mdadm/Grow.c

3551 lines
99 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2001-2009 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neilb@suse.de>
*/
#include "mdadm.h"
#include "dlink.h"
#include <sys/mman.h>
#if ! defined(__BIG_ENDIAN) && ! defined(__LITTLE_ENDIAN)
#error no endian defined
#endif
#include "md_u.h"
#include "md_p.h"
#ifndef offsetof
#define offsetof(t,f) ((size_t)&(((t*)0)->f))
#endif
int Grow_Add_device(char *devname, int fd, char *newdev)
{
/* Add a device to an active array.
* Currently, just extend a linear array.
* This requires writing a new superblock on the
* new device, calling the kernel to add the device,
* and if that succeeds, update the superblock on
* all other devices.
* This means that we need to *find* all other devices.
*/
struct mdinfo info;
struct stat stb;
int nfd, fd2;
int d, nd;
struct supertype *st = NULL;
char *subarray = NULL;
if (ioctl(fd, GET_ARRAY_INFO, &info.array) < 0) {
fprintf(stderr, Name ": cannot get array info for %s\n", devname);
return 1;
}
if (info.array.level != -1) {
fprintf(stderr, Name ": can only add devices to linear arrays\n");
return 1;
}
st = super_by_fd(fd, &subarray);
if (!st) {
fprintf(stderr, Name ": cannot handle arrays with superblock version %d\n", info.array.major_version);
return 1;
}
if (subarray) {
fprintf(stderr, Name ": Cannot grow linear sub-arrays yet\n");
free(subarray);
free(st);
}
nfd = open(newdev, O_RDWR|O_EXCL|O_DIRECT);
if (nfd < 0) {
fprintf(stderr, Name ": cannot open %s\n", newdev);
free(st);
return 1;
}
fstat(nfd, &stb);
if ((stb.st_mode & S_IFMT) != S_IFBLK) {
fprintf(stderr, Name ": %s is not a block device!\n", newdev);
close(nfd);
free(st);
return 1;
}
/* now check out all the devices and make sure we can read the superblock */
for (d=0 ; d < info.array.raid_disks ; d++) {
mdu_disk_info_t disk;
char *dv;
st->ss->free_super(st);
disk.number = d;
if (ioctl(fd, GET_DISK_INFO, &disk) < 0) {
fprintf(stderr, Name ": cannot get device detail for device %d\n",
d);
close(nfd);
free(st);
return 1;
}
dv = map_dev(disk.major, disk.minor, 1);
if (!dv) {
fprintf(stderr, Name ": cannot find device file for device %d\n",
d);
close(nfd);
free(st);
return 1;
}
fd2 = dev_open(dv, O_RDWR);
if (!fd2) {
fprintf(stderr, Name ": cannot open device file %s\n", dv);
close(nfd);
free(st);
return 1;
}
if (st->ss->load_super(st, fd2, NULL)) {
fprintf(stderr, Name ": cannot find super block on %s\n", dv);
close(nfd);
close(fd2);
free(st);
return 1;
}
close(fd2);
}
/* Ok, looks good. Lets update the superblock and write it out to
* newdev.
*/
info.disk.number = d;
info.disk.major = major(stb.st_rdev);
info.disk.minor = minor(stb.st_rdev);
info.disk.raid_disk = d;
info.disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
st->ss->update_super(st, &info, "linear-grow-new", newdev,
0, 0, NULL);
if (st->ss->store_super(st, nfd)) {
fprintf(stderr, Name ": Cannot store new superblock on %s\n",
newdev);
close(nfd);
return 1;
}
close(nfd);
if (ioctl(fd, ADD_NEW_DISK, &info.disk) != 0) {
fprintf(stderr, Name ": Cannot add new disk to this array\n");
return 1;
}
/* Well, that seems to have worked.
* Now go through and update all superblocks
*/
if (ioctl(fd, GET_ARRAY_INFO, &info.array) < 0) {
fprintf(stderr, Name ": cannot get array info for %s\n", devname);
return 1;
}
nd = d;
for (d=0 ; d < info.array.raid_disks ; d++) {
mdu_disk_info_t disk;
char *dv;
disk.number = d;
if (ioctl(fd, GET_DISK_INFO, &disk) < 0) {
fprintf(stderr, Name ": cannot get device detail for device %d\n",
d);
return 1;
}
dv = map_dev(disk.major, disk.minor, 1);
if (!dv) {
fprintf(stderr, Name ": cannot find device file for device %d\n",
d);
return 1;
}
fd2 = dev_open(dv, O_RDWR);
if (fd2 < 0) {
fprintf(stderr, Name ": cannot open device file %s\n", dv);
return 1;
}
if (st->ss->load_super(st, fd2, NULL)) {
fprintf(stderr, Name ": cannot find super block on %s\n", dv);
close(fd);
return 1;
}
info.array.raid_disks = nd+1;
info.array.nr_disks = nd+1;
info.array.active_disks = nd+1;
info.array.working_disks = nd+1;
st->ss->update_super(st, &info, "linear-grow-update", dv,
0, 0, NULL);
if (st->ss->store_super(st, fd2)) {
fprintf(stderr, Name ": Cannot store new superblock on %s\n", dv);
close(fd2);
return 1;
}
close(fd2);
}
return 0;
}
int Grow_addbitmap(char *devname, int fd, char *file, int chunk, int delay, int write_behind, int force)
{
/*
* First check that array doesn't have a bitmap
* Then create the bitmap
* Then add it
*
* For internal bitmaps, we need to check the version,
* find all the active devices, and write the bitmap block
* to all devices
*/
mdu_bitmap_file_t bmf;
mdu_array_info_t array;
struct supertype *st;
char *subarray = NULL;
int major = BITMAP_MAJOR_HI;
int vers = md_get_version(fd);
unsigned long long bitmapsize, array_size;
if (vers < 9003) {
major = BITMAP_MAJOR_HOSTENDIAN;
fprintf(stderr, Name ": Warning - bitmaps created on this kernel"
" are not portable\n"
" between different architectures. Consider upgrading"
" the Linux kernel.\n");
}
if (ioctl(fd, GET_BITMAP_FILE, &bmf) != 0) {
if (errno == ENOMEM)
fprintf(stderr, Name ": Memory allocation failure.\n");
else
fprintf(stderr, Name ": bitmaps not supported by this kernel.\n");
return 1;
}
if (bmf.pathname[0]) {
if (strcmp(file,"none")==0) {
if (ioctl(fd, SET_BITMAP_FILE, -1)!= 0) {
fprintf(stderr, Name ": failed to remove bitmap %s\n",
bmf.pathname);
return 1;
}
return 0;
}
fprintf(stderr, Name ": %s already has a bitmap (%s)\n",
devname, bmf.pathname);
return 1;
}
if (ioctl(fd, GET_ARRAY_INFO, &array) != 0) {
fprintf(stderr, Name ": cannot get array status for %s\n", devname);
return 1;
}
if (array.state & (1<<MD_SB_BITMAP_PRESENT)) {
if (strcmp(file, "none")==0) {
array.state &= ~(1<<MD_SB_BITMAP_PRESENT);
if (ioctl(fd, SET_ARRAY_INFO, &array)!= 0) {
fprintf(stderr, Name ": failed to remove internal bitmap.\n");
return 1;
}
return 0;
}
fprintf(stderr, Name ": Internal bitmap already present on %s\n",
devname);
return 1;
}
if (strcmp(file, "none") == 0) {
fprintf(stderr, Name ": no bitmap found on %s\n", devname);
return 1;
}
if (array.level <= 0) {
fprintf(stderr, Name ": Bitmaps not meaningful with level %s\n",
map_num(pers, array.level)?:"of this array");
return 1;
}
bitmapsize = array.size;
bitmapsize <<= 1;
if (get_dev_size(fd, NULL, &array_size) &&
array_size > (0x7fffffffULL<<9)) {
/* Array is big enough that we cannot trust array.size
* try other approaches
*/
bitmapsize = get_component_size(fd);
}
if (bitmapsize == 0) {
fprintf(stderr, Name ": Cannot reliably determine size of array to create bitmap - sorry.\n");
return 1;
}
if (array.level == 10) {
int ncopies = (array.layout&255)*((array.layout>>8)&255);
bitmapsize = bitmapsize * array.raid_disks / ncopies;
}
st = super_by_fd(fd, &subarray);
if (!st) {
fprintf(stderr, Name ": Cannot understand version %d.%d\n",
array.major_version, array.minor_version);
return 1;
}
if (subarray) {
fprintf(stderr, Name ": Cannot add bitmaps to sub-arrays yet\n");
free(subarray);
free(st);
return 1;
}
if (strcmp(file, "internal") == 0) {
int d;
if (st->ss->add_internal_bitmap == NULL) {
fprintf(stderr, Name ": Internal bitmaps not supported "
"with %s metadata\n", st->ss->name);
return 1;
}
for (d=0; d< st->max_devs; d++) {
mdu_disk_info_t disk;
char *dv;
disk.number = d;
if (ioctl(fd, GET_DISK_INFO, &disk) < 0)
continue;
if (disk.major == 0 &&
disk.minor == 0)
continue;
if ((disk.state & (1<<MD_DISK_SYNC))==0)
continue;
dv = map_dev(disk.major, disk.minor, 1);
if (dv) {
int fd2 = dev_open(dv, O_RDWR);
if (fd2 < 0)
continue;
if (st->ss->load_super(st, fd2, NULL)==0) {
if (st->ss->add_internal_bitmap(
st,
&chunk, delay, write_behind,
bitmapsize, 0, major)
)
st->ss->write_bitmap(st, fd2);
else {
fprintf(stderr, Name ": failed to create internal bitmap - chunksize problem.\n");
close(fd2);
return 1;
}
}
close(fd2);
}
}
array.state |= (1<<MD_SB_BITMAP_PRESENT);
if (ioctl(fd, SET_ARRAY_INFO, &array)!= 0) {
if (errno == EBUSY)
fprintf(stderr, Name
": Cannot add bitmap while array is"
" resyncing or reshaping etc.\n");
fprintf(stderr, Name ": failed to set internal bitmap.\n");
return 1;
}
} else {
int uuid[4];
int bitmap_fd;
int d;
int max_devs = st->max_devs;
/* try to load a superblock */
for (d=0; d<max_devs; d++) {
mdu_disk_info_t disk;
char *dv;
int fd2;
disk.number = d;
if (ioctl(fd, GET_DISK_INFO, &disk) < 0)
continue;
if ((disk.major==0 && disk.minor==0) ||
(disk.state & (1<<MD_DISK_REMOVED)))
continue;
dv = map_dev(disk.major, disk.minor, 1);
if (!dv) continue;
fd2 = dev_open(dv, O_RDONLY);
if (fd2 >= 0 &&
st->ss->load_super(st, fd2, NULL) == 0) {
close(fd2);
st->ss->uuid_from_super(st, uuid);
break;
}
close(fd2);
}
if (d == max_devs) {
fprintf(stderr, Name ": cannot find UUID for array!\n");
return 1;
}
if (CreateBitmap(file, force, (char*)uuid, chunk,
delay, write_behind, bitmapsize, major)) {
return 1;
}
bitmap_fd = open(file, O_RDWR);
if (bitmap_fd < 0) {
fprintf(stderr, Name ": weird: %s cannot be opened\n",
file);
return 1;
}
if (ioctl(fd, SET_BITMAP_FILE, bitmap_fd) < 0) {
int err = errno;
if (errno == EBUSY)
fprintf(stderr, Name
": Cannot add bitmap while array is"
" resyncing or reshaping etc.\n");
fprintf(stderr, Name ": Cannot set bitmap file for %s: %s\n",
devname, strerror(err));
return 1;
}
}
return 0;
}
/*
* When reshaping an array we might need to backup some data.
* This is written to all spares with a 'super_block' describing it.
* The superblock goes 4K from the end of the used space on the
* device.
* It if written after the backup is complete.
* It has the following structure.
