mdadm/super-ddf.c

3887 lines
104 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neil@brown.name>
*
* Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
* (July 28 2006). Reused by permission of SNIA.
*/
#define HAVE_STDINT_H 1
#include "mdadm.h"
#include "mdmon.h"
#include "sha1.h"
#include <values.h>
/* a non-official T10 name for creation GUIDs */
static char T10[] = "Linux-MD";
/* DDF timestamps are 1980 based, so we need to add
* second-in-decade-of-seventies to convert to linux timestamps.
* 10 years with 2 leap years.
*/
#define DECADE (3600*24*(365*10+2))
unsigned long crc32(
unsigned long crc,
const unsigned char *buf,
unsigned len);
/* The DDF metadata handling.
* DDF metadata lives at the end of the device.
* The last 512 byte block provides an 'anchor' which is used to locate
* the rest of the metadata which usually lives immediately behind the anchor.
*
* Note:
* - all multibyte numeric fields are bigendian.
* - all strings are space padded.
*
*/
/* Primary Raid Level (PRL) */
#define DDF_RAID0 0x00
#define DDF_RAID1 0x01
#define DDF_RAID3 0x03
#define DDF_RAID4 0x04
#define DDF_RAID5 0x05
#define DDF_RAID1E 0x11
#define DDF_JBOD 0x0f
#define DDF_CONCAT 0x1f
#define DDF_RAID5E 0x15
#define DDF_RAID5EE 0x25
#define DDF_RAID6 0x06
/* Raid Level Qualifier (RLQ) */
#define DDF_RAID0_SIMPLE 0x00
#define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
#define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
#define DDF_RAID3_0 0x00 /* parity in first extent */
#define DDF_RAID3_N 0x01 /* parity in last extent */
#define DDF_RAID4_0 0x00 /* parity in first extent */
#define DDF_RAID4_N 0x01 /* parity in last extent */
/* these apply to raid5e and raid5ee as well */
#define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
#define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
#define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
#define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
#define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
#define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
/* Secondary RAID Level (SRL) */
#define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
#define DDF_2MIRRORED 0x01
#define DDF_2CONCAT 0x02
#define DDF_2SPANNED 0x03 /* This is also weird - be careful */
/* Magic numbers */
#define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
#define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
#define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
#define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
#define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
#define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
#define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
#define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
#define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
#define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
#define DDF_GUID_LEN 24
#define DDF_REVISION_0 "01.00.00"
#define DDF_REVISION_2 "01.02.00"
struct ddf_header {
__u32 magic; /* DDF_HEADER_MAGIC */
__u32 crc;
char guid[DDF_GUID_LEN];
char revision[8]; /* 01.02.00 */
__u32 seq; /* starts at '1' */
__u32 timestamp;
__u8 openflag;
__u8 foreignflag;
__u8 enforcegroups;
__u8 pad0; /* 0xff */
__u8 pad1[12]; /* 12 * 0xff */
/* 64 bytes so far */
__u8 header_ext[32]; /* reserved: fill with 0xff */
__u64 primary_lba;
__u64 secondary_lba;
__u8 type;
__u8 pad2[3]; /* 0xff */
__u32 workspace_len; /* sectors for vendor space -
* at least 32768(sectors) */
__u64 workspace_lba;
__u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
__u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
__u16 max_partitions; /* i.e. max num of configuration
record entries per disk */
__u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
*12/512) */
__u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
__u8 pad3[54]; /* 0xff */
/* 192 bytes so far */
__u32 controller_section_offset;
__u32 controller_section_length;
__u32 phys_section_offset;
__u32 phys_section_length;
__u32 virt_section_offset;
__u32 virt_section_length;
__u32 config_section_offset;
__u32 config_section_length;
__u32 data_section_offset;
__u32 data_section_length;
__u32 bbm_section_offset;
__u32 bbm_section_length;
__u32 diag_space_offset;
__u32 diag_space_length;
__u32 vendor_offset;
__u32 vendor_length;
/* 256 bytes so far */
__u8 pad4[256]; /* 0xff */
};
/* type field */
#define DDF_HEADER_ANCHOR 0x00
#define DDF_HEADER_PRIMARY 0x01
#define DDF_HEADER_SECONDARY 0x02
/* The content of the 'controller section' - global scope */
struct ddf_controller_data {
__u32 magic; /* DDF_CONTROLLER_MAGIC */
__u32 crc;
char guid[DDF_GUID_LEN];
struct controller_type {
__u16 vendor_id;
__u16 device_id;
__u16 sub_vendor_id;
__u16 sub_device_id;
} type;
char product_id[16];
__u8 pad[8]; /* 0xff */
__u8 vendor_data[448];
};
/* The content of phys_section - global scope */
struct phys_disk {
__u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
__u32 crc;
__u16 used_pdes;
__u16 max_pdes;
__u8 pad[52];
struct phys_disk_entry {
char guid[DDF_GUID_LEN];
__u32 refnum;
__u16 type;
__u16 state;
__u64 config_size; /* DDF structures must be after here */
char path[18]; /* another horrible structure really */
__u8 pad[6];
} entries[0];
};
/* phys_disk_entry.type is a bitmap - bigendian remember */
#define DDF_Forced_PD_GUID 1
#define DDF_Active_in_VD 2
#define DDF_Global_Spare 4 /* VD_CONF records are ignored */
#define DDF_Spare 8 /* overrides Global_spare */
#define DDF_Foreign 16
#define DDF_Legacy 32 /* no DDF on this device */
#define DDF_Interface_mask 0xf00
#define DDF_Interface_SCSI 0x100
#define DDF_Interface_SAS 0x200
#define DDF_Interface_SATA 0x300
#define DDF_Interface_FC 0x400
/* phys_disk_entry.state is a bigendian bitmap */
#define DDF_Online 1
#define DDF_Failed 2 /* overrides 1,4,8 */
#define DDF_Rebuilding 4
#define DDF_Transition 8
#define DDF_SMART 16
#define DDF_ReadErrors 32
#define DDF_Missing 64
/* The content of the virt_section global scope */
struct virtual_disk {
__u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
__u32 crc;
__u16 populated_vdes;
__u16 max_vdes;
__u8 pad[52];
struct virtual_entry {
char guid[DDF_GUID_LEN];
__u16 unit;
__u16 pad0; /* 0xffff */
__u16 guid_crc;
__u16 type;
__u8 state;
__u8 init_state;
__u8 pad1[14];
char name[16];
} entries[0];
};
/* virtual_entry.type is a bitmap - bigendian */
#define DDF_Shared 1
#define DDF_Enforce_Groups 2
#define DDF_Unicode 4
#define DDF_Owner_Valid 8
/* virtual_entry.state is a bigendian bitmap */
#define DDF_state_mask 0x7
#define DDF_state_optimal 0x0
#define DDF_state_degraded 0x1
#define DDF_state_deleted 0x2
#define DDF_state_missing 0x3
#define DDF_state_failed 0x4
#define DDF_state_part_optimal 0x5
#define DDF_state_morphing 0x8
#define DDF_state_inconsistent 0x10
/* virtual_entry.init_state is a bigendian bitmap */
#define DDF_initstate_mask 0x03
#define DDF_init_not 0x00
#define DDF_init_quick 0x01 /* initialisation is progress.
