor));
/* read the rest of the first block */
len = 512 - sizeof(anchor);
if (read(fd, super->buf + sizeof(anchor), len) != len) {
if (devname)
fprintf(stderr,
Name ": Cannot read anchor remainder on %s: %s\n",
devname, strerror(errno));
return 2;
}
sectors = mpb_sectors(&anchor) - 1;
if (!sectors)
return load_imsm_disk(fd, super, devname, 0);
/* read the extended mpb */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
if (devname)
fprintf(stderr,
Name ": Cannot seek to extended mpb on %s: %s\n",
devname, strerror(errno));
return 1;
}
len = mpb_size - 512;
if (read(fd, super->buf + 512, len) != len) {
if (devname)
fprintf(stderr,
Name ": Cannot read extended mpb on %s: %s\n",
devname, strerror(errno));
return 2;
}
check_sum = gen_imsm_checksum(super->mpb);
if (check_sum != __le32_to_cpu(super->mpb->check_sum)) {
if (devname)
fprintf(stderr,
Name ": IMSM checksum %x != %x on %s\n",
check_sum, __le32_to_cpu(super->mpb->check_sum),
devname);
return 2;
}
return load_imsm_disk(fd, super, devname, 0);
}
struct superswitch super_imsm_container;
static void free_imsm_disks(struct intel_super *super)
{
while (super->disks) {
struct dl *d = super->disks;
super->disks = d->next;
if (d->fd >= 0)
close(d->fd);
if (d->devname)
free(d->devname);
free(d);
}
}
static void free_imsm(struct intel_super *super)
{
if (super->mpb)
free(super->mpb);
free_imsm_disks(super);
free(super);
}
static void free_super_imsm(struct supertype *st)
{
struct intel_super *super = st->sb;
if (!super)
return;
free_imsm(super);
st->sb = NULL;
}
#ifndef MDASSEMBLE
static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
char *devname, int keep_fd)
{
struct mdinfo *sra;
struct intel_super *super;
struct mdinfo *sd, *best = NULL;
__u32 bestgen = 0;
__u32 gen;
char nm[20];
int dfd;
int rv;
/* check if this disk is a member of an active array */
sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "imsm") != 0)
return 1;
super = malloc(sizeof(*super));
if (!super)
return 1;
/* find the most up to date disk in this array */
for (sd = sra->devs; sd; sd = sd->next) {
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
if (!dfd) {
free_imsm(super);
return 2;
}
rv = load_imsm_mpb(dfd, super, NULL);
if (!keep_fd)
close(dfd);
if (rv == 0) {
gen = __le32_to_cpu(super->mpb->generation_num);
if (!best || gen > bestgen) {
bestgen = gen;
best = sd;
}
} else {
free_imsm(super);
return 2;
}
}
if (!best) {
free_imsm(super);
return 1;
}
/* load the most up to date anchor */
sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (!dfd) {
free_imsm(super);
return 1;
}
rv = load_imsm_mpb(dfd, super, NULL);
close(dfd);
if (rv != 0) {
free_imsm(super);
return 2;
}
/* reset the disk list */
free_imsm_disks(super);
/* populate disk list */
for (sd = sra->devs ; sd ; sd = sd->next) {
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
if (!dfd) {
free_imsm(super);
return 2;
}
load_imsm_disk(dfd, super, NULL, keep_fd);
if (!keep_fd)
close(dfd);
}
*sbp = super;
if (st->ss == NULL) {
st->ss = &super_imsm_container;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
return 0;
}
#endif
static int load_super_imsm(struct supertype *st, int fd, char *devname)
{
struct intel_super *super;
int rv;
#ifndef MDASSEMBLE
if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
return 0;
#endif
super = malloc(sizeof(*super));
if (!super) {
fprintf(stderr,
Name ": malloc of %zu failed.\n",
sizeof(*super));
return 1;
}
rv = load_imsm_mpb(fd, super, devname);
if (rv) {
if (devname)
fprintf(stderr,
Name ": Failed to load all information "
"sections on %s\n", devname);
free_imsm(super);
return rv;
}
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_imsm;
st->minor_version = 0;
st->max_devs = IMSM_MAX_DEVICES;
}
return 0;
}
static int init_zero_imsm(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int init_super_imsm_raid(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name,
char *homehost, int *uuid)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dinfo,
int fd, char *devname)
{
printf("%s\n", __FUNCTION__);
}
static void add_to_super_imsm_raid(struct supertype *st, mdu_disk_info_t *dinfo,
int fd, char *devname)
{
printf("%s\n", __FUNCTION__);
}
static int write_init_super_imsm(struct supertype *st)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int store_zero_imsm(struct supertype *st, int fd)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static void getinfo_super_n_imsm_container(struct supertype *st, struct mdinfo *info)
{
/* just need offset and size...