*/
static struct mdp_backup_super {
char magic[16]; /* md_backup_data-1 or -2 */
__u8 set_uuid[16];
__u64 mtime;
/* start/sizes in 512byte sectors */
__u64 devstart; /* address on backup device/file of data */
__u64 arraystart;
__u64 length;
__u32 sb_csum; /* csum of preceeding bytes. */
__u32 pad1;
__u64 devstart2; /* offset in to data of second section */
__u64 arraystart2;
__u64 length2;
__u32 sb_csum2; /* csum of preceeding bytes. */
__u8 pad[512-68-32];
} __attribute__((aligned(512))) bsb, bsb2;
static __u32 bsb_csum(char *buf, int len)
{
int i;
int csum = 0;
for (i=0; i<len; i++)
csum = (csum<<3) + buf[0];
return __cpu_to_le32(csum);
}
static int check_idle(struct supertype *st)
{
/* Check that all member arrays for this container, or the
* container of this array, are idle
*/
int container_dev = (st->container_dev != NoMdDev
? st->container_dev : st->devnum);
char container[40];
struct mdstat_ent *ent, *e;
int is_idle = 1;
fmt_devname(container, container_dev);
ent = mdstat_read(0, 0);
for (e = ent ; e; e = e->next) {
if (!is_container_member(e, container))
continue;
if (e->percent >= 0) {
is_idle = 0;
break;
}
}
free_mdstat(ent);
return is_idle;
}
static int freeze_container(struct supertype *st)
{
int container_dev = (st->container_dev != NoMdDev
? st->container_dev : st->devnum);
char container[40];
if (!check_idle(st))
return -1;
fmt_devname(container, container_dev);
if (block_monitor(container, 1)) {
fprintf(stderr, Name ": failed to freeze container\n");
return -2;
}
return 1;
}
static void unfreeze_container(struct supertype *st)
{
int container_dev = (st->container_dev != NoMdDev
? st->container_dev : st->devnum);
char container[40];
fmt_devname(container, container_dev);
unblock_monitor(container, 1);
}
static int freeze(struct supertype *st)
{
/* Try to freeze resync/rebuild on this array/container.
* Return -1 if the array is busy,
* return -2 container cannot be frozen,
* return 0 if this kernel doesn't support 'frozen'
* return 1 if it worked.
*/
if (st->ss->external)
return freeze_container(st);
else {
struct mdinfo *sra = sysfs_read(-1, st->devnum, GET_VERSION);
int err;
char buf[20];
if (!sra)
return -1;
/* Need to clear any 'read-auto' status */
if (sysfs_get_str(sra, NULL, "array_state", buf, 20) > 0 &&
strncmp(buf, "read-auto", 9) == 0)
sysfs_set_str(sra, NULL, "array_state", "clean");
err = sysfs_freeze_array(sra);
sysfs_free(sra);
return err;
}
}
static void unfreeze(struct supertype *st)
{
if (st->ss->external)
return unfreeze_container(st);
else {
struct mdinfo *sra = sysfs_read(-1, st->devnum, GET_VERSION);
if (sra)
sysfs_set_str(sra, NULL, "sync_action", "idle");
else
fprintf(stderr, Name ": failed to unfreeze array\n");
sysfs_free(sra);
}
}
static void wait_reshape(struct mdinfo *sra)
{
int fd = sysfs_get_fd(sra, NULL, "sync_action");
char action[20];
if (fd < 0)
return;
while (sysfs_fd_get_str(fd, action, 20) > 0 &&
strncmp(action, "reshape", 7) == 0) {
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
select(fd+1, NULL, NULL, &rfds, NULL);
}
close(fd);
}
static int reshape_super(struct supertype *st, long long size, int level,
int layout, int chunksize, int raid_disks,
int delta_disks, char *backup_file, char *dev,
int verbose)
{
/* nothing extra to check in the native case */
if (!st->ss->external)
return 0;
if (!st->ss->reshape_super ||
!st->ss->manage_reshape) {
fprintf(stderr, Name ": %s metadata does not support reshape\n",
st->ss->name);
return 1;
}
return st->ss->reshape_super(st, size, level, layout, chunksize,
raid_disks, delta_disks, backup_file, dev,
verbose);
}
static void sync_metadata(struct supertype *st)
{
if (st->ss->external) {
if (st->update_tail) {
flush_metadata_updates(st);
st->update_tail = &st->updates;
} else
st->ss->sync_metadata(st);
}
}
static int subarray_set_num(char *container, struct mdinfo *sra, char *name, int n)
{
/* when dealing with external metadata subarrays we need to be
* prepared to handle EAGAIN. The kernel may need to wait for
* mdmon to mark the array active so the kernel can handle
* allocations/writeback when preparing the reshape action
* (md_allow_write()). We temporarily disable safe_mode_delay
* to close a race with the array_state going clean before the
* next write to raid_disks / stripe_cache_size
*/
char safe[50];
int rc;
/* only 'raid_disks' and 'stripe_cache_size' trigger md_allow_write */
if (!container ||
(strcmp(name, "raid_disks") != 0 &&
strcmp(name, "stripe_cache_size") != 0))
return sysfs_set_num(sra, NULL, name, n);
rc = sysfs_get_str(sra, NULL, "safe_mode_delay", safe, sizeof(safe));
if (rc <= 0)
return -1;
sysfs_set_num(sra, NULL, "safe_mode_delay", 0);
rc = sysfs_set_num(sra, NULL, name, n);
if (rc < 0 && errno == EAGAIN) {
ping_monitor(container);
/* if we get EAGAIN here then the monitor is not active
* so stop trying
*/
rc = sysfs_set_num(sra, NULL, name, n);
}
sysfs_set_str(sra, NULL, "safe_mode_delay", safe);
return rc;
}
int start_reshape(struct mdinfo *sra, int already_running)
{
int err;
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
err = sysfs_set_num(sra, NULL, "suspend_hi", 0);
err = err ?: sysfs_set_num(sra, NULL, "suspend_lo", 0);
if (!already_running)
sysfs_set_num(sra, NULL, "sync_min", 0);
err = err ?: sysfs_set_num(sra, NULL, "sync_max", 0);
if (!already_running)
err = err ?: sysfs_set_str(sra, NULL, "sync_action", "reshape");
return err;
}
void abort_reshape(struct mdinfo *sra)
{
sysfs_set_str(sra, NULL, "sync_action", "idle");
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
sysfs_set_num(sra, NULL, "suspend_hi", 0);
sysfs_set_num(sra, NULL, "suspend_lo", 0);
sysfs_set_num(sra, NULL, "sync_min", 0);
sysfs_set_str(sra, NULL, "sync_max", "max");
}
int remove_disks_for_takeover(struct supertype *st,
struct mdinfo *sra,
int layout)
{
int nr_of_copies;
struct mdinfo *remaining;
int slot;
if (sra->array.level == 10)
nr_of_copies = layout & 0xff;
else if (sra->array.level == 1)
nr_of_copies = sra->array.raid_disks;
else
return 1;
remaining = sra->devs;
sra->devs = NULL;
/* for each 'copy', select one device and remove from the list. */
for (slot = 0; slot < sra->array.raid_disks; slot += nr_of_copies) {
struct mdinfo **diskp;
int found = 0;
/* Find a working device to keep */
for (diskp = &remaining; *diskp ; diskp = &(*diskp)->next) {
struct mdinfo *disk = *diskp;
if (disk->disk.raid_disk < slot)
continue;
if (disk->disk.raid_disk >= slot + nr_of_copies)
continue;
if (disk->disk.state & (1<<MD_DISK_REMOVED))
continue;
if (disk->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (!(disk->disk.state & (1<<MD_DISK_SYNC)))
continue;
/* We have found a good disk to use! */
*diskp = disk->next;
disk->next = sra->devs;
sra->devs = disk;
found = 1;
break;
}
if (!found)
break;
}
if (slot < sra->array.raid_disks) {
/* didn't find all slots */
struct mdinfo **e;
e = &remaining;
while (*e)
e = &(*e)->next;
*e = sra->devs;
sra->devs = remaining;
return 1;
}
/* Remove all 'remaining' devices from the array */
while (remaining) {
struct mdinfo *sd = remaining;
remaining = sd->next;
sysfs_set_str(sra, sd, "state", "faulty");
sysfs_set_str(sra, sd, "slot", "none");
/* for external metadata disks should be removed in mdmon */
if (!st->ss->external)
sysfs_set_str(sra, sd, "state", "remove");
sd->disk.state |= (1<<MD_DISK_REMOVED);
sd->disk.state &= ~(1<<MD_DISK_SYNC);
sd->next = sra->devs;
sra->devs = sd;
}
return 0;
}
void reshape_free_fdlist(int *fdlist,
unsigned long long *offsets,
int size)
{
int i;
for (i = 0; i < size; i++)
if (fdlist[i] >= 0)
close(fdlist[i]);
free(fdlist);
free(offsets);
}
int reshape_prepare_fdlist(char *devname,
struct mdinfo *sra,
int raid_disks,
int nrdisks,
unsigned long blocks,
char *backup_file,
int *fdlist,
unsigned long long *offsets)
{
int d = 0;
struct mdinfo *sd;
for (d = 0; d <= nrdisks; d++)
fdlist[d] = -1;
d = raid_disks;
for (sd = sra->devs; sd; sd = sd->next) {
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (sd->disk.state & (1<<MD_DISK_SYNC)) {
char *dn = map_dev(sd->disk.major,
sd->disk.minor, 1);
fdlist[sd->disk.raid_disk]
= dev_open(dn, O_RDONLY);
offsets[sd->disk.raid_disk] = sd->data_offset*512;
if (fdlist[sd->disk.raid_disk] < 0) {
fprintf(stderr,
Name ": %s: cannot open component %s\n",
devname, dn ? dn : "-unknown-");
d = -1;
goto release;
}
} else if (backup_file == NULL) {
/* spare */
char *dn = map_dev(sd->disk.major,
sd->disk.minor, 1);
fdlist[d] = dev_open(dn, O_RDWR);
offsets[d] = (sd->data_offset + sra->component_size - blocks - 8)*512;
if (fdlist[d] < 0) {
fprintf(stderr, Name ": %s: cannot open component %s\n",
devname, dn ? dn : "-unknown-");
d = -1;
goto release;
}
d++;
}
}
release:
return d;
}
int reshape_open_backup_file(char *backup_file,
int fd,
char *devname,
long blocks,
int *fdlist,
unsigned long long *offsets,
int restart)
{
/* Return 1 on success, 0 on any form of failure */
/* need to check backup file is large enough */
char buf[512];
struct stat stb;
unsigned int dev;
int i;
*fdlist = open(backup_file, O_RDWR|O_CREAT|(restart ? O_TRUNC : O_EXCL),
S_IRUSR | S_IWUSR);
*offsets = 8 * 512;
if (*fdlist < 0) {
fprintf(stderr, Name ": %s: cannot create backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
/* Guard against backup file being on array device.
* If array is partitioned or if LVM etc is in the
* way this will not notice, but it is better than
* nothing.
*/
fstat(*fdlist, &stb);
dev = stb.st_dev;
fstat(fd, &stb);
if (stb.st_rdev == dev) {
fprintf(stderr, Name ": backup file must NOT be"
" on the array being reshaped.\n");
close(*fdlist);
return 0;
}
memset(buf, 0, 512);
for (i=0; i < blocks + 8 ; i++) {
if (write(*fdlist, buf, 512) != 512) {
fprintf(stderr, Name ": %s: cannot create"
" backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
}
if (fsync(*fdlist) != 0) {
fprintf(stderr, Name ": %s: cannot create backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
return 1;
}
unsigned long compute_backup_blocks(int nchunk, int ochunk,
unsigned int ndata, unsigned int odata)
{
unsigned long a, b, blocks;
/* So how much do we need to backup.
* We need an amount of data which is both a whole number of
* old stripes and a whole number of new stripes.
* So LCM for (chunksize*datadisks).
*/
a = (ochunk/512) * odata;
b = (nchunk/512) * ndata;
/* Find GCD */
while (a != b) {
if (a < b)
b -= a;
if (b < a)
a -= b;
}
/* LCM == product / GCD */
blocks = (ochunk/512) * (nchunk/512) * odata * ndata / a;
return blocks;
}
char *analyse_change(struct mdinfo *info, struct reshape *re)
{
/* Based on the current array state in info->array and
* the changes in info->new_* etc, determine:
* - whether the change is possible
* - Intermediate level/raid_disks/layout
* - whether a restriping reshape is needed
* - number of sectors in minimum change unit. This
* will cover a whole number of stripes in 'before' and
* 'after'.
*
* Return message if the change should be rejected
* NULL if the change can be achieved
*
* This can be called as part of starting a reshape, or
* when assembling an array that is undergoing reshape.