* i.e. 'state_inconsistent' */
#define DDF_init_full 0x02
#define DDF_access_mask 0xc0
#define DDF_access_rw 0x00
#define DDF_access_ro 0x80
#define DDF_access_blocked 0xc0
/* The content of the config_section - local scope
* It has multiple records each config_record_len sectors
* They can be vd_config or spare_assign
*/
struct vd_config {
__u32 magic; /* DDF_VD_CONF_MAGIC */
__u32 crc;
char guid[DDF_GUID_LEN];
__u32 timestamp;
__u32 seqnum;
__u8 pad0[24];
__u16 prim_elmnt_count;
__u8 chunk_shift; /* 0 == 512, 1==1024 etc */
__u8 prl;
__u8 rlq;
__u8 sec_elmnt_count;
__u8 sec_elmnt_seq;
__u8 srl;
__u64 blocks; /* blocks per component could be different
* on different component devices...(only
* for concat I hope) */
__u64 array_blocks; /* blocks in array */
__u8 pad1[8];
__u32 spare_refs[8];
__u8 cache_pol[8];
__u8 bg_rate;
__u8 pad2[3];
__u8 pad3[52];
__u8 pad4[192];
__u8 v0[32]; /* reserved- 0xff */
__u8 v1[32]; /* reserved- 0xff */
__u8 v2[16]; /* reserved- 0xff */
__u8 v3[16]; /* reserved- 0xff */
__u8 vendor[32];
__u32 phys_refnum[0]; /* refnum of each disk in sequence */
/*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
bvd are always the same size */
};
/* vd_config.cache_pol[7] is a bitmap */
#define DDF_cache_writeback 1 /* else writethrough */
#define DDF_cache_wadaptive 2 /* only applies if writeback */
#define DDF_cache_readahead 4
#define DDF_cache_radaptive 8 /* only if doing read-ahead */
#define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
#define DDF_cache_wallowed 32 /* enable write caching */
#define DDF_cache_rallowed 64 /* enable read caching */
struct spare_assign {
__u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
__u32 crc;
__u32 timestamp;
__u8 reserved[7];
__u8 type;
__u16 populated; /* SAEs used */
__u16 max; /* max SAEs */
__u8 pad[8];
struct spare_assign_entry {
char guid[DDF_GUID_LEN];
__u16 secondary_element;
__u8 pad[6];
} spare_ents[0];
};
/* spare_assign.type is a bitmap */
#define DDF_spare_dedicated 0x1 /* else global */
#define DDF_spare_revertible 0x2 /* else committable */
#define DDF_spare_active 0x4 /* else not active */
#define DDF_spare_affinity 0x8 /* enclosure affinity */
/* The data_section contents - local scope */
struct disk_data {
__u32 magic; /* DDF_PHYS_DATA_MAGIC */
__u32 crc;
char guid[DDF_GUID_LEN];
__u32 refnum; /* crc of some magic drive data ... */
__u8 forced_ref; /* set when above was not result of magic */
__u8 forced_guid; /* set if guid was forced rather than magic */
__u8 vendor[32];
__u8 pad[442];
};
/* bbm_section content */
struct bad_block_log {
__u32 magic;
__u32 crc;
__u16 entry_count;
__u32 spare_count;
__u8 pad[10];
__u64 first_spare;
struct mapped_block {
__u64 defective_start;
__u32 replacement_start;
__u16 remap_count;
__u8 pad[2];
} entries[0];
};
/* Struct for internally holding ddf structures */
/* The DDF structure stored on each device is potentially
* quite different, as some data is global and some is local.
* The global data is:
* - ddf header
* - controller_data
* - Physical disk records
* - Virtual disk records
* The local data is:
* - Configuration records
* - Physical Disk data section
* ( and Bad block and vendor which I don't care about yet).
*
* The local data is parsed into separate lists as it is read
* and reconstructed for writing. This means that we only need
* to make config changes once and they are automatically
* propagated to all devices.
* Note that the ddf_super has space of the conf and disk data
* for this disk and also for a list of all such data.
* The list is only used for the superblock that is being
* built in Create or Assemble to describe the whole array.
*/
struct ddf_super {
struct ddf_header anchor, primary, secondary;
struct ddf_controller_data controller;
struct ddf_header *active;
struct phys_disk *phys;
struct virtual_disk *virt;
int pdsize, vdsize;
unsigned int max_part, mppe, conf_rec_len;
int currentdev;
int updates_pending;
struct vcl {
union {
char space[512];
struct {
struct vcl *next;
__u64 *lba_offset; /* location in 'conf' of
* the lba table */
unsigned int vcnum; /* index into ->virt */
__u64 *block_sizes; /* NULL if all the same */
};
};
struct vd_config conf;
} *conflist, *currentconf;
struct dl {
union {
char space[512];
struct {
struct dl *next;
int major, minor;
char *devname;
int fd;
unsigned long long size; /* sectors */
int pdnum; /* index in ->phys */
struct spare_assign *spare;
void *mdupdate; /* hold metadata update */
/* These fields used by auto-layout */
int raiddisk; /* slot to fill in autolayout */
__u64 esize;
};
};
struct disk_data disk;
struct vcl *vlist[0]; /* max_part in size */
} *dlist, *add_list;
};
#ifndef offsetof
#define offsetof(t,f) ((size_t)&(((t*)0)->f))
#endif
static unsigned int calc_crc(void *buf, int len)
{
/* crcs are always at the same place as in the ddf_header */
struct ddf_header *ddf = buf;
__u32 oldcrc = ddf->crc;
__u32 newcrc;
ddf->crc = 0xffffffff;
newcrc = crc32(0, buf, len);
ddf->crc = oldcrc;
/* The crc is store (like everything) bigendian, so convert
* here for simplicity
*/
return __cpu_to_be32(newcrc);
}
static int load_ddf_header(int fd, unsigned long long lba,
unsigned long long size,
int type,
struct ddf_header *hdr, struct ddf_header *anchor)
{
/* read a ddf header (primary or secondary) from fd/lba
* and check that it is consistent with anchor
* Need to check:
* magic, crc, guid, rev, and LBA's header_type, and
* everything after header_type must be the same
*/
if (lba >= size-1)
return 0;
if (lseek64(fd, lba<<9, 0) < 0)
return 0;
if (read(fd, hdr, 512) != 512)
return 0;
if (hdr->magic != DDF_HEADER_MAGIC)
return 0;
if (calc_crc(hdr, 512) != hdr->crc)
return 0;
if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
memcmp(anchor->revision, hdr->revision, 8) != 0 ||
anchor->primary_lba != hdr->primary_lba ||
anchor->secondary_lba != hdr->secondary_lba ||
hdr->type != type ||
memcmp(anchor->pad2, hdr->pad2, 512 -
offsetof(struct ddf_header, pad2)) != 0)
return 0;
/* Looks good enough to me... */
return 1;
}
static void *load_section(int fd, struct ddf_super *super, void *buf,
__u32 offset_be, __u32 len_be, int check)
{
unsigned long long offset = __be32_to_cpu(offset_be);
unsigned long long len = __be32_to_cpu(len_be);
int dofree = (buf == NULL);
if (check)
if (len != 2 && len != 8 && len != 32
&& len != 128 && len != 512)
return NULL;
if (len > 1024)
return NULL;
if (buf) {
/* All pre-allocated sections are a single block */
if (len != 1)
return NULL;
} else if (posix_memalign(&buf, 512, len<<9) != 0)
buf = NULL;
if (!buf)
return NULL;
if (super->active->type == 1)
offset += __be64_to_cpu(super->active->primary_lba);
else
offset += __be64_to_cpu(super->active->secondary_lba);
if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
if (dofree)
free(buf);
return NULL;
}
if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
if (dofree)
free(buf);
return NULL;
}
return buf;
}
static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
{
unsigned long long dsize;
get_dev_size(fd, NULL, &dsize);
if (lseek64(fd, dsize-512, 0) < 0) {
if (devname)
fprintf(stderr,
Name": Cannot seek to anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (read(fd, &super->anchor, 512) != 512) {
if (devname)
fprintf(stderr,
Name ": Cannot read anchor block on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (super->anchor.magic != DDF_HEADER_MAGIC) {
if (devname)
fprintf(stderr, Name ": no DDF anchor found on %s\n",
devname);
return 2;
}