* of the metadata??
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->mpb;
struct imsm_disk *disk = get_imsm_disk(mpb, info->disk.number);
int sect = mpb_sectors(mpb);
info->data_offset = __le32_to_cpu(disk->total_blocks) - (2 + sect - 1);
info->component_size = sect;
}
static void getinfo_super_n_raid(struct supertype *st, struct mdinfo *info)
{
printf("%s\n", __FUNCTION__);
}
static int validate_geometry_imsm(struct supertype *st, int level, int layout,
int raiddisks, int chunk, unsigned long long size,
char *subdev, unsigned long long *freesize)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int validate_geometry_imsm_container(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size, char *subdev,
unsigned long long *freesize)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static int validate_geometry_imsm_raid(struct supertype *st, int level,
int layout, int raiddisks, int chunk,
unsigned long long size, char *subdev,
unsigned long long *freesize)
{
printf("%s\n", __FUNCTION__);
return 0;
}
static struct mdinfo *container_content_imsm(struct supertype *st)
{
/* Given a container loaded by load_super_imsm_all,
* extract information about all the arrays into
* an mdinfo tree.
*
* For each imsm_dev create an mdinfo, fill it in,
* then look for matching devices in super->disks
* and create appropriate device mdinfo.
*/
struct intel_super *super = st->sb;
struct imsm_super *mpb = super->mpb;
struct mdinfo *rest = NULL;
int i;
for (i = 0; i < mpb->num_raid_devs; i++) {
struct imsm_dev *dev = get_imsm_dev(mpb, i);
struct imsm_vol *vol = &dev->vol;
struct imsm_map *map = vol->map;
struct mdinfo *this;
__u64 sz;
int slot;
this = malloc(sizeof(*this));
memset(this, 0, sizeof(*this));
this->next = rest;
rest = this;
this->array.major_version = 2000;
get_imsm_numerical_version(mpb, &this->array.minor_version,
&this->array.patch_version);
this->array.level = get_imsm_raid_level(map);
this->array.raid_disks = map->num_members;
switch(this->array.level) {
case 0:
case 1:
this->array.layout = 0;
break;
case 5:
case 6:
this->array.layout = ALGORITHM_LEFT_SYMMETRIC;
break;
case 10:
this->array.layout = 0x102; //FIXME is this correct?