*/
int new_disks;
/* delta_parity records change in number of devices
* caused by level change
*/
int delta_parity = 0;
/* If a new level not explicitly given, we assume no-change */
if (info->new_level == UnSet)
info->new_level = info->array.level;
if (info->new_chunk)
switch (info->new_level) {
case 0:
case 4:
case 5:
case 6:
case 10:
/* chunk size is meaningful, must divide component_size
* evenly
*/
if (info->component_size % (info->new_chunk/512))
return "New chunk size does not"
" divide component size";
break;
default:
return "chunk size not meaningful for this level";
}
else
info->new_chunk = info->array.chunk_size;
switch (info->array.level) {
default:
return "Cannot understand this RAID level";
case 1:
/* RAID1 can convert to RAID1 with different disks, or
* raid5 with 2 disks, or
* raid0 with 1 disk
*/
if (info->new_level == 0) {
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
return "Cannot change number of disks "
"with RAID1->RAID0 conversion";
re->level = 0;
re->before.data_disks = 1;
re->after.data_disks = 1;
re->before.layout = 0;
re->backup_blocks = 0;
re->parity = 0;
return NULL;
}
if (info->new_level == 1) {
if (info->delta_disks == UnSet)
/* Don't know what to do */
return "no change requested for Growing RAID1";
re->level = 1;
re->backup_blocks = 0;
re->parity = 0;
return NULL;
}
if (info->array.raid_disks == 2 &&
info->new_level == 5) {
re->level = 5;
re->before.data_disks = 1;
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
re->after.data_disks = 1 + info->delta_disks;
else
re->after.data_disks = 1;
if (re->after.data_disks < 1)
return "Number of disks too small for RAID5";
re->before.layout = ALGORITHM_LEFT_SYMMETRIC;
info->array.chunk_size = 65536;
break;
}
/* Could do some multi-stage conversions, but leave that to
* later.
*/
return "Impossibly level change request for RAID1";
case 10:
/* RAID10 can only be converted from near mode to
* RAID0 by removing some devices
*/
if ((info->array.layout & ~0xff) != 0x100)
return "Cannot Grow RAID10 with far/offset layout";
/* number of devices must be multiple of number of copies */
if (info->array.raid_disks % (info->array.layout & 0xff))
return "RAID10 layout too complex for Grow operation";
if (info->new_level != 0)
return "RAID10 can only be changed to RAID0";
new_disks = (info->array.raid_disks
/ (info->array.layout & 0xff));
if (info->delta_disks == UnSet)
info->delta_disks = (new_disks
- info->array.raid_disks);
if (info->delta_disks != new_disks - info->array.raid_disks)
return "New number of raid-devices impossible for RAID10";
if (info->new_chunk &&
info->new_chunk != info->array.chunk_size)
return "Cannot change chunk-size with RAID10 Grow";
/* looks good */
re->level = 0;
re->parity = 0;
re->before.data_disks = new_disks;
re->after.data_disks = re->before.data_disks;
re->before.layout = 0;
re->backup_blocks = 0;
return NULL;
case 0:
/* RAID0 can be converted to RAID10, or to RAID456 */
if (info->new_level == 10) {
if (info->new_layout == UnSet && info->delta_disks == UnSet) {
/* Assume near=2 layout */
info->new_layout = 0x102;
info->delta_disks = info->array.raid_disks;
}
if (info->new_layout == UnSet) {
int copies = 1 + (info->delta_disks
/ info->array.raid_disks);
if (info->array.raid_disks * (copies-1)
!= info->delta_disks)
return "Impossible number of devices"
" for RAID0->RAID10";
info->new_layout = 0x100 + copies;
}
if (info->delta_disks == UnSet) {
int copies = info->new_layout & 0xff;
if (info->new_layout != 0x100 + copies)
return "New layout impossible"
" for RAID0->RAID10";;
info->delta_disks = (copies - 1) *
info->array.raid_disks;
}
if (info->new_chunk &&
info->new_chunk != info->array.chunk_size)
return "Cannot change chunk-size with RAID0->RAID10";
/* looks good */
re->level = 10;
re->parity = 0;
re->before.data_disks = (info->array.raid_disks +
info->delta_disks);
re->after.data_disks = re->before.data_disks;
re->before.layout = info->new_layout;
re->backup_blocks = 0;
return NULL;
}
/* RAID0 can also covert to RAID0/4/5/6 by first converting to
* a raid4 style layout of the final level.
*/
switch (info->new_level) {
case 4:
delta_parity = 1;
case 0:
re->level = 4;
re->before.layout = 0;
break;
case 5:
delta_parity = 1;
re->level = 5;
re->before.layout = ALGORITHM_PARITY_N;
break;
case 6:
delta_parity = 2;
re->level = 6;
re->before.layout = ALGORITHM_PARITY_N;
break;
default:
return "Impossible level change requested";
}
re->before.data_disks = info->array.raid_disks;
/* determining 'after' layout happens outside this 'switch' */
break;
case 4:
info->array.layout = ALGORITHM_PARITY_N;
case 5:
switch (info->new_level) {
case 0:
delta_parity = -1;
case 4:
re->level = info->array.level;
re->before.data_disks = info->array.raid_disks - 1;
re->before.layout = info->array.layout;
break;
case 5:
re->level = 5;
re->before.data_disks = info->array.raid_disks - 1;
re->before.layout = info->array.layout;
break;
case 6:
delta_parity = 1;
re->level = 6;
re->before.data_disks = info->array.raid_disks - 1;
switch (info->array.layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
re->before.layout = ALGORITHM_LEFT_ASYMMETRIC_6;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
re->before.layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
break;
case ALGORITHM_LEFT_SYMMETRIC:
re->before.layout = ALGORITHM_LEFT_SYMMETRIC_6;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
re->before.layout = ALGORITHM_RIGHT_SYMMETRIC_6;
break;
case ALGORITHM_PARITY_0:
re->before.layout = ALGORITHM_PARITY_0_6;
break;
case ALGORITHM_PARITY_N:
re->before.layout = ALGORITHM_PARITY_N_6;
break;
default:
return "Cannot convert an array with this layout";
}
break;
case 1:
if (info->array.raid_disks != 2)
return "Can only convert a 2-device array to RAID1";
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
return "Cannot set raid_disk when "
"converting RAID5->RAID1";
re->level = 1;
break;
default:
return "Impossible level change requested";
}
break;
case 6:
switch (info->new_level) {
case 4:
case 5:
delta_parity = -1;
case 6:
re->level = 6;
re->before.data_disks = info->array.raid_disks - 2;
re->before.layout = info->array.layout;
break;
default:
return "Impossible level change requested";
}
break;
}
/* If we reached here then it looks like a re-stripe is
* happening. We have determined the intermediate level
* and initial raid_disks/layout and stored these in 're'.
*
* We need to deduce the final layout that can be atomically
* converted to the end state.
*/
switch (info->new_level) {
case 0:
/* We can only get to RAID0 from RAID4 or RAID5
* with appropriate layout and one extra device
*/
if (re->level != 4 && re->level != 5)
return "Cannot covert to RAID0 from this level";
switch (re->level) {
case 4:
re->after.layout = 0 ; break;
case 5:
re->after.layout = ALGORITHM_PARITY_N; break;
}
break;
case 4:
/* We can only get to RAID4 from RAID5 */
if (re->level != 4 && re->level != 5)
return "Cannot convert to RAID4 from this level";
switch (re->level) {
case 4:
re->after.layout = 0 ; break;
case 5:
re->after.layout = ALGORITHM_PARITY_N; break;
}
break;
case 5:
/* We get to RAID5 for RAID5 or RAID6 */
if (re->level != 5 && re->level != 6)
return "Cannot convert to RAID5 from this level";
switch (re->level) {
case 5:
if (info->new_layout == UnSet)
re->after.layout = re->before.layout;
else
re->after.layout = info->new_layout;
break;
case 6:
if (info->new_layout == UnSet)
info->new_layout = re->before.layout;
/* after.layout needs to be raid6 version of new_layout */
if (info->new_layout == ALGORITHM_PARITY_N)
re->after.layout = ALGORITHM_PARITY_N;
else {
char layout[40];
char *ls = map_num(r5layout, info->new_layout);
int l;
strcat(strcpy(layout, ls), "-6");
l = map_name(r6layout, layout);
if (l == UnSet)
return "Cannot find RAID6 layout"
" to convert to";
re->after.layout = l;
}
}
break;
case 6:
/* We must already be at level 6 */
if (re->level != 6)
return "Impossible level change";
if (info->new_layout == UnSet)
re->after.layout = info->array.layout;
else
re->after.layout = info->new_layout;
break;
default:
return "Impossible level change requested";
}
if (info->delta_disks == UnSet)
info->delta_disks = delta_parity;
re->after.data_disks = (re->before.data_disks
+ info->delta_disks
- delta_parity);
switch (re->level) {
case 6: re->parity = 2; break;
case 4:
case 5: re->parity = 1; break;
default: re->parity = 0; break;
}
/* So we have a restripe operation, we need to calculate the number
* of blocks per reshape operation.
*/
if (info->new_chunk == 0)
info->new_chunk = info->array.chunk_size;
if (re->after.data_disks == re->before.data_disks &&
re->after.layout == re->before.layout &&
info->new_chunk == info->array.chunk_size) {
/* Nothing to change */
re->backup_blocks = 0;
return NULL;
}
if (re->after.data_disks == 1 && re->before.data_disks == 1) {
/* chunk and layout changes make no difference */
re->backup_blocks = 0;
return NULL;
}
if (re->after.data_disks == re->before.data_disks &&
get_linux_version() < 2006032)
return "in-place reshape is not safe before 2.6.32 - sorry.";
if (re->after.data_disks < re->before.data_disks &&
get_linux_version() < 2006030)
return "reshape to fewer devices is not supported before 2.6.32 - sorry.";
re->backup_blocks = compute_backup_blocks(
info->new_chunk, info->array.chunk_size,
re->after.data_disks,
re->before.data_disks);
re->new_size = info->component_size * re->after.data_disks;
return NULL;
}
static int reshape_array(char *container, int fd, char *devname,
struct supertype *st, struct mdinfo *info,
int force, struct mddev_dev *devlist,
char *backup_file, int quiet, int forked,
int restart);
static int reshape_container(char *container, char *devname,
struct supertype *st,
struct mdinfo *info,
int force,
char *backup_file,
int quiet, int restart);
int Grow_reshape(char *devname, int fd, int quiet, char *backup_file,
long long size,
int level, char *layout_str, int chunksize, int raid_disks,
struct mddev_dev *devlist,
int assume_clean, int force)
{
/* Make some changes in the shape of an array.
* The kernel must support the change.
*
* There are three different changes. Each can trigger
* a resync or recovery so we freeze that until we have
* requested everything (if kernel supports freezing - 2.6.30).
* The steps are:
* - change size (i.e. component_size)
* - change level
* - change layout/chunksize/ndisks
*
* The last can require a reshape. It is different on different
* levels so we need to check the level before actioning it.
* Some times the level change needs to be requested after the
* reshape (e.g. raid6->raid5, raid5->raid0)
*
*/
struct mdu_array_info_s array;
int rv = 0;
struct supertype *st;
char *subarray = NULL;
int frozen;
int changed = 0;
char *container = NULL;
char container_buf[20];
int cfd = -1;
struct mddev_dev *dv;
int added_disks;
struct mdinfo info;
struct mdinfo *sra;
if (ioctl(fd, GET_ARRAY_INFO, &array) < 0) {
fprintf(stderr, Name ": %s is not an active md array - aborting\n",
devname);
return 1;
}
if (size >= 0 &&
(chunksize || level!= UnSet || layout_str || raid_disks)) {
fprintf(stderr, Name ": cannot change component size at the same time "
"as other changes.\n"
" Change size first, then check data is intact before "
"making other changes.\n");
return 1;
}
if (raid_disks && raid_disks < array.raid_disks && array.level > 1 &&
get_linux_version() < 2006032 &&
!check_env("MDADM_FORCE_FEWER")) {
fprintf(stderr, Name ": reducing the number of devices is not safe before Linux 2.6.32\n"
" Please use a newer kernel\n");
return 1;
}
st = super_by_fd(fd, &subarray);
if (!st) {
fprintf(stderr, Name ": Unable to determine metadata format for %s\n", devname);
return 1;
}
if (raid_disks > st->max_devs) {
fprintf(stderr, Name ": Cannot increase raid-disks on this array"
" beyond %d\n", st->max_devs);
return 1;
}
/* in the external case we need to check that the requested reshape is
* supported, and perform an initial check that the container holds the
* pre-requisite spare devices (mdmon owns final validation)
*/
if (st->ss->external) {
int container_dev;
int rv;
if (subarray) {
container_dev = st->container_dev;
cfd = open_dev_excl(st->container_dev);
} else {
container_dev = st->devnum;
close(fd);
cfd = open_dev_excl(st->devnum);
fd = cfd;
}
if (cfd < 0) {
fprintf(stderr, Name ": Unable to open container for %s\n",
devname);
free(subarray);
return 1;
}
fmt_devname(container_buf, container_dev);
container = container_buf;
rv = st->ss->load_container(st, cfd, NULL);
if (rv) {
fprintf(stderr, Name ": Cannot read superblock for %s\n",
devname);
free(subarray);
return 1;
}
if (mdmon_running(container_dev))
st->update_tail = &st->updates;
}
added_disks = 0;
for (dv = devlist; dv; dv = dv->next)
added_disks++;
if (raid_disks > array.raid_disks &&
array.spare_disks +added_disks < (raid_disks - array.raid_disks) &&
!force) {
fprintf(stderr,
Name ": Need %d spare%s to avoid degraded array,"
" and only have %d.\n"
" Use --force to over-ride this check.\n",
raid_disks - array.raid_disks,
raid_disks - array.raid_disks == 1 ? "" : "s",
array.spare_disks + added_disks);
return 1;
}
sra = sysfs_read(fd, 0, GET_LEVEL | GET_DISKS | GET_DEVS
| GET_STATE | GET_VERSION);
if (sra) {
if (st->ss->external && subarray == NULL) {
array.level = LEVEL_CONTAINER;
sra->array.level = LEVEL_CONTAINER;
}
} else {
fprintf(stderr, Name ": failed to read sysfs parameters for %s\n",
devname);
return 1;
}
frozen = freeze(st);
if (frozen < -1) {
/* freeze() already spewed the reason */
return 1;
} else if (frozen < 0) {
fprintf(stderr, Name ": %s is performing resync/recovery and cannot"
" be reshaped\n", devname);
return 1;
}
/* ========= set size =============== */
if (size >= 0 && (size == 0 || size != array.size)) {
long long orig_size = get_component_size(fd)/2;
struct mdinfo *mdi;
if (orig_size == 0)
orig_size = array.size;
if (reshape_super(st, size, UnSet, UnSet, 0, 0, UnSet, NULL,
devname, !quiet)) {
rv = 1;
goto release;
}
sync_metadata(st);
/* Update the size of each member device in case
* they have been resized. This will never reduce
* below the current used-size. The "size" attribute
* understand '0' to mean 'max'.