if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
if (devname)
fprintf(stderr, Name ": bad CRC on anchor on %s\n",
devname);
return 2;
}
if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
if (devname)
fprintf(stderr, Name ": can only support super revision"
" %.8s and earlier, not %.8s on %s\n",
DDF_REVISION_2, super->anchor.revision,devname);
return 2;
}
if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
dsize >> 9, 1,
&super->primary, &super->anchor) == 0) {
if (devname)
fprintf(stderr,
Name ": Failed to load primary DDF header "
"on %s\n", devname);
return 2;
}
super->active = &super->primary;
if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
dsize >> 9, 2,
&super->secondary, &super->anchor)) {
if ((__be32_to_cpu(super->primary.seq)
< __be32_to_cpu(super->secondary.seq) &&
!super->secondary.openflag)
|| (__be32_to_cpu(super->primary.seq)
== __be32_to_cpu(super->secondary.seq) &&
super->primary.openflag && !super->secondary.openflag)
)
super->active = &super->secondary;
}
return 0;
}
static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
{
void *ok;
ok = load_section(fd, super, &super->controller,
super->active->controller_section_offset,
super->active->controller_section_length,
0);
super->phys = load_section(fd, super, NULL,
super->active->phys_section_offset,
super->active->phys_section_length,
1);
super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
super->virt = load_section(fd, super, NULL,
super->active->virt_section_offset,
super->active->virt_section_length,
1);
super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
if (!ok ||
!super->phys ||
!super->virt) {
free(super->phys);
free(super->virt);
super->phys = NULL;
super->virt = NULL;
return 2;
}
super->conflist = NULL;
super->dlist = NULL;
super->max_part = __be16_to_cpu(super->active->max_partitions);
super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
return 0;
}
static int load_ddf_local(int fd, struct ddf_super *super,
char *devname, int keep)
{
struct dl *dl;
struct stat stb;
char *conf;
unsigned int i;
unsigned int confsec;
int vnum;
unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
unsigned long long dsize;
/* First the local disk info */
if (posix_memalign((void**)&dl, 512,
sizeof(*dl) +
(super->max_part) * sizeof(dl->vlist[0])) != 0) {
fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
__func__);
return 1;
}
load_section(fd, super, &dl->disk,
super->active->data_section_offset,
super->active->data_section_length,
0);
dl->devname = devname ? strdup(devname) : NULL;
fstat(fd, &stb);
dl->major = major(stb.st_rdev);
dl->minor = minor(stb.st_rdev);
dl->next = super->dlist;
dl->fd = keep ? fd : -1;
dl->size = 0;
if (get_dev_size(fd, devname, &dsize))
dl->size = dsize >> 9;
dl->spare = NULL;
for (i = 0 ; i < super->max_part ; i++)
dl->vlist[i] = NULL;
super->dlist = dl;
dl->pdnum = -1;
for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
if (memcmp(super->phys->entries[i].guid,
dl->disk.guid, DDF_GUID_LEN) == 0)
dl->pdnum = i;
/* Now the config list. */
/* 'conf' is an array of config entries, some of which are
* probably invalid. Those which are good need to be copied into
* the conflist
*/
conf = load_section(fd, super, NULL,
super->active->config_section_offset,
super->active->config_section_length,
0);
vnum = 0;
for (confsec = 0;
confsec < __be32_to_cpu(super->active->config_section_length);
confsec += super->conf_rec_len) {
struct vd_config *vd =
(struct vd_config *)((char*)conf + confsec*512);
struct vcl *vcl;
if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
if (dl->spare)
continue;
if (posix_memalign((void**)&dl->spare, 512,
super->conf_rec_len*512) != 0) {
fprintf(stderr, Name
": %s could not allocate spare info buf\n",
__func__);
return 1;
}
memcpy(dl->spare, vd, super->conf_rec_len*512);
continue;
}
if (vd->magic != DDF_VD_CONF_MAGIC)
continue;
for (vcl = super->conflist; vcl; vcl = vcl->next) {
if (memcmp(vcl->conf.guid,
vd->guid, DDF_GUID_LEN) == 0)
break;
}
if (vcl) {
dl->vlist[vnum++] = vcl;
if (__be32_to_cpu(vd->seqnum) <=
__be32_to_cpu(vcl->conf.seqnum))
continue;
} else {
if (posix_memalign((void**)&vcl, 512,
(super->conf_rec_len*512 +
offsetof(struct vcl, conf))) != 0) {
fprintf(stderr, Name
": %s could not allocate vcl buf\n",
__func__);
return 1;
}
vcl->next = super->conflist;
vcl->block_sizes = NULL; /* FIXME not for CONCAT */
super->conflist = vcl;
dl->vlist[vnum++] = vcl;
}
memcpy(&vcl->conf, vd, super->conf_rec_len*512);
vcl->lba_offset = (__u64*)
&vcl->conf.phys_refnum[super->mppe];
for (i=0; i < max_virt_disks ; i++)
if (memcmp(super->virt->entries[i].guid,
vcl->conf.guid, DDF_GUID_LEN)==0)
break;
if (i < max_virt_disks)
vcl->vcnum = i;
}
free(conf);
return 0;
}
#ifndef MDASSEMBLE
static int load_super_ddf_all(struct supertype *st, int fd,
void **sbp, char *devname);
#endif
static void free_super_ddf(struct supertype *st);
static int load_super_ddf(struct supertype *st, int fd,
char *devname)
{
unsigned long long dsize;
struct ddf_super *super;
int rv;
if (get_dev_size(fd, devname, &dsize) == 0)
return 1;
if (test_partition(fd))
/* DDF is not allowed on partitions */
return 1;
/* 32M is a lower bound */
if (dsize <= 32*1024*1024) {
if (devname)
fprintf(stderr,
Name ": %s is too small for ddf: "
"size is %llu sectors.\n",
devname, dsize>>9);
return 1;
}
if (dsize & 511) {
if (devname)
fprintf(stderr,
Name ": %s is an odd size for ddf: "
"size is %llu bytes.\n",
devname, dsize);
return 1;
}
free_super_ddf(st);
if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
fprintf(stderr, Name ": malloc of %zu failed.\n",
sizeof(*super));
return 1;
}
memset(super, 0, sizeof(*super));
rv = load_ddf_headers(fd, super, devname);
if (rv) {
free(super);
return rv;
}
/* Have valid headers and have chosen the best. Let's read in the rest*/
rv = load_ddf_global(fd, super, devname);
if (rv) {
if (devname)
fprintf(stderr,
Name ": Failed to load all information "
"sections on %s\n", devname);
free(super);
return rv;
}
rv = load_ddf_local(fd, super, devname, 0);
if (rv) {
if (devname)
fprintf(stderr,
Name ": Failed to load all information "
"sections on %s\n", devname);
free(super);
return rv;
}
/* Should possibly check the sections .... */
st->sb = super;
if (st->ss == NULL) {
st->ss = &super_ddf;
st->minor_version = 0;
st->max_devs = 512;
}
return 0;
}
static void free_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
if (ddf == NULL)
return;
free(ddf->phys);
free(ddf->virt);
while (ddf->conflist) {
struct vcl *v = ddf->conflist;
ddf->conflist = v->next;
if (v->block_sizes)
free(v->block_sizes);
free(v);
}
while (ddf->dlist) {
struct dl *d = ddf->dlist;
ddf->dlist = d->next;
if (d->fd >= 0)
close(d->fd);
if (d->spare)
free(d->spare);
free(d);
}
while (ddf->add_list) {
struct dl *d = ddf->add_list;
ddf->add_list = d->next;
if (d->fd >= 0)
close(d->fd);
if (d->spare)
free(d->spare);
free(d);
}
free(ddf);
st->sb = NULL;
}
static struct supertype *match_metadata_desc_ddf(char *arg)
{
/* 'ddf' only support containers */
struct supertype *st;
if (strcmp(arg, "ddf") != 0 &&
strcmp(arg, "default") != 0
)
return NULL;
st = malloc(sizeof(*st));
memset(st, 0, sizeof(*st));
st->container_dev = NoMdDev;
st->ss = &super_ddf;
st->max_devs = 512;
st->minor_version = 0;
st->sb = NULL;
return st;
}
#ifndef MDASSEMBLE
static mapping_t ddf_state[] = {
{ "Optimal", 0},
{ "Degraded", 1},
{ "Deleted", 2},
{ "Missing", 3},
{ "Failed", 4},
{ "Partially Optimal", 5},
{ "-reserved-", 6},
{ "-reserved-", 7},
{ NULL, 0}
};