break;
default:
this->array.layout = -1; // FIXME
}
this->array.md_minor = -1;
this->array.ctime = 0;
this->array.utime = 0;
this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
this->array.state = !vol->dirty;
this->container_member = i;
if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
this->resync_start = 0;
else
this->resync_start = ~0ULL;
strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
this->name[MAX_RAID_SERIAL_LEN] = 0;
sprintf(this->text_version, "/%s/%d",
devnum2devname(st->container_dev),
this->container_member);
memset(this->uuid, 0, sizeof(this->uuid));
sz = __le32_to_cpu(dev->size_high);
sz <<= 32;
sz += __le32_to_cpu(dev->size_low);
this->component_size = sz;
this->array.size = this->component_size / 2;
for (slot = 0 ; slot < map->num_members; slot++) {
struct imsm_disk *disk;
struct mdinfo *info_d;
struct dl *d;
int idx;
__u32 s;
idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24));
for (d = super->disks; d ; d = d->next)
if (d->index == idx)
break;
if (d == NULL)
break; /* shouldn't this be continue ?? */
info_d = malloc(sizeof(*info_d));
if (!info_d)
break; /* ditto ?? */
memset(info_d, 0, sizeof(*info_d));
info_d->next = this->devs;
this->devs = info_d;
disk = get_imsm_disk(mpb, idx);
s = __le32_to_cpu(disk->status);
info_d->disk.number = d->index;
info_d->disk.major = d->major;
info_d->disk.minor = d->minor;
info_d->disk.raid_disk = slot;
info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
this->array.working_disks++;
info_d->events = __le32_to_cpu(mpb->generation_num);
info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
info_d->component_size = __le32_to_cpu(map->blocks_per_member);
if (d->devname)
strcpy(info_d->name, d->devname);
}
}
return rest;
}
static int imsm_open_new(struct supertype *c, struct active_array *a,
char *inst)
{
fprintf(stderr, "imsm: open_new %s\n", inst);
a->info.container_member = atoi(inst);
return 0;
}
static void imsm_set_array_state(struct active_array *a, int consistent)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
int dirty = !consistent || (a->resync_start != ~0ULL);
if (dev->vol.dirty != dirty) {
fprintf(stderr, "imsm: mark '%s' (%llu)\n",
dirty?"dirty":"clean", a->resync_start);
dev->vol.dirty = dirty;
super->updates_pending++;
}
}
static __u8 imsm_check_degraded(struct imsm_super *mpb, int n, int failed)
{
struct imsm_dev *dev = get_imsm_dev(mpb, n);
struct imsm_map *map = dev->vol.map;
if (!failed)
return map->map_state;
switch (get_imsm_raid_level(map)) {
case 0:
return IMSM_T_STATE_FAILED;
break;
case 1:
if (failed < map->num_members)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
case 10:
{
/**
* check to see if any mirrors have failed,
* otherwise we are degraded
*/
int device_per_mirror = 2; /* FIXME is this always the case?
* and are they always adjacent?
*/
int failed = 0;
int i;
for (i = 0; i < map->num_members; i++) {
int idx = get_imsm_disk_idx(map, i);
struct imsm_disk *disk = get_imsm_disk(mpb, idx);
if (__le32_to_cpu(disk->status) & FAILED_DISK)
failed++;
if (failed >= device_per_mirror)
return IMSM_T_STATE_FAILED;
/* reset 'failed' for next mirror set */
if (!((i + 1) % device_per_mirror))
failed = 0;
}
return IMSM_T_STATE_DEGRADED;
}
case 5:
if (failed < 2)
return IMSM_T_STATE_DEGRADED;
else
return IMSM_T_STATE_FAILED;
break;
default:
break;
}
return map->map_state;
}
static int imsm_count_failed(struct imsm_super *mpb, struct imsm_map *map)
{
int i;
int failed = 0;
struct imsm_disk *disk;
for (i = 0; i < map->num_members; i++) {
int idx = get_imsm_disk_idx(map, i);
disk = get_imsm_disk(mpb, idx);
if (__le32_to_cpu(disk->status) & FAILED_DISK)
failed++;
}
return failed;
}
static void imsm_set_disk(struct active_array *a, int n, int state)
{
int inst = a->info.container_member;
struct intel_super *super = a->container->sb;
struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
struct imsm_map *map = dev->vol.map;
struct imsm_disk *disk;
__u32 status;
int failed = 0;
int new_failure = 0;
if (n > map->num_members)
fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
n, map->num_members - 1);
if (n < 0)
return;
fprintf(stderr, "imsm: set_disk %d:%x\n", n, state);
disk = get_imsm_disk(super->mpb, get_imsm_disk_idx(map, n));