*/
for (mdi = sra->devs; mdi; mdi = mdi->next)
sysfs_set_num(sra, mdi, "size", size);
array.size = size;
if (array.size != size) {
/* got truncated to 32bit, write to
* component_size instead
*/
if (sra)
rv = sysfs_set_num(sra, NULL,
"component_size", size);
else
rv = -1;
} else
rv = ioctl(fd, SET_ARRAY_INFO, &array);
if (rv != 0) {
int err = errno;
/* restore metadata */
if (reshape_super(st, orig_size, UnSet, UnSet, 0, 0,
UnSet, NULL, devname, !quiet) == 0)
sync_metadata(st);
fprintf(stderr, Name ": Cannot set device size for %s: %s\n",
devname, strerror(err));
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
fprintf(stderr, " Bitmap must be removed before size can be changed\n");
rv = 1;
goto release;
}
if (assume_clean) {
/* This will fail on kernels newer than 2.6.40 unless
* a backport has been arranged.
*/
if (sra == NULL ||
sysfs_set_str(sra, NULL, "resync_start", "none") < 0)
fprintf(stderr, Name ": --assume-clean not support with --grow on this kernel\n");
}
ioctl(fd, GET_ARRAY_INFO, &array);
size = get_component_size(fd)/2;
if (size == 0)
size = array.size;
if (!quiet) {
if (size == orig_size)
fprintf(stderr, Name ": component size of %s "
"unchanged at %lluK\n",
devname, size);
else
fprintf(stderr, Name ": component size of %s "
"has been set to %lluK\n",
devname, size);
}
changed = 1;
} else if (array.level != LEVEL_CONTAINER) {
size = get_component_size(fd)/2;
if (size == 0)
size = array.size;
}
/* See if there is anything else to do */
if ((level == UnSet || level == array.level) &&
(layout_str == NULL) &&
(chunksize == 0 || chunksize == array.chunk_size) &&
(raid_disks == 0 || raid_disks == array.raid_disks)) {
/* Nothing more to do */
if (!changed && !quiet)
fprintf(stderr, Name ": %s: no change requested\n",
devname);
goto release;
}
/* ========= check for Raid10/Raid1 -> Raid0 conversion ===============
* current implementation assumes that following conditions must be met:
* - RAID10:
* - far_copies == 1
* - near_copies == 2
*/
if ((level == 0 && array.level == 10 && sra &&
array.layout == ((1 << 8) + 2) && !(array.raid_disks & 1)) ||
(level == 0 && array.level == 1 && sra)) {
int err;
err = remove_disks_for_takeover(st, sra, array.layout);
if (err) {
dprintf(Name": Array cannot be reshaped\n");
if (cfd > -1)
close(cfd);
rv = 1;
goto release;
}
/* FIXME this is added with no justification - why is it here */
ping_monitor(container);
}
memset(&info, 0, sizeof(info));
info.array = array;
sysfs_init(&info, fd, NoMdDev);
strcpy(info.text_version, sra->text_version);
info.component_size = size*2;
info.new_level = level;
info.new_chunk = chunksize * 1024;
if (info.array.level == LEVEL_CONTAINER) {
info.delta_disks = UnSet;
info.array.raid_disks = raid_disks;
} else if (raid_disks)
info.delta_disks = raid_disks - info.array.raid_disks;
else
info.delta_disks = UnSet;
if (layout_str == NULL) {
info.new_layout = UnSet;
if (info.array.level == 6 &&
(info.new_level == 6 || info.new_level == UnSet) &&
info.array.layout >= 16) {
fprintf(stderr, Name
": %s has a non-standard layout. If you"
" wish to preserve this\n"
" during the reshape, please specify"
" --layout=preserve\n"
" If you want to change it, specify a"
" layout or use --layout=normalise\n",
devname);
rv = 1;
goto release;
}
} else if (strcmp(layout_str, "normalise") == 0 ||
strcmp(layout_str, "normalize") == 0) {
/* If we have a -6 RAID6 layout, remove the '-6'. */
info.new_layout = UnSet;
if (info.array.level == 6 && info.new_level == UnSet) {
char l[40], *h;
strcpy(l, map_num(r6layout, info.array.layout));
h = strrchr(l, '-');
if (h && strcmp(h, "-6") == 0) {
*h = 0;
info.new_layout = map_name(r6layout, l);
}
}
} else if (strcmp(layout_str, "preserve") == 0) {
info.new_layout = UnSet;
} else {
int l = info.new_level;
if (l == UnSet)
l = info.array.level;
switch (l) {
case 5:
info.new_layout = map_name(r5layout, layout_str);
break;
case 6:
info.new_layout = map_name(r6layout, layout_str);
break;
case 10:
info.new_layout = parse_layout_10(layout_str);
break;
case LEVEL_FAULTY:
info.new_layout = parse_layout_faulty(layout_str);
break;
default:
fprintf(stderr, Name ": layout not meaningful"
" with this level\n");
rv = 1;
goto release;
}
if (info.new_layout == UnSet) {
fprintf(stderr, Name ": layout %s not understood"
" for this level\n",
layout_str);
rv = 1;
goto release;
}
}
if (array.level == LEVEL_FAULTY) {
if (level != UnSet && level != array.level) {
fprintf(stderr, Name ": cannot change level of Faulty device\n");
rv =1 ;
}
if (chunksize) {
fprintf(stderr, Name ": cannot set chunksize of Faulty device\n");
rv =1 ;
}
if (raid_disks && raid_disks != 1) {
fprintf(stderr, Name ": cannot set raid_disks of Faulty device\n");
rv =1 ;
}
if (layout_str) {
if (ioctl(fd, GET_ARRAY_INFO, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
array.layout = info.new_layout;
if (ioctl(fd, SET_ARRAY_INFO, &array) != 0) {
fprintf(stderr, Name ": failed to set new layout\n");
rv = 1;
} else if (!quiet)
printf("layout for %s set to %d\n",
devname, array.layout);
}
} else if (array.level == LEVEL_CONTAINER) {
/* This change is to be applied to every array in the
* container. This is only needed when the metadata imposes
* restraints of the various arrays in the container.
* Currently we only know that IMSM requires all arrays
* to have the same number of devices so changing the
* number of devices (On-Line Capacity Expansion) must be
* performed at the level of the container
*/
rv = reshape_container(container, devname, st, &info,
force, backup_file, quiet, 0);
frozen = 0;
} else {
/* get spare devices from external metadata
*/
if (st->ss->external) {
struct mdinfo *info2;
info2 = st->ss->container_content(st, subarray);
if (info2) {
info.array.spare_disks =
info2->array.spare_disks;
sysfs_free(info2);
}
}
/* Impose these changes on a single array. First
* check that the metadata is OK with the change. */
if (reshape_super(st, info.component_size, info.new_level,
info.new_layout, info.new_chunk,
info.array.raid_disks, info.delta_disks,
backup_file, devname, quiet)) {
rv = 1;
goto release;
}
sync_metadata(st);
rv = reshape_array(container, fd, devname, st, &info, force,
devlist, backup_file, quiet, 0, 0);
frozen = 0;
}
release:
if (frozen > 0)
unfreeze(st);
return rv;
}
static int reshape_array(char *container, int fd, char *devname,
struct supertype *st, struct mdinfo *info,
int force, struct mddev_dev *devlist,
char *backup_file, int quiet, int forked,
int restart)
{
struct reshape reshape;
int spares_needed;
char *msg;
int orig_level = UnSet;
int disks, odisks;
struct mdu_array_info_s array;
char *c;
struct mddev_dev *dv;
int added_disks;
int *fdlist;
unsigned long long *offsets;
int d;
int nrdisks;
int err;
unsigned long blocks;
unsigned long cache;
unsigned long long array_size;
int done;
struct mdinfo *sra = NULL;
/* when reshaping a RAID0, the component_size might be zero.
* So try to fix that up.
*/
if (ioctl(fd, GET_ARRAY_INFO, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
if (array.level == 0 && info->component_size == 0) {
get_dev_size(fd, NULL, &array_size);
info->component_size = array_size / array.raid_disks;
}
if (info->reshape_active) {
int new_level = info->new_level;
info->new_level = UnSet;
info->array.raid_disks -= info->delta_disks;
msg = analyse_change(info, &reshape);
info->new_level = new_level;
info->array.raid_disks += info->delta_disks;
if (!restart)
/* Make sure the array isn't read-only */
ioctl(fd, RESTART_ARRAY_RW, 0);
} else
msg = analyse_change(info, &reshape);
if (msg) {
fprintf(stderr, Name ": %s\n", msg);
goto release;
}
if (restart &&
(reshape.level != info->array.level ||
reshape.before.layout != info->array.layout ||
reshape.before.data_disks + reshape.parity
!= info->array.raid_disks - info->delta_disks)) {
fprintf(stderr, Name ": reshape info is not in native format -"
" cannot continue.\n");
goto release;
}
if (restart) {
/* reshape already started. just skip to monitoring the reshape */
if (reshape.backup_blocks == 0)
return 0;
goto started;
}
/* The container is frozen but the array may not be.
* So freeze the array so spares don't get put to the wrong use
* FIXME there should probably be a cleaner separation between
* freeze_array and freeze_container.
*/
sysfs_freeze_array(info);
/* Check we have enough spares to not be degraded */
added_disks = 0;
for (dv = devlist; dv ; dv=dv->next)
added_disks++;
spares_needed = max(reshape.before.data_disks,
reshape.after.data_disks)
+ reshape.parity - array.raid_disks;
if (!force &&
info->new_level > 1 && info->array.level > 1 &&
spares_needed > info->array.spare_disks + added_disks) {
fprintf(stderr,
Name ": Need %d spare%s to avoid degraded array,"
" and only have %d.\n"
" Use --force to over-ride this check.\n",
spares_needed,
spares_needed == 1 ? "" : "s",
info->array.spare_disks + added_disks);
goto release;
}
/* Check we have enough spares to not fail */
spares_needed = max(reshape.before.data_disks,
reshape.after.data_disks)
- array.raid_disks;
if ((info->new_level > 1 || info->new_level == 0) &&
spares_needed > info->array.spare_disks +added_disks) {
fprintf(stderr,
Name ": Need %d spare%s to create working array,"
" and only have %d.\n",
spares_needed,
spares_needed == 1 ? "" : "s",
info->array.spare_disks + added_disks);
goto release;
}
if (reshape.level != array.level) {
char *c = map_num(pers, reshape.level);
int err;
if (c == NULL)
goto release;
err = sysfs_set_str(info, NULL, "level", c);
if (err) {
err = errno;
fprintf(stderr, Name ": %s: could not set level to %s\n",
devname, c);
if (err == EBUSY &&
(info->array.state & (1<<MD_SB_BITMAP_PRESENT)))
fprintf(stderr, " Bitmap must be removed"
" before level can be changed\n");
goto release;
}
if (!quiet)
fprintf(stderr, Name ": level of %s changed to %s\n",
devname, c);
orig_level = array.level;
sysfs_freeze_array(info);
if (reshape.level > 0 && st->ss->external) {
/* make sure mdmon is aware of the new level */
if (!mdmon_running(st->container_dev))
start_mdmon(st->container_dev);
ping_monitor(container);
if (mdmon_running(st->container_dev) &&
st->update_tail == NULL)
st->update_tail = &st->updates;
}
}
/* ->reshape_super might have chosen some spares from the
* container that it wants to be part of the new array.