static mapping_t ddf_init_state[] = {
{ "Not Initialised", 0},
{ "QuickInit in Progress", 1},
{ "Fully Initialised", 2},
{ "*UNKNOWN*", 3},
{ NULL, 0}
};
static mapping_t ddf_access[] = {
{ "Read/Write", 0},
{ "Reserved", 1},
{ "Read Only", 2},
{ "Blocked (no access)", 3},
{ NULL ,0}
};
static mapping_t ddf_level[] = {
{ "RAID0", DDF_RAID0},
{ "RAID1", DDF_RAID1},
{ "RAID3", DDF_RAID3},
{ "RAID4", DDF_RAID4},
{ "RAID5", DDF_RAID5},
{ "RAID1E",DDF_RAID1E},
{ "JBOD", DDF_JBOD},
{ "CONCAT",DDF_CONCAT},
{ "RAID5E",DDF_RAID5E},
{ "RAID5EE",DDF_RAID5EE},
{ "RAID6", DDF_RAID6},
{ NULL, 0}
};
static mapping_t ddf_sec_level[] = {
{ "Striped", DDF_2STRIPED},
{ "Mirrored", DDF_2MIRRORED},
{ "Concat", DDF_2CONCAT},
{ "Spanned", DDF_2SPANNED},
{ NULL, 0}
};
#endif
struct num_mapping {
int num1, num2;
};
static struct num_mapping ddf_level_num[] = {
{ DDF_RAID0, 0 },
{ DDF_RAID1, 1 },
{ DDF_RAID3, LEVEL_UNSUPPORTED },
{ DDF_RAID4, 4 },
{ DDF_RAID5, 5 },
{ DDF_RAID1E, LEVEL_UNSUPPORTED },
{ DDF_JBOD, LEVEL_UNSUPPORTED },
{ DDF_CONCAT, LEVEL_LINEAR },
{ DDF_RAID5E, LEVEL_UNSUPPORTED },
{ DDF_RAID5EE, LEVEL_UNSUPPORTED },
{ DDF_RAID6, 6},
{ MAXINT, MAXINT }
};
static int map_num1(struct num_mapping *map, int num)
{
int i;
for (i=0 ; map[i].num1 != MAXINT; i++)
if (map[i].num1 == num)
break;
return map[i].num2;
}
static int all_ff(char *guid)
{
int i;
for (i = 0; i < DDF_GUID_LEN; i++)
if (guid[i] != (char)0xff)
return 0;
return 1;
}
#ifndef MDASSEMBLE
static void print_guid(char *guid, int tstamp)
{
/* A GUIDs are part (or all) ASCII and part binary.
* They tend to be space padded.
* We print the GUID in HEX, then in parentheses add
* any initial ASCII sequence, and a possible
* time stamp from bytes 16-19
*/
int l = DDF_GUID_LEN;
int i;
for (i=0 ; i<DDF_GUID_LEN ; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02X", guid[i]&255);
}
printf("\n (");
while (l && guid[l-1] == ' ')
l--;
for (i=0 ; i<l ; i++) {
if (guid[i] >= 0x20 && guid[i] < 0x7f)
fputc(guid[i], stdout);
else
break;
}
if (tstamp) {
time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
char tbuf[100];
struct tm *tm;
tm = localtime(&then);
strftime(tbuf, 100, " %D %T",tm);
fputs(tbuf, stdout);
}
printf(")");
}
static void examine_vd(int n, struct ddf_super *sb, char *guid)
{
int crl = sb->conf_rec_len;
struct vcl *vcl;
for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
unsigned int i;
struct vd_config *vc = &vcl->conf;
if (calc_crc(vc, crl*512) != vc->crc)
continue;
if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
continue;
/* Ok, we know about this VD, let's give more details */
printf(" Raid Devices[%d] : %d (", n,
__be16_to_cpu(vc->prim_elmnt_count));
for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
int j;
int cnt = __be16_to_cpu(sb->phys->used_pdes);
for (j=0; j<cnt; j++)
if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
break;
if (i) printf(" ");
if (j < cnt)
printf("%d", j);
else
printf("--");
}
printf(")\n");
if (vc->chunk_shift != 255)
printf(" Chunk Size[%d] : %d sectors\n", n,
1 << vc->chunk_shift);
printf(" Raid Level[%d] : %s\n", n,
map_num(ddf_level, vc->prl)?:"-unknown-");
if (vc->sec_elmnt_count != 1) {
printf(" Secondary Position[%d] : %d of %d\n", n,
vc->sec_elmnt_seq, vc->sec_elmnt_count);
printf(" Secondary Level[%d] : %s\n", n,
map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
}
printf(" Device Size[%d] : %llu\n", n,
(unsigned long long)__be64_to_cpu(vc->blocks)/2);
printf(" Array Size[%d] : %llu\n", n,
(unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
}
}
static void examine_vds(struct ddf_super *sb)
{
int cnt = __be16_to_cpu(sb->virt->populated_vdes);
int i;
printf(" Virtual Disks : %d\n", cnt);
for (i=0; i<cnt; i++) {
struct virtual_entry *ve = &sb->virt->entries[i];
printf("\n");
printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
printf("\n");
printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
printf(" state[%d] : %s, %s%s\n", i,
map_num(ddf_state, ve->state & 7),
(ve->state & 8) ? "Morphing, ": "",
(ve->state & 16)? "Not Consistent" : "Consistent");
printf(" init state[%d] : %s\n", i,
map_num(ddf_init_state, ve->init_state&3));
printf(" access[%d] : %s\n", i,
map_num(ddf_access, (ve->init_state>>6) & 3));
printf(" Name[%d] : %.16s\n", i, ve->name);
examine_vd(i, sb, ve->guid);
}
if (cnt) printf("\n");
}
static void examine_pds(struct ddf_super *sb)
{
int cnt = __be16_to_cpu(sb->phys->used_pdes);
int i;
struct dl *dl;
printf(" Physical Disks : %d\n", cnt);
printf(" Number RefNo Size Device Type/State\n");
for (i=0 ; i<cnt ; i++) {
struct phys_disk_entry *pd = &sb->phys->entries[i];
int type = __be16_to_cpu(pd->type);
int state = __be16_to_cpu(pd->state);
//printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
//printf("\n");
printf(" %3d %08x ", i,
__be32_to_cpu(pd->refnum));
printf("%8lluK ",
(unsigned long long)__be64_to_cpu(pd->config_size)>>1);
for (dl = sb->dlist; dl ; dl = dl->next) {
if (dl->disk.refnum == pd->refnum) {
char *dv = map_dev(dl->major, dl->minor, 0);
if (dv) {
printf("%-15s", dv);
break;
}
}
}
if (!dl)
printf("%15s","");
printf(" %s%s%s%s%s",
(type&2) ? "active":"",
(type&4) ? "Global-Spare":"",
(type&8) ? "spare" : "",
(type&16)? ", foreign" : "",
(type&32)? "pass-through" : "");
if (state & DDF_Failed)
/* This over-rides these three */
state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
printf("/%s%s%s%s%s%s%s",
(state&1)? "Online": "Offline",
(state&2)? ", Failed": "",
(state&4)? ", Rebuilding": "",
(state&8)? ", in-transition": "",
(state&16)? ", SMART-errors": "",
(state&32)? ", Unrecovered-Read-Errors": "",
(state&64)? ", Missing" : "");
printf("\n");
}
}
static void examine_super_ddf(struct supertype *st, char *homehost)
{
struct ddf_super *sb = st->sb;
printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
printf(" Version : %.8s\n", sb->anchor.revision);
printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
printf("\n");
printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
printf("\n");
printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
?"yes" : "no");
examine_vds(sb);
examine_pds(sb);
}
static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
static void brief_examine_super_ddf(struct supertype *st, int verbose)
{
/* We just write a generic DDF ARRAY entry
*/
struct mdinfo info;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
}
static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
{
/* We just write a generic DDF ARRAY entry
*/
struct ddf_super *ddf = st->sb;
struct mdinfo info;
unsigned int i;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
struct virtual_entry *ve = &ddf->virt->entries[i];
struct vcl vcl;
char nbuf1[64];
if (all_ff(ve->guid))
continue;
memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
ddf->currentconf =&vcl;
uuid_from_super_ddf(st, info.uuid);
fname_from_uuid(st, &info, nbuf1, ':');
printf("ARRAY container=%s member=%d UUID=%s\n",
nbuf+5, i, nbuf1+5);
}
}
static void export_examine_super_ddf(struct supertype *st)
{
struct mdinfo info;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf, ':');
printf("MD_METADATA=ddf\n");
printf("MD_LEVEL=container\n");
printf("MD_UUID=%s\n", nbuf+5);
}
static void detail_super_ddf(struct supertype *st, char *homehost)
{
/* FIXME later
* Could print DDF GUID
* Need to find which array
* If whole, briefly list all arrays
* If one, give name
*/
}
static void brief_detail_super_ddf(struct supertype *st)
{
/* FIXME I really need to know which array we are detailing.