/* check if we have seen this failure before */
status = __le32_to_cpu(disk->status);
if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
status |= FAILED_DISK;
disk->status = __cpu_to_le32(status);
new_failure = 1;
}
/**
* the number of failures have changed, count up 'failed' to determine
* degraded / failed status
*/
if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
failed = imsm_count_failed(super->mpb, map);
if (failed)
map->map_state = imsm_check_degraded(super->mpb, inst, failed);
if (new_failure)
super->updates_pending++;
}
static int store_imsm_mpb(int fd, struct intel_super *super)
{
struct imsm_super *mpb = super->mpb;
__u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
unsigned long long dsize;
unsigned long long sectors;
get_dev_size(fd, NULL, &dsize);
/* first block is stored on second to last sector of the disk */
if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
return 1;
if (write(fd, super->buf, 512) != 512)
return 1;
if (mpb_size <= 512)
return 0;
/* -1 because we already wrote a sector */
sectors = mpb_sectors(mpb) - 1;
/* write the extended mpb to the sectors preceeding the anchor */
if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
return 1;
if (write(fd, super->buf + 512, mpb_size - 512) != mpb_size - 512)
return 1;
fsync(fd);
return 0;
}
static void imsm_sync_metadata(struct active_array *a)
{
struct intel_super *super = a->container->sb;
struct imsm_super *mpb = super->mpb;
struct dl *d;
__u32 generation;
__u32 sum;
if (!super->updates_pending)
return;
fprintf(stderr, "imsm: sync_metadata\n");
/* 'generation' is incremented everytime the metadata is written */
generation = __le32_to_cpu(mpb->generation_num);
generation++;
mpb->generation_num = __cpu_to_le32(generation);
/* recalculate checksum */
sum = gen_imsm_checksum(mpb);
mpb->check_sum = __cpu_to_le32(sum);
for (d = super->disks; d ; d = d->next)
if (store_imsm_mpb(d->fd, super))
fprintf(stderr, "%s: failed for device %d:%d %s\n",
__func__, d->major, d->minor, strerror(errno));
super->updates_pending = 0;
}
struct superswitch super_imsm = {
#ifndef MDASSEMBLE
.examine_super = examine_super_imsm,
.brief_examine_super = brief_examine_super_imsm,
.detail_super = detail_super_imsm,
.brief_detail_super = brief_detail_super_imsm,
#endif
.match_home = match_home_imsm,
.uuid_from_super= uuid_from_super_imsm,
.getinfo_super = getinfo_super_imsm,
.update_super = update_super_imsm,
.avail_size = avail_size_imsm,
.compare_super = compare_super_imsm,
.load_super = load_super_imsm,
.init_super = init_zero_imsm,
.store_super = store_zero_imsm,
.free_super = free_super_imsm,
.match_metadata_desc = match_metadata_desc_imsm,
.getinfo_super_n = getinfo_super_n_imsm_container,
.validate_geometry = validate_geometry_imsm,
.major = 2000,
.swapuuid = 0,
.external = 1,
/* for mdmon */
.open_new = imsm_open_new,
.load_super = load_super_imsm,
.set_array_state= imsm_set_array_state,
.set_disk = imsm_set_disk,
.sync_metadata = imsm_sync_metadata,
};
/* super_imsm_container is set by validate_geometry_imsm when given a
* device that is not part of any array
*/
struct superswitch super_imsm_container = {
.validate_geometry = validate_geometry_imsm_container,
.init_super = init_super_imsm,
.add_to_super = add_to_super_imsm,
.write_init_super = write_init_super_imsm,
.getinfo_super = getinfo_super_imsm,
.getinfo_super_n = getinfo_super_n_imsm_container,
.load_super = load_super_imsm,
#ifndef MDASSEMBLE
.examine_super = examine_super_imsm,
.brief_examine_super = brief_examine_super_imsm,
.detail_super = detail_super_imsm,
.brief_detail_super = brief_detail_super_imsm,
#endif
.free_super = free_super_imsm,
.container_content = container_content_imsm,
.major = 2000,
.swapuuid = 0,
.external = 1,
};
struct superswitch super_imsm_raid = {
.update_super = update_super_imsm,
.init_super = init_super_imsm_raid,
.add_to_super = add_to_super_imsm_raid,
.getinfo_super = getinfo_super_imsm_raid,
.getinfo_super_n = getinfo_super_n_raid,
.write_init_super = write_init_super_imsm,
.load_super = load_super_imsm,
.free_super = free_super_imsm,
.match_metadata_desc = match_metadata_desc_imsm_raid,
.validate_geometry = validate_geometry_imsm_raid,
.major = 2001,
.swapuuid = 0,
.external = 2,
};