* We can collect them with ->container_content and give
* them to the kernel.
*/
if (st->ss->reshape_super && st->ss->container_content) {
char *subarray = strchr(info->text_version+1, '/')+1;
struct mdinfo *info2 =
st->ss->container_content(st, subarray);
struct mdinfo *d;
if (info2) {
sysfs_init(info2, fd, st->devnum);
/* When increasing number of devices, we need to set
* new raid_disks before adding these, or they might
* be rejected.
*/
if (reshape.backup_blocks &&
reshape.after.data_disks > reshape.before.data_disks)
subarray_set_num(container, info2, "raid_disks",
reshape.after.data_disks +
reshape.parity);
for (d = info2->devs; d; d = d->next) {
if (d->disk.state == 0 &&
d->disk.raid_disk >= 0) {
/* This is a spare that wants to
* be part of the array.
*/
add_disk(fd, st, info2, d);
}
}
sysfs_free(info2);
}
}
/* We might have been given some devices to add to the
* array. Now that the array has been changed to the right
* level and frozen, we can safely add them.
*/
if (devlist)
Manage_subdevs(devname, fd, devlist, !quiet,
0,NULL);
if (reshape.backup_blocks == 0) {
/* No restriping needed, but we might need to impose
* some more changes: layout, raid_disks, chunk_size
*/
/* read current array info */
if (ioctl(fd, GET_ARRAY_INFO, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
/* compare current array info with new values and if
* it is different update them to new */
if (info->new_layout != UnSet &&
info->new_layout != array.layout) {
array.layout = info->new_layout;
if (ioctl(fd, SET_ARRAY_INFO, &array) != 0) {
fprintf(stderr, Name ": failed to set new layout\n");
goto release;
} else if (!quiet)
printf("layout for %s set to %d\n",
devname, array.layout);
}
if (info->delta_disks != UnSet &&
info->delta_disks != 0 &&
array.raid_disks != (info->array.raid_disks + info->delta_disks)) {
array.raid_disks += info->delta_disks;
if (ioctl(fd, SET_ARRAY_INFO, &array) != 0) {
fprintf(stderr, Name ": failed to set raid disks\n");
goto release;
} else if (!quiet) {
printf("raid_disks for %s set to %d\n",
devname, array.raid_disks);
}
}
if (info->new_chunk != 0 &&
info->new_chunk != array.chunk_size) {
if (sysfs_set_num(info, NULL,
"chunk_size", info->new_chunk) != 0) {
fprintf(stderr, Name ": failed to set chunk size\n");
goto release;
} else if (!quiet)
printf("chunk size for %s set to %d\n",
devname, array.chunk_size);
}
unfreeze(st);
return 0;
}
/*
* There are three possibilities.
* 1/ The array will shrink.
* We need to ensure the reshape will pause before reaching
* the 'critical section'. We also need to fork and wait for
* that to happen. When it does we
* suspend/backup/complete/unfreeze
*
* 2/ The array will not change size.
* This requires that we keep a backup of a sliding window
* so that we can restore data after a crash. So we need
* to fork and monitor progress.
* In future we will allow the data_offset to change, so
* a sliding backup becomes unnecessary.
*
* 3/ The array will grow. This is relatively easy.
* However the kernel's restripe routines will cheerfully
* overwrite some early data before it is safe. So we
* need to make a backup of the early parts of the array
* and be ready to restore it if rebuild aborts very early.
* For externally managed metadata, we still need a forked
* child to monitor the reshape and suspend IO over the region
* that is being reshaped.
*
* We backup data by writing it to one spare, or to a
* file which was given on command line.
*
* In each case, we first make sure that storage is available
* for the required backup.
* Then we:
* - request the shape change.
* - fork to handle backup etc.
*/
started:
/* Check that we can hold all the data */
get_dev_size(fd, NULL, &array_size);
if (reshape.new_size < (array_size/512)) {
fprintf(stderr,
Name ": this change will reduce the size of the array.\n"
" use --grow --array-size first to truncate array.\n"
" e.g. mdadm --grow %s --array-size %llu\n",
devname, reshape.new_size/2);
goto release;
}
sra = sysfs_read(fd, 0,
GET_COMPONENT|GET_DEVS|GET_OFFSET|GET_STATE|GET_CHUNK|
GET_CACHE);
if (!sra) {
fprintf(stderr, Name ": %s: Cannot get array details from sysfs\n",
devname);
goto release;
}
/* Decide how many blocks (sectors) for a reshape
* unit. The number we have so far is just a minimum
*/
blocks = reshape.backup_blocks;
if (reshape.before.data_disks ==
reshape.after.data_disks) {
/* Make 'blocks' bigger for better throughput, but
* not so big that we reject it below.
* Try for 16 megabytes
*/
while (blocks * 32 < sra->component_size &&
blocks < 16*1024*2)
blocks *= 2;
} else
fprintf(stderr, Name ": Need to backup %luK of critical "
"section..\n", blocks/2);
if (blocks >= sra->component_size/2) {
fprintf(stderr, Name ": %s: Something wrong"
" - reshape aborted\n",
devname);
goto release;
}
/* Now we need to open all these devices so we can read/write.
*/
nrdisks = max(reshape.before.data_disks,
reshape.after.data_disks) + reshape.parity
+ sra->array.spare_disks;
fdlist = malloc((1+nrdisks) * sizeof(int));
offsets = malloc((1+nrdisks) * sizeof(offsets[0]));
if (!fdlist || !offsets) {
fprintf(stderr, Name ": malloc failed: grow aborted\n");
goto release;
}
odisks = reshape.before.data_disks + reshape.parity;
d = reshape_prepare_fdlist(devname, sra, odisks,
nrdisks, blocks, backup_file,
fdlist, offsets);
if (d < 0) {
goto release;
}
if ((st->ss->manage_reshape == NULL) ||
(st->ss->recover_backup == NULL)) {
if (backup_file == NULL) {
if (reshape.after.data_disks <=
reshape.before.data_disks) {
fprintf(stderr, Name ": %s: Cannot grow - "
"need backup-file\n", devname);
goto release;
} else if (sra->array.spare_disks == 0) {
fprintf(stderr, Name ": %s: Cannot grow - "
"need a spare or backup-file to backup "
"critical section\n", devname);
goto release;
}
} else {
if (!reshape_open_backup_file(backup_file, fd, devname,
(signed)blocks,
fdlist+d, offsets+d,
restart)) {
goto release;
}
d++;
}
}
/* lastly, check that the internal stripe cache is
* large enough, or it won't work.
* It must hold at least 4 stripes of the larger
* chunk size
*/
cache = max(info->array.chunk_size, info->new_chunk);
cache *= 4; /* 4 stripes minimum */
cache /= 512; /* convert to sectors */
disks = min(reshape.before.data_disks, reshape.after.data_disks);
/* make sure there is room for 'blocks' with a bit to spare */
if (cache < 16 + blocks / disks)
cache = 16 + blocks / disks;
cache /= (4096/512); /* Covert from sectors to pages */
if (sra->cache_size < cache)
subarray_set_num(container, sra, "stripe_cache_size",
cache+1);
/* Right, everything seems fine. Let's kick things off.
* If only changing raid_disks, use ioctl, else use
* sysfs.
*/
sync_metadata(st);
sra->new_chunk = info->new_chunk;
if (restart)
sra->reshape_progress = info->reshape_progress;
else {
sra->reshape_progress = 0;
if (reshape.after.data_disks < reshape.before.data_disks)
/* start from the end of the new array */
sra->reshape_progress = (sra->component_size
* reshape.after.data_disks);
}
if (info->array.chunk_size == info->new_chunk &&
reshape.before.layout == reshape.after.layout &&
st->ss->external == 0) {
/* use SET_ARRAY_INFO but only if reshape hasn't started */
ioctl(fd, GET_ARRAY_INFO, &array);
array.raid_disks = reshape.after.data_disks + reshape.parity;
if (!restart &&
ioctl(fd, SET_ARRAY_INFO, &array) != 0) {
int err = errno;
fprintf(stderr,
Name ": Cannot set device shape for %s: %s\n",
devname, strerror(errno));
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
fprintf(stderr,
" Bitmap must be removed before"
" shape can be changed\n");
goto release;
}
} else if (!restart) {
/* set them all just in case some old 'new_*' value
* persists from some earlier problem.
*/
int err = 0;
if (sysfs_set_num(sra, NULL, "chunk_size", info->new_chunk) < 0)
err = errno;
if (!err && sysfs_set_num(sra, NULL, "layout",
reshape.after.layout) < 0)
err = errno;
if (!err && subarray_set_num(container, sra, "raid_disks",
reshape.after.data_disks +
reshape.parity) < 0)
err = errno;
if (err) {
fprintf(stderr, Name ": Cannot set device shape for %s\n",
devname);
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
fprintf(stderr,
" Bitmap must be removed before"
" shape can be changed\n");
goto release;
}
}
err = start_reshape(sra, restart);
if (err) {
fprintf(stderr,
Name ": Cannot %s reshape for %s\n",
restart ? "continue" : "start",
devname);
goto release;
}
if (restart)
sysfs_set_str(sra, NULL, "array_state", "active");
/* Now we just need to kick off the reshape and watch, while
* handling backups of the data...
* This is all done by a forked background process.
*/
switch(forked ? 0 : fork()) {
case -1:
fprintf(stderr, Name ": Cannot run child to monitor reshape: %s\n",
strerror(errno));
abort_reshape(sra);
goto release;
default:
return 0;
case 0:
break;
}
close(fd);
if (check_env("MDADM_GROW_VERIFY"))
fd = open(devname, O_RDONLY | O_DIRECT);
else
fd = -1;
mlockall(MCL_FUTURE);
if (st->ss->external) {
/* metadata handler takes it from here */
done = st->ss->manage_reshape(
fd, sra, &reshape, st, blocks,
fdlist, offsets,
d - odisks, fdlist+odisks,
offsets+odisks);
} else
done = child_monitor(
fd, sra, &reshape, st, blocks,
fdlist, offsets,
d - odisks, fdlist+odisks,
offsets+odisks);
if (backup_file && done)
unlink(backup_file);
if (!done) {
abort_reshape(sra);
goto out;
}
if (!st->ss->external &&
!(reshape.before.data_disks != reshape.after.data_disks
&& info->custom_array_size) &&
info->new_level == reshape.level &&
!forked) {
/* no need to wait for the reshape to finish as
* there is nothing more to do.
*/
exit(0);
}
wait_reshape(sra);
if (st->ss->external) {
/* Re-load the metadata as much could have changed */
int cfd = open_dev(st->container_dev);
if (cfd >= 0) {
ping_monitor(container);
st->ss->free_super(st);
st->ss->load_container(st, cfd, container);
close(cfd);
}
}
/* set new array size if required customer_array_size is used
* by this metadata.
*/
if (reshape.before.data_disks !=
reshape.after.data_disks &&
info->custom_array_size) {
struct mdinfo *info2;
char *subarray = strchr(info->text_version+1, '/')+1;
info2 = st->ss->container_content(st, subarray);
if (info2) {
unsigned long long current_size = 0;
unsigned long long new_size =
info2->custom_array_size/2;
if (sysfs_get_ll(sra,
NULL,
"array_size",
&current_size) == 0 &&
new_size > current_size) {
if (sysfs_set_num(sra, NULL,
"array_size", new_size)
< 0)
dprintf("Error: Cannot"
" set array size");
else
dprintf("Array size "
"changed");
dprintf(" from %llu to %llu.\n",
current_size, new_size);
}
sysfs_free(info2);
}
}
if (info->new_level != reshape.level) {
c = map_num(pers, info->new_level);
if (c) {
err = sysfs_set_str(sra, NULL, "level", c);
if (err)
fprintf(stderr, Name\
": %s: could not set level "
"to %s\n", devname, c);
}
if (info->new_level == 0)
st->update_tail = NULL;
}
out:
if (forked)
return 0;
unfreeze(st);
exit(0);
release:
if (orig_level != UnSet && sra) {
c = map_num(pers, orig_level);
if (c && sysfs_set_str(sra, NULL, "level", c) == 0)
fprintf(stderr, Name ": aborting level change\n");
}
if (!forked)
unfreeze(st);
return 1;
}
int reshape_container(char *container, char *devname,
struct supertype *st,
struct mdinfo *info,
int force,
char *backup_file,
int quiet, int restart)
{
struct mdinfo *cc = NULL;
int rv = restart;
/* component_size is not meaningful for a container,
* so pass '-1' meaning 'no change'
*/
if (!restart &&
reshape_super(st, -1, info->new_level,
info->new_layout, info->new_chunk,
info->array.raid_disks, info->delta_disks,
backup_file, devname, quiet)) {
unfreeze(st);
return 1;
}
sync_metadata(st);
/* ping monitor to be sure that update is on disk
*/
ping_monitor(container);
switch (fork()) {
case -1: /* error */
perror("Cannot fork to complete reshape\n");
unfreeze(st);
return 1;
default: /* parent */
printf(Name ": multi-array reshape continues in background\n");
return 0;
case 0: /* child */
break;
}
while(1) {
/* For each member array with reshape_active,
* we need to perform the reshape.