* Can that be stored in ddf_super??
*/
// struct ddf_super *ddf = st->sb;
struct mdinfo info;
char nbuf[64];
getinfo_super_ddf(st, &info, NULL);
fname_from_uuid(st, &info, nbuf,':');
printf(" UUID=%s", nbuf + 5);
}
#endif
static int match_home_ddf(struct supertype *st, char *homehost)
{
/* It matches 'this' host if the controller is a
* Linux-MD controller with vendor_data matching
* the hostname
*/
struct ddf_super *ddf = st->sb;
unsigned int len;
if (!homehost)
return 0;
len = strlen(homehost);
return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
len < sizeof(ddf->controller.vendor_data) &&
memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
ddf->controller.vendor_data[len] == 0);
}
#ifndef MDASSEMBLE
static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
{
struct vcl *v;
for (v = ddf->conflist; v; v = v->next)
if (inst == v->vcnum)
return &v->conf;
return NULL;
}
#endif
static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
{
/* Find the entry in phys_disk which has the given refnum
* and return it's index
*/
unsigned int i;
for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
if (ddf->phys->entries[i].refnum == phys_refnum)
return i;
return -1;
}
static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
{
/* The uuid returned here is used for:
* uuid to put into bitmap file (Create, Grow)
* uuid for backup header when saving critical section (Grow)
* comparing uuids when re-adding a device into an array
* In these cases the uuid required is that of the data-array,
* not the device-set.
* uuid to recognise same set when adding a missing device back
* to an array. This is a uuid for the device-set.
*
* For each of these we can make do with a truncated
* or hashed uuid rather than the original, as long as
* everyone agrees.
* In the case of SVD we assume the BVD is of interest,
* though that might be the case if a bitmap were made for
* a mirrored SVD - worry about that later.
* So we need to find the VD configuration record for the
* relevant BVD and extract the GUID and Secondary_Element_Seq.
* The first 16 bytes of the sha1 of these is used.
*/
struct ddf_super *ddf = st->sb;
struct vcl *vcl = ddf->currentconf;
char *guid;
char buf[20];
struct sha1_ctx ctx;
if (vcl)
guid = vcl->conf.guid;
else
guid = ddf->anchor.guid;
sha1_init_ctx(&ctx);
sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
sha1_finish_ctx(&ctx, buf);
memcpy(uuid, buf, 4*4);
}
static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
{
struct ddf_super *ddf = st->sb;
int map_disks = info->array.raid_disks;
if (ddf->currentconf) {
getinfo_super_ddf_bvd(st, info, map);
return;
}
memset(info, 0, sizeof(*info));
info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
info->array.level = LEVEL_CONTAINER;
info->array.layout = 0;
info->array.md_minor = -1;
info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
(ddf->anchor.guid+16));
info->array.utime = 0;
info->array.chunk_size = 0;
info->container_enough = 1;
info->disk.major = 0;
info->disk.minor = 0;
if (ddf->dlist) {
info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
info->data_offset = __be64_to_cpu(ddf->phys->
entries[info->disk.raid_disk].
config_size);
info->component_size = ddf->dlist->size - info->data_offset;
} else {
info->disk.number = -1;
info->disk.raid_disk = -1;
// info->disk.raid_disk = find refnum in the table and use index;
}
info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
info->recovery_start = MaxSector;
info->reshape_active = 0;
info->name[0] = 0;
info->array.major_version = -1;
info->array.minor_version = -2;
strcpy(info->text_version, "ddf");
info->safe_mode_delay = 0;
uuid_from_super_ddf(st, info->uuid);
if (map) {
int i;
for (i = 0 ; i < map_disks; i++) {
if (i < info->array.raid_disks &&
(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
!(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
map[i] = 1;
else
map[i] = 0;
}
}
}
static int rlq_to_layout(int rlq, int prl, int raiddisks);
static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
{
struct ddf_super *ddf = st->sb;
struct vcl *vc = ddf->currentconf;
int cd = ddf->currentdev;
int j;
struct dl *dl;
int map_disks = info->array.raid_disks;
memset(info, 0, sizeof(*info));
/* FIXME this returns BVD info - what if we want SVD ?? */
info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
info->array.level = map_num1(ddf_level_num, vc->conf.prl);
info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
info->array.raid_disks);
info->array.md_minor = -1;
info->array.ctime = DECADE +
__be32_to_cpu(*(__u32*)(vc->conf.guid+16));
info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
info->array.chunk_size = 512 << vc->conf.chunk_shift;
info->custom_array_size = 0;
if (cd >= 0 && (unsigned)cd < ddf->mppe) {
info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
if (vc->block_sizes)
info->component_size = vc->block_sizes[cd];
else
info->component_size = __be64_to_cpu(vc->conf.blocks);
}
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->raiddisk == ddf->currentdev)
break;
info->disk.major = 0;
info->disk.minor = 0;
info->disk.state = 0;
if (dl) {
info->disk.major = dl->major;
info->disk.minor = dl->minor;
info->disk.raid_disk = dl->raiddisk;
info->disk.number = dl->pdnum;
info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
}
info->container_member = ddf->currentconf->vcnum;
info->recovery_start = MaxSector;
info->resync_start = 0;
info->reshape_active = 0;
if (!(ddf->virt->entries[info->container_member].state
& DDF_state_inconsistent) &&
(ddf->virt->entries[info->container_member].init_state
& DDF_initstate_mask)
== DDF_init_full)
info->resync_start = MaxSector;
uuid_from_super_ddf(st, info->uuid);
info->array.major_version = -1;
info->array.minor_version = -2;
sprintf(info->text_version, "/%s/%d",
devnum2devname(st->container_dev),
info->container_member);
info->safe_mode_delay = 200;
memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
info->name[16]=0;
for(j=0; j<16; j++)
if (info->name[j] == ' ')
info->name[j] = 0;
if (map)
for (j = 0; j < map_disks; j++) {
map[j] = 0;
if (j < info->array.raid_disks) {
int i = find_phys(ddf, vc->conf.phys_refnum[j]);
if (i >= 0 &&
(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
!(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
map[i] = 1;
}
}
}
static int update_super_ddf(struct supertype *st, struct mdinfo *info,
char *update,
char *devname, int verbose,
int uuid_set, char *homehost)
{
/* For 'assemble' and 'force' we need to return non-zero if any
* change was made. For others, the return value is ignored.
* Update options are:
* force-one : This device looks a bit old but needs to be included,
* update age info appropriately.
* assemble: clear any 'faulty' flag to allow this device to
* be assembled.
* force-array: Array is degraded but being forced, mark it clean
* if that will be needed to assemble it.
*
* newdev: not used ????
* grow: Array has gained a new device - this is currently for
* linear only
* resync: mark as dirty so a resync will happen.
* uuid: Change the uuid of the array to match what is given
* homehost: update the recorded homehost
* name: update the name - preserving the homehost
* _reshape_progress: record new reshape_progress position.
*
* Following are not relevant for this version:
* sparc2.2 : update from old dodgey metadata
* super-minor: change the preferred_minor number
* summaries: update redundant counters.
*/
int rv = 0;
// struct ddf_super *ddf = st->sb;
// struct vd_config *vd = find_vdcr(ddf, info->container_member);
// struct virtual_entry *ve = find_ve(ddf);
/* we don't need to handle "force-*" or "assemble" as
* there is no need to 'trick' the kernel. We the metadata is
* first updated to activate the array, all the implied modifications
* will just happen.
*/
if (strcmp(update, "grow") == 0) {
/* FIXME */
} else if (strcmp(update, "resync") == 0) {
// info->resync_checkpoint = 0;
} else if (strcmp(update, "homehost") == 0) {
/* homehost is stored in controller->vendor_data,
* or it is when we are the vendor
*/
// if (info->vendor_is_local)
// strcpy(ddf->controller.vendor_data, homehost);
rv = -1;
} else if (strcmp(update, "name") == 0) {
/* name is stored in virtual_entry->name */
// memset(ve->name, ' ', 16);
// strncpy(ve->name, info->name, 16);
rv = -1;
} else if (strcmp(update, "_reshape_progress") == 0) {
/* We don't support reshape yet */
} else if (strcmp(update, "assemble") == 0 ) {
/* Do nothing, just succeed */
rv = 0;
} else
rv = -1;
// update_all_csum(ddf);
return rv;
}
static void make_header_guid(char *guid)
{
__u32 stamp;
/* Create a DDF Header of Virtual Disk GUID */
/* 24 bytes of fiction required.
* first 8 are a 'vendor-id' - "Linux-MD"
* next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
* Remaining 8 random number plus timestamp
*/
memcpy(guid, T10, sizeof(T10));
stamp = __cpu_to_be32(0xdeadbeef);
memcpy(guid+8, &stamp, 4);
stamp = __cpu_to_be32(0);
memcpy(guid+12, &stamp, 4);
stamp = __cpu_to_be32(time(0) - DECADE);
memcpy(guid+16, &stamp, 4);
stamp = random32();
memcpy(guid+20, &stamp, 4);
}
static int init_super_ddf_bvd(struct supertype *st,
mdu_array_info_t *info,
unsigned long long size,
char *name, char *homehost,
int *uuid);
static int init_super_ddf(struct supertype *st,
mdu_array_info_t *info,
unsigned long long size, char *name, char *homehost,
int *uuid)
{
/* This is primarily called by Create when creating a new array.
* We will then get add_to_super called for each component, and then
* write_init_super called to write it out to each device.
* For DDF, Create can create on fresh devices or on a pre-existing
* array.
* To create on a pre-existing array a different method will be called.
* This one is just for fresh drives.
*
* We need to create the entire 'ddf' structure which includes:
* DDF headers - these are easy.
* Controller data - a Sector describing this controller .. not that
* this is a controller exactly.
* Physical Disk Record - one entry per device, so
* leave plenty of space.
* Virtual Disk Records - again, just leave plenty of space.
* This just lists VDs, doesn't give details
* Config records - describes the VDs that use this disk
* DiskData - describes 'this' device.
* BadBlockManagement - empty
* Diag Space - empty
* Vendor Logs - Could we put bitmaps here?
*
*/
struct ddf_super *ddf;
char hostname[17];
int hostlen;
int max_phys_disks, max_virt_disks;
unsigned long long sector;
int clen;
int i;
int pdsize, vdsize;
struct phys_disk *pd;
struct virtual_disk *vd;
if (st->sb)
return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
return 0;
}
memset(ddf, 0, sizeof(*ddf));
ddf->dlist = NULL; /* no physical disks yet */
ddf->conflist = NULL; /* No virtual disks yet */
st->sb = ddf;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
/* At least 32MB *must* be reserved for the ddf. So let's just
* start 32MB from the end, and put the primary header there.
* Don't do secondary for now.
* We don't know exactly where that will be yet as it could be
* different on each device. To just set up the lengths.
*
*/
ddf->anchor.magic = DDF_HEADER_MAGIC;
make_header_guid(ddf->anchor.guid);
memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
ddf->anchor.seq = __cpu_to_be32(1);
ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
ddf->anchor.openflag = 0xFF;
ddf->anchor.foreignflag = 0;
ddf->anchor.enforcegroups = 0; /* Is this best?? */
ddf->anchor.pad0 = 0xff;
memset(ddf->anchor.pad1, 0xff, 12);
memset(ddf->anchor.header_ext, 0xff, 32);
ddf->anchor.primary_lba = ~(__u64)0;
ddf->anchor.secondary_lba = ~(__u64)0;
ddf->anchor.type = DDF_HEADER_ANCHOR;
memset(ddf->anchor.pad2, 0xff, 3);
ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
of 32M reserved.. */
max_phys_disks = 1023; /* Should be enough */
ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
max_virt_disks = 255;
ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
ddf->max_part = 64;
ddf->mppe = 256;
ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
memset(ddf->anchor.pad3, 0xff, 54);
/* controller sections is one sector long immediately
* after the ddf header */
sector = 1;
ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
ddf->anchor.controller_section_length = __cpu_to_be32(1);
sector += 1;
/* phys is 8 sectors after that */
pdsize = ROUND_UP(sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry)*max_phys_disks,
512);
switch(pdsize/512) {
case 2: case 8: case 32: case 128: case 512: break;
default: abort();
}
ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
ddf->anchor.phys_section_length =
__cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
sector += pdsize/512;
/* virt is another 32 sectors */
vdsize = ROUND_UP(sizeof(struct virtual_disk) +
sizeof(struct virtual_entry) * max_virt_disks,
512);
switch(vdsize/512) {
case 2: case 8: case 32: case 128: case 512: break;
default: abort();
}
ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
ddf->anchor.virt_section_length =
__cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
sector += vdsize/512;
clen = ddf->conf_rec_len * (ddf->max_part+1);
ddf->anchor.config_section_offset = __cpu_to_be32(sector);
ddf->anchor.config_section_length = __cpu_to_be32(clen);
sector += clen;
ddf->anchor.data_section_offset = __cpu_to_be32(sector);
ddf->anchor.data_section_length = __cpu_to_be32(1);
sector += 1;
ddf->anchor.bbm_section_length = __cpu_to_be32(0);
ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
ddf->anchor.diag_space_length = __cpu_to_be32(0);
ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
ddf->anchor.vendor_length = __cpu_to_be32(0);
ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
memset(ddf->anchor.pad4, 0xff, 256);
memcpy(&ddf->primary, &ddf->anchor, 512);
memcpy(&ddf->secondary, &ddf->anchor, 512);
ddf->primary.openflag = 1; /* I guess.. */
ddf->primary.type = DDF_HEADER_PRIMARY;
ddf->secondary.openflag = 1; /* I guess.. */
ddf->secondary.type = DDF_HEADER_SECONDARY;
ddf->active = &ddf->primary;
ddf->controller.magic = DDF_CONTROLLER_MAGIC;
/* 24 more bytes of fiction required.
* first 8 are a 'vendor-id' - "Linux-MD"
* Remaining 16 are serial number.... maybe a hostname would do?