* We pick the first array that needs reshaping and
* reshape it. reshape_array() will re-read the metadata
* so the next time through a different array should be
* ready for reshape.
* It is possible that the 'different' array will not
* be assembled yet. In that case we simple exit.
* When it is assembled, the mdadm which assembles it
* will take over the reshape.
*/
struct mdinfo *content;
int fd;
struct mdstat_ent *mdstat;
char *adev;
sysfs_free(cc);
cc = st->ss->container_content(st, NULL);
for (content = cc; content ; content = content->next) {
char *subarray;
if (!content->reshape_active)
continue;
subarray = strchr(content->text_version+1, '/')+1;
mdstat = mdstat_by_subdev(subarray,
devname2devnum(container));
if (!mdstat)
continue;
break;
}
if (!content)
break;
fd = open_dev(mdstat->devnum);
if (fd < 0)
break;
adev = map_dev(dev2major(mdstat->devnum),
dev2minor(mdstat->devnum),
0);
if (!adev)
adev = content->text_version;
sysfs_init(content, fd, mdstat->devnum);
rv = reshape_array(container, fd, adev, st,
content, force, NULL,
backup_file, quiet, 1, restart);
close(fd);
restart = 0;
if (rv)
break;
}
if (!rv)
unfreeze(st);
sysfs_free(cc);
exit(0);
}
/*
* We run a child process in the background which performs the following
* steps:
* - wait for resync to reach a certain point
* - suspend io to the following section
* - backup that section
* - allow resync to proceed further
* - resume io
* - discard the backup.
*
* When are combined in slightly different ways in the three cases.
* Grow:
* - suspend/backup/allow/wait/resume/discard
* Shrink:
* - allow/wait/suspend/backup/allow/wait/resume/discard
* same-size:
* - wait/resume/discard/suspend/backup/allow
*
* suspend/backup/allow always come together
* wait/resume/discard do too.
* For the same-size case we have two backups to improve flow.
*
*/
int progress_reshape(struct mdinfo *info, struct reshape *reshape,
unsigned long long backup_point,
unsigned long long wait_point,
unsigned long long *suspend_point,
unsigned long long *reshape_completed)
{
/* This function is called repeatedly by the reshape manager.
* It determines how much progress can safely be made and allows
* that progress.
* - 'info' identifies the array and particularly records in
* ->reshape_progress the metadata's knowledge of progress
* This is a sector offset from the start of the array
* of the next array block to be relocated. This number
* may increase from 0 or decrease from array_size, depending
* on the type of reshape that is happening.
* Note that in contrast, 'sync_completed' is a block count of the
* reshape so far. It gives the distance between the start point
* (head or tail of device) and the next place that data will be
* written. It always increases.
* - 'reshape' is the structure created by analyse_change
* - 'backup_point' shows how much the metadata manager has backed-up
* data. For reshapes with increasing progress, it is the next address
* to be backed up, previous addresses have been backed-up. For
* decreasing progress, it is the earliest address that has been
* backed up - later address are also backed up.
* So addresses between reshape_progress and backup_point are
* backed up providing those are in the 'correct' order.
* - 'wait_point' is an array address. When reshape_completed
* passes this point, progress_reshape should return. It might
* return earlier if it determines that ->reshape_progress needs
* to be updated or further backup is needed.
* - suspend_point is maintained by progress_reshape and the caller
* should not touch it except to initialise to zero.
* It is an array address and it only increases in 2.6.37 and earlier.
* This makes it difficult to handle reducing reshapes with
* external metadata.
* However: it is similar to backup_point in that it records the
* other end of a suspended region from reshape_progress.
* it is moved to extend the region that is safe to backup and/or
* reshape
* - reshape_completed is read from sysfs and returned. The caller
* should copy this into ->reshape_progress when it has reason to
* believe that the metadata knows this, and any backup outside this
* has been erased.
*
* Return value is:
* 1 if more data from backup_point - but only as far as suspend_point,
* should be backed up
* 0 if things are progressing smoothly
* -1 if the reshape is finished because it is all done,
* -2 if the reshape is finished due to an error.
*/
int advancing = (reshape->after.data_disks
>= reshape->before.data_disks);
unsigned long long need_backup; /* All data between start of array and
* here will at some point need to
* be backed up.
*/
unsigned long long read_offset, write_offset;
unsigned long long write_range;
unsigned long long max_progress, target, completed;
unsigned long long array_size = (info->component_size
* reshape->before.data_disks);
int fd;
char buf[20];
/* First, we unsuspend any region that is now known to be safe.
* If suspend_point is on the 'wrong' side of reshape_progress, then
* we don't have or need suspension at the moment. This is true for
* native metadata when we don't need to back-up.
*/
if (advancing) {
if (info->reshape_progress <= *suspend_point)
sysfs_set_num(info, NULL, "suspend_lo",
info->reshape_progress);
} else {
/* Note: this won't work in 2.6.37 and before.
* Something somewhere should make sure we don't need it!
*/
if (info->reshape_progress >= *suspend_point)
sysfs_set_num(info, NULL, "suspend_hi",
info->reshape_progress);
}
/* Now work out how far it is safe to progress.
* If the read_offset for ->reshape_progress is less than
* 'blocks' beyond the write_offset, we can only progress as far
* as a backup.
* Otherwise we can progress until the write_offset for the new location
* reaches (within 'blocks' of) the read_offset at the current location.
* However that region must be suspended unless we are using native
* metadata.
* If we need to suspend more, we limit it to 128M per device, which is
* rather arbitrary and should be some time-based calculation.
*/
read_offset = info->reshape_progress / reshape->before.data_disks;
write_offset = info->reshape_progress / reshape->after.data_disks;
write_range = info->new_chunk/512;
if (reshape->before.data_disks == reshape->after.data_disks)
need_backup = array_size;
else
need_backup = reshape->backup_blocks;
if (advancing) {
if (read_offset < write_offset + write_range)
max_progress = backup_point;
else
max_progress =
read_offset *
reshape->after.data_disks;
} else {
if (read_offset > write_offset - write_range)
/* Can only progress as far as has been backed up,
* which must be suspended */
max_progress = backup_point;
else if (info->reshape_progress <= need_backup)
max_progress = backup_point;
else {
if (info->array.major_version >= 0)
/* Can progress until backup is needed */
max_progress = need_backup;
else {
/* Can progress until metadata update is required */
max_progress =
read_offset *
reshape->after.data_disks;
/* but data must be suspended */
if (max_progress < *suspend_point)
max_progress = *suspend_point;
}
}
}
/* We know it is safe to progress to 'max_progress' providing
* it is suspended or we are using native metadata.
* Consider extending suspend_point 128M per device if it
* is less than 64M per device beyond reshape_progress.
* But always do a multiple of 'blocks'
* FIXME this is too big - it takes to long to complete
* this much.
*/
target = 64*1024*2 * min(reshape->before.data_disks,
reshape->after.data_disks);
target /= reshape->backup_blocks;
if (target < 2)
target = 2;
target *= reshape->backup_blocks;
/* For externally managed metadata we always need to suspend IO to
* the area being reshaped so we regularly push suspend_point forward.
* For native metadata we only need the suspend if we are going to do
* a backup.
*/
if (advancing) {
if ((need_backup > info->reshape_progress
|| info->array.major_version < 0) &&
*suspend_point < info->reshape_progress + target) {
if (need_backup < *suspend_point + 2 * target)
*suspend_point = need_backup;
else if (*suspend_point + 2 * target < array_size)
*suspend_point += 2 * target;
else
*suspend_point = array_size;
sysfs_set_num(info, NULL, "suspend_hi", *suspend_point);
if (max_progress > *suspend_point)
max_progress = *suspend_point;
}
} else {
if (info->array.major_version >= 0) {
/* Only need to suspend when about to backup */
if (info->reshape_progress < need_backup * 2 &&
*suspend_point > 0) {
*suspend_point = 0;
sysfs_set_num(info, NULL, "suspend_lo", 0);
sysfs_set_num(info, NULL, "suspend_hi", need_backup);
}
} else {
/* Need to suspend continually */
if (info->reshape_progress < *suspend_point)
*suspend_point = info->reshape_progress;
if (*suspend_point + target < info->reshape_progress)
/* No need to move suspend region yet */;
else {
if (*suspend_point >= 2 * target)
*suspend_point -= 2 * target;
else
*suspend_point = 0;
sysfs_set_num(info, NULL, "suspend_lo",
*suspend_point);
}
if (max_progress < *suspend_point)
max_progress = *suspend_point;
}
}
/* now set sync_max to allow that progress. sync_max, like
* sync_completed is a count of sectors written per device, so
* we find the difference between max_progress and the start point,
* and divide that by after.data_disks to get a sync_max
* number.
* At the same time we convert wait_point to a similar number
* for comparing against sync_completed.
*/
/* scale down max_progress to per_disk */
max_progress /= reshape->after.data_disks;
/* Round to chunk size as some kernels give an erroneously high number */
max_progress /= info->new_chunk/512;
max_progress *= info->new_chunk/512;
/* And round to old chunk size as the kernel wants that */
max_progress /= info->array.chunk_size/512;
max_progress *= info->array.chunk_size/512;
/* Limit progress to the whole device */
if (max_progress > info->component_size)
max_progress = info->component_size;
wait_point /= reshape->after.data_disks;
if (!advancing) {
/* switch from 'device offset' to 'processed block count' */
max_progress = info->component_size - max_progress;
wait_point = info->component_size - wait_point;
}
sysfs_set_num(info, NULL, "sync_max", max_progress);
/* Now wait. If we have already reached the point that we were
* asked to wait to, don't wait at all, else wait for any change.
* We need to select on 'sync_completed' as that is the place that
* notifications happen, but we are really interested in
* 'reshape_position'
*/
fd = sysfs_get_fd(info, NULL, "sync_completed");
if (fd < 0)
goto check_progress;
if (sysfs_fd_get_ll(fd, &completed) < 0)
goto check_progress;
while (completed < max_progress && completed < wait_point) {
/* Check that sync_action is still 'reshape' to avoid
* waiting forever on a dead array
*/
char action[20];
fd_set rfds;
if (sysfs_get_str(info, NULL, "sync_action",
action, 20) <= 0 ||
strncmp(action, "reshape", 7) != 0)
break;
/* Some kernels reset 'sync_completed' to zero
* before setting 'sync_action' to 'idle'.
* So we need these extra tests.
*/
if (completed == 0 && advancing
&& info->reshape_progress > 0)
break;
if (completed == 0 && !advancing
&& info->reshape_progress < (info->component_size
* reshape->after.data_disks))
break;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
select(fd+1, NULL, NULL, &rfds, NULL);
if (sysfs_fd_get_ll(fd, &completed) < 0)
goto check_progress;
}
/* Some kernels reset 'sync_completed' to zero,
* we need to have real point we are in md
*/
if (completed == 0)
completed = max_progress;
/* some kernels can give an incorrectly high 'completed' number */
completed /= (info->new_chunk/512);
completed *= (info->new_chunk/512);
/* Convert 'completed' back in to a 'progress' number */
completed *= reshape->after.data_disks;
if (!advancing) {
completed = info->component_size * reshape->after.data_disks
- completed;
}
*reshape_completed = completed;
close(fd);
/* We return the need_backup flag. Caller will decide
* how much - a multiple of ->backup_blocks up to *suspend_point
*/
if (advancing)
return need_backup > info->reshape_progress;
else
return need_backup >= info->reshape_progress;
check_progress:
/* if we couldn't read a number from sync_completed, then
* either the reshape did complete, or it aborted.
* We can tell which by checking for 'none' in reshape_position.
* If it did abort, then it might immediately restart if it
* it was just a device failure that leaves us degraded but
* functioning.
*/
strcpy(buf, "hi");
if (sysfs_get_str(info, NULL, "reshape_position", buf, sizeof(buf)) < 0
|| strncmp(buf, "none", 4) != 0) {
/* The abort might only be temporary. Wait up to 10
* seconds for fd to contain a valid number again.