*/
memcpy(ddf->controller.guid, T10, sizeof(T10));
gethostname(hostname, sizeof(hostname));
hostname[sizeof(hostname) - 1] = 0;
hostlen = strlen(hostname);
memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
for (i = strlen(T10) ; i+hostlen < 24; i++)
ddf->controller.guid[i] = ' ';
ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
ddf->controller.type.sub_vendor_id = 0;
ddf->controller.type.sub_device_id = 0;
memcpy(ddf->controller.product_id, "What Is My PID??", 16);
memset(ddf->controller.pad, 0xff, 8);
memset(ddf->controller.vendor_data, 0xff, 448);
if (homehost && strlen(homehost) < 440)
strcpy((char*)ddf->controller.vendor_data, homehost);
if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
return 0;
}
ddf->phys = pd;
ddf->pdsize = pdsize;
memset(pd, 0xff, pdsize);
memset(pd, 0, sizeof(*pd));
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = __cpu_to_be16(0);
pd->max_pdes = __cpu_to_be16(max_phys_disks);
memset(pd->pad, 0xff, 52);
if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
return 0;
}
ddf->virt = vd;
ddf->vdsize = vdsize;
memset(vd, 0, vdsize);
vd->magic = DDF_VIRT_RECORDS_MAGIC;
vd->populated_vdes = __cpu_to_be16(0);
vd->max_vdes = __cpu_to_be16(max_virt_disks);
memset(vd->pad, 0xff, 52);
for (i=0; i<max_virt_disks; i++)
memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
st->sb = ddf;
ddf->updates_pending = 1;
return 1;
}
static int chunk_to_shift(int chunksize)
{
return ffs(chunksize/512)-1;
}
static int level_to_prl(int level)
{
switch (level) {
case LEVEL_LINEAR: return DDF_CONCAT;
case 0: return DDF_RAID0;
case 1: return DDF_RAID1;
case 4: return DDF_RAID4;
case 5: return DDF_RAID5;
case 6: return DDF_RAID6;
default: return -1;
}
}
static int layout_to_rlq(int level, int layout, int raiddisks)
{
switch(level) {
case 0:
return DDF_RAID0_SIMPLE;
case 1:
switch(raiddisks) {
case 2: return DDF_RAID1_SIMPLE;
case 3: return DDF_RAID1_MULTI;
default: return -1;
}
case 4:
switch(layout) {
case 0: return DDF_RAID4_N;
}
break;
case 5:
switch(layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
return DDF_RAID5_N_RESTART;
case ALGORITHM_RIGHT_ASYMMETRIC:
return DDF_RAID5_0_RESTART;
case ALGORITHM_LEFT_SYMMETRIC:
return DDF_RAID5_N_CONTINUE;
case ALGORITHM_RIGHT_SYMMETRIC:
return -1; /* not mentioned in standard */
}
case 6:
switch(layout) {
case ALGORITHM_ROTATING_N_RESTART:
return DDF_RAID5_N_RESTART;
case ALGORITHM_ROTATING_ZERO_RESTART:
return DDF_RAID6_0_RESTART;
case ALGORITHM_ROTATING_N_CONTINUE:
return DDF_RAID5_N_CONTINUE;
}
}
return -1;
}
static int rlq_to_layout(int rlq, int prl, int raiddisks)
{
switch(prl) {
case DDF_RAID0:
return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
case DDF_RAID1:
return 0; /* hopefully rlq == SIMPLE or MULTI depending
on raiddisks*/
case DDF_RAID4:
switch(rlq) {
case DDF_RAID4_N:
return 0;
default:
/* not supported */
return -1; /* FIXME this isn't checked */
}
case DDF_RAID5:
switch(rlq) {
case DDF_RAID5_N_RESTART:
return ALGORITHM_LEFT_ASYMMETRIC;
case DDF_RAID5_0_RESTART:
return ALGORITHM_RIGHT_ASYMMETRIC;
case DDF_RAID5_N_CONTINUE:
return ALGORITHM_LEFT_SYMMETRIC;
default:
return -1;
}
case DDF_RAID6:
switch(rlq) {
case DDF_RAID5_N_RESTART:
return ALGORITHM_ROTATING_N_RESTART;
case DDF_RAID6_0_RESTART:
return ALGORITHM_ROTATING_ZERO_RESTART;
case DDF_RAID5_N_CONTINUE:
return ALGORITHM_ROTATING_N_CONTINUE;
default:
return -1;
}
}
return -1;
}
#ifndef MDASSEMBLE
struct extent {
unsigned long long start, size;
};
static int cmp_extent(const void *av, const void *bv)
{
const struct extent *a = av;
const struct extent *b = bv;
if (a->start < b->start)
return -1;
if (a->start > b->start)
return 1;
return 0;
}
static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
{
/* find a list of used extents on the give physical device
* (dnum) of the given ddf.
* Return a malloced array of 'struct extent'
FIXME ignore DDF_Legacy devices?
*/
struct extent *rv;
int n = 0;
unsigned int i, j;
rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
if (!rv)
return NULL;
for (i = 0; i < ddf->max_part; i++) {
struct vcl *v = dl->vlist[i];
if (v == NULL)
continue;
for (j = 0; j < v->conf.prim_elmnt_count; j++)
if (v->conf.phys_refnum[j] == dl->disk.refnum) {
/* This device plays role 'j' in 'v'. */
rv[n].start = __be64_to_cpu(v->lba_offset[j]);
rv[n].size = __be64_to_cpu(v->conf.blocks);
n++;
break;
}
}
qsort(rv, n, sizeof(*rv), cmp_extent);
rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
rv[n].size = 0;
return rv;
}
#endif
static int init_super_ddf_bvd(struct supertype *st,
mdu_array_info_t *info,
unsigned long long size,
char *name, char *homehost,
int *uuid)
{
/* We are creating a BVD inside a pre-existing container.
* so st->sb is already set.
* We need to create a new vd_config and a new virtual_entry
*/
struct ddf_super *ddf = st->sb;
unsigned int venum;
struct virtual_entry *ve;
struct vcl *vcl;
struct vd_config *vc;
if (__be16_to_cpu(ddf->virt->populated_vdes)
>= __be16_to_cpu(ddf->virt->max_vdes)) {
fprintf(stderr, Name": This ddf already has the "
"maximum of %d virtual devices\n",
__be16_to_cpu(ddf->virt->max_vdes));
return 0;
}
if (name)
for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
if (!all_ff(ddf->virt->entries[venum].guid)) {
char *n = ddf->virt->entries[venum].name;
if (strncmp(name, n, 16) == 0) {
fprintf(stderr, Name ": This ddf already"
" has an array called %s\n",
name);
return 0;
}
}
for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
if (all_ff(ddf->virt->entries[venum].guid))
break;
if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
fprintf(stderr, Name ": Cannot find spare slot for "
"virtual disk - DDF is corrupt\n");
return 0;
}
ve = &ddf->virt->entries[venum];
/* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
* timestamp, random number
*/
make_header_guid(ve->guid);
ve->unit = __cpu_to_be16(info->md_minor);
ve->pad0 = 0xFFFF;
ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
ve->type = 0;
ve->state = DDF_state_degraded; /* Will be modified as devices are added */
if (info->state & 1) /* clean */
ve->init_state = DDF_init_full;
else
ve->init_state = DDF_init_not;
memset(ve->pad1, 0xff, 14);
memset(ve->name, ' ', 16);
if (name)
strncpy(ve->name, name, 16);
ddf->virt->populated_vdes =
__cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
/* Now create a new vd_config */
if (posix_memalign((void**)&vcl, 512,
(offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
return 0;
}
vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
vcl->vcnum = venum;
vcl->block_sizes = NULL; /* FIXME not for CONCAT */
vc = &vcl->conf;
vc->magic = DDF_VD_CONF_MAGIC;
memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
vc->timestamp = __cpu_to_be32(time(0)-DECADE);
vc->seqnum = __cpu_to_be32(1);
memset(vc->pad0, 0xff, 24);
vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
vc->chunk_shift = chunk_to_shift(info->chunk_size);
vc->prl = level_to_prl(info->level);
vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
vc->sec_elmnt_count = 1;
vc->sec_elmnt_seq = 0;
vc->srl = 0;
vc->blocks = __cpu_to_be64(info->size * 2);
vc->array_blocks = __cpu_to_be64(
calc_array_size(info->level, info->raid_disks, info->layout,
info->chunk_size, info->size*2));
memset(vc->pad1, 0xff, 8);
vc->spare_refs[0] = 0xffffffff;
vc->spare_refs[1] = 0xffffffff;
vc->spare_refs[2] = 0xffffffff;
vc->spare_refs[3] = 0xffffffff;
vc->spare_refs[4] = 0xffffffff;
vc->spare_refs[5] = 0xffffffff;
vc->spare_refs[6] = 0xffffffff;
vc->spare_refs[7] = 0xffffffff;
memset(vc->cache_pol, 0, 8);
vc->bg_rate = 0x80;
memset(vc->pad2, 0xff, 3);
memset(vc->pad3, 0xff, 52);
memset(vc->pad4, 0xff, 192);
memset(vc->v0, 0xff, 32);
memset(vc->v1, 0xff, 32);
memset(vc->v2, 0xff, 16);
memset(vc->v3, 0xff, 16);
memset(vc->vendor, 0xff, 32);
memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
vcl->next = ddf->conflist;
ddf->conflist = vcl;
ddf->currentconf = vcl;
ddf->updates_pending = 1;
return 1;
}
#ifndef MDASSEMBLE
static void add_to_super_ddf_bvd(struct supertype *st,
mdu_disk_info_t *dk, int fd, char *devname)
{
/* fd and devname identify a device with-in the ddf container (st).