*/
struct timeval tv;
int rv = -2;
tv.tv_sec = 10;
tv.tv_usec = 0;
while (fd >= 0 && rv < 0) {
fd_set rfds;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
if (select(fd+1, NULL, NULL, &rfds, &tv) != 1)
break;
if (sysfs_fd_get_ll(fd, &completed) >= 0)
/* all good again */
rv = 1;
}
if (fd >= 0)
close(fd);
return rv; /* abort */
} else {
/* Maybe racing with array shutdown - check state */
if (fd >= 0)
close(fd);
if (sysfs_get_str(info, NULL, "array_state", buf, sizeof(buf)) < 0
|| strncmp(buf, "inactive", 8) == 0
|| strncmp(buf, "clear",5) == 0)
return -2; /* abort */
return -1; /* complete */
}
}
/* FIXME return status is never checked */
static int grow_backup(struct mdinfo *sra,
unsigned long long offset, /* per device */
unsigned long stripes, /* per device, in old chunks */
int *sources, unsigned long long *offsets,
int disks, int chunk, int level, int layout,
int dests, int *destfd, unsigned long long *destoffsets,
int part, int *degraded,
char *buf)
{
/* Backup 'blocks' sectors at 'offset' on each device of the array,
* to storage 'destfd' (offset 'destoffsets'), after first
* suspending IO. Then allow resync to continue
* over the suspended section.
* Use part 'part' of the backup-super-block.
*/
int odata = disks;
int rv = 0;
int i;
unsigned long long ll;
int new_degraded;
//printf("offset %llu\n", offset);
if (level >= 4)
odata--;
if (level == 6)
odata--;
/* Check that array hasn't become degraded, else we might backup the wrong data */
if (sysfs_get_ll(sra, NULL, "degraded", &ll) < 0)
return -1; /* FIXME this error is ignored */
new_degraded = (int)ll;
if (new_degraded != *degraded) {
/* check each device to ensure it is still working */
struct mdinfo *sd;
for (sd = sra->devs ; sd ; sd = sd->next) {
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (sd->disk.state & (1<<MD_DISK_SYNC)) {
char sbuf[20];
if (sysfs_get_str(sra, sd, "state", sbuf, 20) < 0 ||
strstr(sbuf, "faulty") ||
strstr(sbuf, "in_sync") == NULL) {
/* this device is dead */
sd->disk.state = (1<<MD_DISK_FAULTY);
if (sd->disk.raid_disk >= 0 &&
sources[sd->disk.raid_disk] >= 0) {
close(sources[sd->disk.raid_disk]);
sources[sd->disk.raid_disk] = -1;
}
}
}
}
*degraded = new_degraded;
}
if (part) {
bsb.arraystart2 = __cpu_to_le64(offset * odata);
bsb.length2 = __cpu_to_le64(stripes * (chunk/512) * odata);
} else {
bsb.arraystart = __cpu_to_le64(offset * odata);
bsb.length = __cpu_to_le64(stripes * (chunk/512) * odata);
}
if (part)
bsb.magic[15] = '2';
for (i = 0; i < dests; i++)
if (part)
lseek64(destfd[i], destoffsets[i] + __le64_to_cpu(bsb.devstart2)*512, 0);
else
lseek64(destfd[i], destoffsets[i], 0);
rv = save_stripes(sources, offsets,
disks, chunk, level, layout,
dests, destfd,
offset*512*odata, stripes * chunk * odata,
buf);
if (rv)
return rv;
bsb.mtime = __cpu_to_le64(time(0));
for (i = 0; i < dests; i++) {
bsb.devstart = __cpu_to_le64(destoffsets[i]/512);
bsb.sb_csum = bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum)-((char*)&bsb));
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0)
bsb.sb_csum2 = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum2)-((char*)&bsb));
rv = -1;
if ((unsigned long long)lseek64(destfd[i], destoffsets[i] - 4096, 0)
!= destoffsets[i] - 4096)
break;
if (write(destfd[i], &bsb, 512) != 512)
break;
if (destoffsets[i] > 4096) {
if ((unsigned long long)lseek64(destfd[i], destoffsets[i]+stripes*chunk*odata, 0) !=
destoffsets[i]+stripes*chunk*odata)
break;
if (write(destfd[i], &bsb, 512) != 512)
break;
}
fsync(destfd[i]);
rv = 0;
}
return rv;
}
/* in 2.6.30, the value reported by sync_completed can be
* less that it should be by one stripe.
* This only happens when reshape hits sync_max and pauses.
* So allow wait_backup to either extent sync_max further
* than strictly necessary, or return before the
* sync has got quite as far as we would really like.
* This is what 'blocks2' is for.
* The various caller give appropriate values so that
* every works.
*/
/* FIXME return value is often ignored */
static int forget_backup(
int dests, int *destfd, unsigned long long *destoffsets,
int part)
{
/*
* Erase backup 'part' (which is 0 or 1)
*/
int i;
int rv;
if (part) {
bsb.arraystart2 = __cpu_to_le64(0);
bsb.length2 = __cpu_to_le64(0);
} else {
bsb.arraystart = __cpu_to_le64(0);
bsb.length = __cpu_to_le64(0);
}
bsb.mtime = __cpu_to_le64(time(0));
rv = 0;
for (i = 0; i < dests; i++) {
bsb.devstart = __cpu_to_le64(destoffsets[i]/512);
bsb.sb_csum = bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum)-((char*)&bsb));
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0)
bsb.sb_csum2 = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum2)-((char*)&bsb));
if ((unsigned long long)lseek64(destfd[i], destoffsets[i]-4096, 0) !=
destoffsets[i]-4096)
rv = -1;
if (rv == 0 &&
write(destfd[i], &bsb, 512) != 512)
rv = -1;
fsync(destfd[i]);
}
return rv;
}
static void fail(char *msg)
{
int rv;
rv = (write(2, msg, strlen(msg)) != (int)strlen(msg));
rv |= (write(2, "\n", 1) != 1);
exit(rv ? 1 : 2);
}
static char *abuf, *bbuf;
static unsigned long long abuflen;
static void validate(int afd, int bfd, unsigned long long offset)
{
/* check that the data in the backup against the array.
* This is only used for regression testing and should not
* be used while the array is active
*/
if (afd < 0)
return;
lseek64(bfd, offset - 4096, 0);
if (read(bfd, &bsb2, 512) != 512)
fail("cannot read bsb");
if (bsb2.sb_csum != bsb_csum((char*)&bsb2,
((char*)&bsb2.sb_csum)-((char*)&bsb2)))
fail("first csum bad");
if (memcmp(bsb2.magic, "md_backup_data", 14) != 0)
fail("magic is bad");
if (memcmp(bsb2.magic, "md_backup_data-2", 16) == 0 &&
bsb2.sb_csum2 != bsb_csum((char*)&bsb2,
((char*)&bsb2.sb_csum2)-((char*)&bsb2)))
fail("second csum bad");
if (__le64_to_cpu(bsb2.devstart)*512 != offset)
fail("devstart is wrong");
if (bsb2.length) {
unsigned long long len = __le64_to_cpu(bsb2.length)*512;
if (abuflen < len) {
free(abuf);
free(bbuf);
abuflen = len;
if (posix_memalign((void**)&abuf, 4096, abuflen) ||
posix_memalign((void**)&bbuf, 4096, abuflen)) {
abuflen = 0;
/* just stop validating on mem-alloc failure */
return;
}
}
lseek64(bfd, offset, 0);
if ((unsigned long long)read(bfd, bbuf, len) != len) {
//printf("len %llu\n", len);
fail("read first backup failed");
}
lseek64(afd, __le64_to_cpu(bsb2.arraystart)*512, 0);
if ((unsigned long long)read(afd, abuf, len) != len)
fail("read first from array failed");
if (memcmp(bbuf, abuf, len) != 0) {
#if 0
int i;
printf("offset=%llu len=%llu\n",
(unsigned long long)__le64_to_cpu(bsb2.arraystart)*512, len);
for (i=0; i<len; i++)
if (bbuf[i] != abuf[i]) {
printf("first diff byte %d\n", i);
break;
}
#endif
fail("data1 compare failed");
}
}
if (bsb2.length2) {
unsigned long long len = __le64_to_cpu(bsb2.length2)*512;
if (abuflen < len) {
free(abuf);
free(bbuf);
abuflen = len;
abuf = malloc(abuflen);
bbuf = malloc(abuflen);
}
lseek64(bfd, offset+__le64_to_cpu(bsb2.devstart2)*512, 0);
if ((unsigned long long)read(bfd, bbuf, len) != len)
fail("read second backup failed");
lseek64(afd, __le64_to_cpu(bsb2.arraystart2)*512, 0);
if ((unsigned long long)read(afd, abuf, len) != len)
fail("read second from array failed");
if (memcmp(bbuf, abuf, len) != 0)
fail("data2 compare failed");
}
}
int child_monitor(int afd, struct mdinfo *sra, struct reshape *reshape,
struct supertype *st, unsigned long blocks,
int *fds, unsigned long long *offsets,
int dests, int *destfd, unsigned long long *destoffsets)
{
/* Monitor a reshape where backup is being performed using
* 'native' mechanism - either to a backup file, or
* to some space in a spare.
*/
char *buf;
int degraded = -1;
unsigned long long speed;
unsigned long long suspend_point, array_size;
unsigned long long backup_point, wait_point;
unsigned long long reshape_completed;
int done = 0;
int increasing = reshape->after.data_disks >= reshape->before.data_disks;
int part = 0; /* The next part of the backup area to fill. It may already
* be full, so we need to check */
int level = reshape->level;
int layout = reshape->before.layout;
int data = reshape->before.data_disks;
int disks = reshape->before.data_disks + reshape->parity;
int chunk = sra->array.chunk_size;
struct mdinfo *sd;
unsigned long stripes;
int uuid[4];
/* set up the backup-super-block. This requires the
* uuid from the array.
*/
/* Find a superblock */
for (sd = sra->devs; sd; sd = sd->next) {
char *dn;
int devfd;
int ok;
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
dn = map_dev(sd->disk.major, sd->disk.minor, 1);
devfd = dev_open(dn, O_RDONLY);
if (devfd < 0)
continue;
ok = st->ss->load_super(st, devfd, NULL);
close(devfd);
if (ok == 0)
break;
}
if (!sd) {
fprintf(stderr, Name ": Cannot find a superblock\n");
return 0;
}
memset(&bsb, 0, 512);
memcpy(bsb.magic, "md_backup_data-1", 16);
st->ss->uuid_from_super(st, uuid);
memcpy(bsb.set_uuid, uuid, 16);
bsb.mtime = __cpu_to_le64(time(0));
bsb.devstart2 = blocks;
stripes = blocks / (sra->array.chunk_size/512) /
reshape->before.data_disks;
if (posix_memalign((void**)&buf, 4096, disks * chunk))
/* Don't start the 'reshape' */
return 0;
if (reshape->before.data_disks == reshape->after.data_disks) {
sysfs_get_ll(sra, NULL, "sync_speed_min", &speed);
sysfs_set_num(sra, NULL, "sync_speed_min", 200000);
}
if (increasing) {
array_size = sra->component_size * reshape->after.data_disks;
backup_point = sra->reshape_progress;
suspend_point = 0;
} else {
array_size = sra->component_size * reshape->before.data_disks;
backup_point = reshape->backup_blocks;
suspend_point = array_size;
}
while (!done) {
int rv;
/* Want to return as soon the oldest backup slot can
* be released as that allows us to start backing up
* some more, providing suspend_point has been
* advanced, which it should have.
*/
if (increasing) {
wait_point = array_size;
if (part == 0 && __le64_to_cpu(bsb.length) > 0)
wait_point = (__le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length));
if (part == 1 && __le64_to_cpu(bsb.length2) > 0)
wait_point = (__le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2));
} else {
wait_point = 0;
if (part == 0 && __le64_to_cpu(bsb.length) > 0)
wait_point = __le64_to_cpu(bsb.arraystart);
if (part == 1 && __le64_to_cpu(bsb.length2) > 0)
wait_point = __le64_to_cpu(bsb.arraystart2);
}
rv = progress_reshape(sra, reshape,
backup_point, wait_point,
&suspend_point, &reshape_completed);
/* external metadata would need to ping_monitor here */
sra->reshape_progress = reshape_completed;
/* Clear any backup region that is before 'here' */
if (increasing) {
if (__le64_to_cpu(bsb.length) > 0 &&
reshape_completed >= (__le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length)))
forget_backup(dests, destfd,
destoffsets, 0);
if (__le64_to_cpu(bsb.length2) > 0 &&
reshape_completed >= (__le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2)))
forget_backup(dests, destfd,
destoffsets, 1);
} else {
if (__le64_to_cpu(bsb.length) > 0 &&
reshape_completed <= (__le64_to_cpu(bsb.arraystart)))
forget_backup(dests, destfd,
destoffsets, 0);
if (__le64_to_cpu(bsb.length2) > 0 &&
reshape_completed <= (__le64_to_cpu(bsb.arraystart2)))
forget_backup(dests, destfd,
destoffsets, 1);
}
if (rv < 0) {
if (rv == -1)
done = 1;
break;
}
if (rv == 0 && increasing && !st->ss->external) {
/* No longer need to monitor this reshape */
done = 1;
break;
}
while (rv) {
unsigned long long offset;
unsigned long actual_stripes;
/* Need to backup some data.
* If 'part' is not used and the desired
* backup size is suspended, do a backup,
* then consider the next part.
*/
/* Check that 'part' is unused */
if (part == 0 && __le64_to_cpu(bsb.length) != 0)
break;
if (part == 1 && __le64_to_cpu(bsb.length2) != 0)
break;
offset = backup_point / data;
actual_stripes = stripes;
if (increasing) {
if (offset + actual_stripes * (chunk/512) >
sra->component_size)
actual_stripes = ((sra->component_size - offset)
/ (chunk/512));
if (offset + actual_stripes * (chunk/512) >
suspend_point/data)
break;
} else {
if (offset < actual_stripes * (chunk/512))
actual_stripes = offset / (chunk/512);
offset -= actual_stripes * (chunk/512);
if (offset < suspend_point/data)
break;
}
if (actual_stripes == 0)
break;
grow_backup(sra, offset, actual_stripes,
fds, offsets,
disks, chunk, level, layout,
dests, destfd, destoffsets,
part, &degraded, buf);
validate(afd, destfd[0], destoffsets[0]);
/* record where 'part' is up to */
part = !part;
if (increasing)
backup_point += actual_stripes * (chunk/512) * data;
else
backup_point -= actual_stripes * (chunk/512) * data;
}
}
/* FIXME maybe call progress_reshape one more time instead */
abort_reshape(sra); /* remove any remaining suspension */
if (reshape->before.data_disks == reshape->after.data_disks)
sysfs_set_num(sra, NULL, "sync_speed_min", speed);
free(buf);
return done;
}
/*
* If any spare contains md_back_data-1 which is recent wrt mtime,
* write that data into the array and update the super blocks with
* the new reshape_progress
*/
int Grow_restart(struct supertype *st, struct mdinfo *info, int *fdlist, int cnt,
char *backup_file, int verbose)
{
int i, j;
int old_disks;
unsigned long long *offsets;
unsigned long long nstripe, ostripe;
int ndata, odata;
odata = info->array.raid_disks - info->delta_disks - 1;
if (info->array.level == 6) odata--; /* number of data disks */
ndata = info->array.raid_disks - 1;
if (info->new_level == 6) ndata--;
old_disks = info->array.raid_disks - info->delta_disks;
if (info->delta_disks <= 0)
/* Didn't grow, so the backup file must have
* been used
*/
old_disks = cnt;
for (i=old_disks-(backup_file?1:0); i<cnt; i++) {
struct mdinfo dinfo;
int fd;
int bsbsize;
char *devname, namebuf[20];
unsigned long long lo, hi;
/* This was a spare and may have some saved data on it.
* Load the superblock, find and load the
* backup_super_block.
* If either fail, go on to next device.
* If the backup contains no new info, just return
* else restore data and update all superblocks
*/
if (i == old_disks-1) {
fd = open(backup_file, O_RDONLY);
if (fd<0) {
fprintf(stderr, Name ": backup file %s inaccessible: %s\n",
backup_file, strerror(errno));
continue;
}
devname = backup_file;
} else {
fd = fdlist[i];
if (fd < 0)
continue;
if (st->ss->load_super(st, fd, NULL))
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
st->ss->free_super(st);
if (lseek64(fd,
(dinfo.data_offset + dinfo.component_size - 8) <<9,
0) < 0) {
fprintf(stderr, Name ": Cannot seek on device %d\n", i);
continue; /* Cannot seek */
}
sprintf(namebuf, "device-%d", i);
devname = namebuf;
}
if (read(fd, &bsb, sizeof(bsb)) != sizeof(bsb)) {
if (verbose)
fprintf(stderr, Name ": Cannot read from %s\n", devname);
continue; /* Cannot read */
}
if (memcmp(bsb.magic, "md_backup_data-1", 16) != 0 &&
memcmp(bsb.magic, "md_backup_data-2", 16) != 0) {
if (verbose)
fprintf(stderr, Name ": No backup metadata on %s\n", devname);
continue;
}
if (bsb.sb_csum != bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum)-((char*)&bsb))) {
if (verbose)
fprintf(stderr, Name ": Bad backup-metadata checksum on %s\n", devname);
continue; /* bad checksum */
}
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0 &&
bsb.sb_csum2 != bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum2)-((char*)&bsb))) {
if (verbose)
fprintf(stderr, Name ": Bad backup-metadata checksum2 on %s\n", devname);
continue; /* Bad second checksum */
}
if (memcmp(bsb.set_uuid,info->uuid, 16) != 0) {
if (verbose)
fprintf(stderr, Name ": Wrong uuid on backup-metadata on %s\n", devname);
continue; /* Wrong uuid */
}
/* array utime and backup-mtime should be updated at much the same time, but it seems that
* sometimes they aren't... So allow considerable flexability in matching, and allow
* this test to be overridden by an environment variable.
*/
if (info->array.utime > (int)__le64_to_cpu(bsb.mtime) + 2*60*60 ||
info->array.utime < (int)__le64_to_cpu(bsb.mtime) - 10*60) {
if (check_env("MDADM_GROW_ALLOW_OLD")) {
fprintf(stderr, Name ": accepting backup with timestamp %lu "
"for array with timestamp %lu\n",
(unsigned long)__le64_to_cpu(bsb.mtime),
(unsigned long)info->array.utime);
} else {
if (verbose)
fprintf(stderr, Name ": too-old timestamp on "
"backup-metadata on %s\n", devname);
continue; /* time stamp is too bad */
}
}
if (bsb.magic[15] == '1') {
if (bsb.length == 0)
continue;
if (info->delta_disks >= 0) {
/* reshape_progress is increasing */
if (__le64_to_cpu(bsb.arraystart)
+ __le64_to_cpu(bsb.length)
< info->reshape_progress) {
nonew:
if (verbose)
fprintf(stderr, Name
": backup-metadata found on %s but is not needed\n", devname);
continue; /* No new data here */
}
} else {
/* reshape_progress is decreasing */
if (__le64_to_cpu(bsb.arraystart) >=
info->reshape_progress)
goto nonew; /* No new data here */
}
} else {
if (bsb.length == 0 && bsb.length2 == 0)
continue;
if (info->delta_disks >= 0) {
/* reshape_progress is increasing */
if ((__le64_to_cpu(bsb.arraystart)
+ __le64_to_cpu(bsb.length)
< info->reshape_progress)
&&
(__le64_to_cpu(bsb.arraystart2)
+ __le64_to_cpu(bsb.length2)
< info->reshape_progress))
goto nonew; /* No new data here */
} else {
/* reshape_progress is decreasing */
if (__le64_to_cpu(bsb.arraystart) >=
info->reshape_progress &&
__le64_to_cpu(bsb.arraystart2) >=
info->reshape_progress)
goto nonew; /* No new data here */
}
}
if (lseek64(fd, __le64_to_cpu(bsb.devstart)*512, 0)< 0) {
second_fail:
if (verbose)
fprintf(stderr, Name
": Failed to verify secondary backup-metadata block on %s\n",
devname);
continue; /* Cannot seek */
}
/* There should be a duplicate backup superblock 4k before here */
if (lseek64(fd, -4096, 1) < 0 ||
read(fd, &bsb2, sizeof(bsb2)) != sizeof(bsb2))
goto second_fail; /* Cannot find leading superblock */
if (bsb.magic[15] == '1')
bsbsize = offsetof(struct mdp_backup_super, pad1);
else
bsbsize = offsetof(struct mdp_backup_super, pad);
if (memcmp(&bsb2, &bsb, bsbsize) != 0)
goto second_fail; /* Cannot find leading superblock */
/* Now need the data offsets for all devices. */
offsets = malloc(sizeof(*offsets)*info->array.raid_disks);
for(j=0; j<info->array.raid_disks; j++) {
if (fdlist[j] < 0)
continue;
if (st->ss->load_super(st, fdlist[j], NULL))
/* FIXME should be this be an error */
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
st->ss->free_super(st);
offsets[j] = dinfo.data_offset * 512;
}
printf(Name ": restoring critical section\n");
if (restore_stripes(fdlist, offsets,
info->array.raid_disks,
info->new_chunk,
info->new_level,
info->new_layout,
fd, __le64_to_cpu(bsb.devstart)*512,
__le64_to_cpu(bsb.arraystart)*512,
__le64_to_cpu(bsb.length)*512, NULL)) {
/* didn't succeed, so giveup */
if (verbose)
fprintf(stderr, Name ": Error restoring backup from %s\n",
devname);
return 1;
}
if (bsb.magic[15] == '2' &&
restore_stripes(fdlist, offsets,
info->array.raid_disks,
info->new_chunk,
info->new_level,
info->new_layout,
fd, __le64_to_cpu(bsb.devstart)*512 +
__le64_to_cpu(bsb.devstart2)*512,
__le64_to_cpu(bsb.arraystart2)*512,
__le64_to_cpu(bsb.length2)*512, NULL)) {
/* didn't succeed, so giveup */
if (verbose)
fprintf(stderr, Name ": Error restoring second backup from %s\n",
devname);
return 1;
}
/* Ok, so the data is restored. Let's update those superblocks. */
lo = hi = 0;
if (bsb.length) {
lo = __le64_to_cpu(bsb.arraystart);
hi = lo + __le64_to_cpu(bsb.length);
}
if (bsb.magic[15] == '2' && bsb.length2) {
unsigned long long lo1, hi1;
lo1 = __le64_to_cpu(bsb.arraystart2);
hi1 = lo1 + __le64_to_cpu(bsb.length2);
if (lo == hi) {
lo = lo1;
hi = hi1;
} else if (lo < lo1)
hi = hi1;
else
lo = lo1;
}
if (lo < hi &&
(info->reshape_progress < lo ||
info->reshape_progress > hi))
/* backup does not affect reshape_progress*/ ;
else if (info->delta_disks >= 0) {
info->reshape_progress = __le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length);
if (bsb.magic[15] == '2') {
unsigned long long p2 = __le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2);
if (p2 > info->reshape_progress)
info->reshape_progress = p2;
}
} else {
info->reshape_progress = __le64_to_cpu(bsb.arraystart);
if (bsb.magic[15] == '2') {
unsigned long long p2 = __le64_to_cpu(bsb.arraystart2);
if (p2 < info->reshape_progress)
info->reshape_progress = p2;
}
}
for (j=0; j<info->array.raid_disks; j++) {
if (fdlist[j] < 0) continue;
if (st->ss->load_super(st, fdlist[j], NULL))
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
dinfo.reshape_progress = info->reshape_progress;
st->ss->update_super(st, &dinfo,
"_reshape_progress",
NULL,0, 0, NULL);
st->ss->store_super(st, fdlist[j]);
st->ss->free_super(st);
}
return 0;
}
/* Didn't find any backup data, try to see if any
* was needed.
*/
if (info->delta_disks < 0) {
/* When shrinking, the critical section is at the end.
* So see if we are before the critical section.
*/
unsigned long long first_block;
nstripe = ostripe = 0;
first_block = 0;
while (ostripe >= nstripe) {
ostripe += info->array.chunk_size / 512;
first_block = ostripe * odata;
nstripe = first_block / ndata / (info->new_chunk/512) *
(info->new_chunk/512);
}
if (info->reshape_progress >= first_block)
return 0;
}
if (info->delta_disks > 0) {
/* See if we are beyond the critical section. */
unsigned long long last_block;
nstripe = ostripe = 0;
last_block = 0;
while (nstripe >= ostripe) {
nstripe += info->new_chunk / 512;
last_block = nstripe * ndata;
ostripe = last_block / odata / (info->array.chunk_size/512) *
(info->array.chunk_size/512);
}
if (info->reshape_progress >= last_block)
return 0;
}
/* needed to recover critical section! */
if (verbose)
fprintf(stderr, Name ": Failed to find backup of critical section\n");
return 1;
}
int Grow_continue(int mdfd, struct supertype *st, struct mdinfo *info,
char *backup_file)
{
char buf[40];
char *container = NULL;
int err;
err = sysfs_set_str(info, NULL, "array_state", "readonly");
if (err)
return err;
if (st->ss->external) {
fmt_devname(buf, st->container_dev);
container = buf;
freeze(st);
if (!mdmon_running(st->container_dev))
start_mdmon(st->container_dev);
ping_monitor_by_id(st->container_dev);
if (info->reshape_active == 2) {
int cfd = open_dev(st->container_dev);
if (cfd < 0)
return 1;
st->ss->load_container(st, cfd, container);
close(cfd);
return reshape_container(container, NULL,
st, info, 0, backup_file,
0, 1);
}
}
return reshape_array(container, mdfd, "array", st, info, 1,
NULL, backup_file, 0, 0, 1);
}