* dk identifies a location in the new BVD.
* We need to find suitable free space in that device and update
* the phys_refnum and lba_offset for the newly created vd_config.
* We might also want to update the type in the phys_disk
* section.
*
* Alternately: fd == -1 and we have already chosen which device to
* use and recorded in dlist->raid_disk;
*/
struct dl *dl;
struct ddf_super *ddf = st->sb;
struct vd_config *vc;
__u64 *lba_offset;
unsigned int working;
unsigned int i;
unsigned long long blocks, pos, esize;
struct extent *ex;
if (fd == -1) {
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->raiddisk == dk->raid_disk)
break;
} else {
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
}
if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
return;
vc = &ddf->currentconf->conf;
lba_offset = ddf->currentconf->lba_offset;
ex = get_extents(ddf, dl);
if (!ex)
return;
i = 0; pos = 0;
blocks = __be64_to_cpu(vc->blocks);
if (ddf->currentconf->block_sizes)
blocks = ddf->currentconf->block_sizes[dk->raid_disk];
do {
esize = ex[i].start - pos;
if (esize >= blocks)
break;
pos = ex[i].start + ex[i].size;
i++;
} while (ex[i-1].size);
free(ex);
if (esize < blocks)
return;
ddf->currentdev = dk->raid_disk;
vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
for (i = 0; i < ddf->max_part ; i++)
if (dl->vlist[i] == NULL)
break;
if (i == ddf->max_part)
return;
dl->vlist[i] = ddf->currentconf;
if (fd >= 0)
dl->fd = fd;
if (devname)
dl->devname = devname;
/* Check how many working raid_disks, and if we can mark
* array as optimal yet
*/
working = 0;
for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
if (vc->phys_refnum[i] != 0xffffffff)
working++;
/* Find which virtual_entry */
i = ddf->currentconf->vcnum;
if (working == __be16_to_cpu(vc->prim_elmnt_count))
ddf->virt->entries[i].state =
(ddf->virt->entries[i].state & ~DDF_state_mask)
| DDF_state_optimal;
if (vc->prl == DDF_RAID6 &&
working+1 == __be16_to_cpu(vc->prim_elmnt_count))
ddf->virt->entries[i].state =
(ddf->virt->entries[i].state & ~DDF_state_mask)
| DDF_state_part_optimal;
ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
ddf->updates_pending = 1;
}
/* add a device to a container, either while creating it or while
* expanding a pre-existing container
*/
static int add_to_super_ddf(struct supertype *st,
mdu_disk_info_t *dk, int fd, char *devname)
{
struct ddf_super *ddf = st->sb;
struct dl *dd;
time_t now;
struct tm *tm;
unsigned long long size;
struct phys_disk_entry *pde;
unsigned int n, i;
struct stat stb;
if (ddf->currentconf) {
add_to_super_ddf_bvd(st, dk, fd, devname);
return 0;
}
/* This is device numbered dk->number. We need to create
* a phys_disk entry and a more detailed disk_data entry.
*/
fstat(fd, &stb);
if (posix_memalign((void**)&dd, 512,
sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
fprintf(stderr, Name
": %s could allocate buffer for new disk, aborting\n",
__func__);
return 1;
}
dd->major = major(stb.st_rdev);
dd->minor = minor(stb.st_rdev);
dd->devname = devname;
dd->fd = fd;
dd->spare = NULL;
dd->disk.magic = DDF_PHYS_DATA_MAGIC;
now = time(0);
tm = localtime(&now);
sprintf(dd->disk.guid, "%8s%04d%02d%02d",
T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
*(__u32*)(dd->disk.guid + 16) = random32();
*(__u32*)(dd->disk.guid + 20) = random32();
do {
/* Cannot be bothered finding a CRC of some irrelevant details*/
dd->disk.refnum = random32();
for (i = __be16_to_cpu(ddf->active->max_pd_entries);
i > 0; i--)
if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
break;
} while (i > 0);
dd->disk.forced_ref = 1;
dd->disk.forced_guid = 1;
memset(dd->disk.vendor, ' ', 32);
memcpy(dd->disk.vendor, "Linux", 5);
memset(dd->disk.pad, 0xff, 442);
for (i = 0; i < ddf->max_part ; i++)
dd->vlist[i] = NULL;
n = __be16_to_cpu(ddf->phys->used_pdes);
pde = &ddf->phys->entries[n];
dd->pdnum = n;
if (st->update_tail) {
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
struct phys_disk *pd;
pd = malloc(len);
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = __cpu_to_be16(n);
pde = &pd->entries[0];
dd->mdupdate = pd;
} else {
n++;
ddf->phys->used_pdes = __cpu_to_be16(n);
}
memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
pde->refnum = dd->disk.refnum;
pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
pde->state = __cpu_to_be16(DDF_Online);
get_dev_size(fd, NULL, &size);
/* We are required to reserve 32Meg, and record the size in sectors */
pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
sprintf(pde->path, "%17.17s","Information: nil") ;
memset(pde->pad, 0xff, 6);
dd->size = size >> 9;
if (st->update_tail) {
dd->next = ddf->add_list;
ddf->add_list = dd;
} else {
dd->next = ddf->dlist;
ddf->dlist = dd;
ddf->updates_pending = 1;
}
return 0;
}
static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
{
struct ddf_super *ddf = st->sb;
struct dl *dl;
/* mdmon has noticed that this disk (dk->major/dk->minor) has
* disappeared from the container.
* We need to arrange that it disappears from the metadata and
* internal data structures too.
* Most of the work is done by ddf_process_update which edits
* the metadata and closes the file handle and attaches the memory
* where free_updates will free it.
*/
for (dl = ddf->dlist; dl ; dl = dl->next)
if (dl->major == dk->major &&
dl->minor == dk->minor)
break;
if (!dl)
return -1;
if (st->update_tail) {
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
struct phys_disk *pd;
pd = malloc(len);
pd->magic = DDF_PHYS_RECORDS_MAGIC;
pd->used_pdes = __cpu_to_be16(dl->pdnum);
pd->entries[0].state = __cpu_to_be16(DDF_Missing);
append_metadata_update(st, pd, len);
}
return 0;
}
/*
* This is the write_init_super method for a ddf container. It is
* called when creating a container or adding another device to a
* container.
*/
static unsigned char null_conf[4096+512];
static int __write_init_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
int i;
struct dl *d;
int n_config;
int conf_size;
int attempts = 0;
int successes = 0;
unsigned long long size, sector;
/* try to write updated metadata,
* if we catch a failure move on to the next disk
*/
for (d = ddf->dlist; d; d=d->next) {
int fd = d->fd;
if (fd < 0)
continue;
attempts++;
/* We need to fill in the primary, (secondary) and workspace
* lba's in the headers, set their checksums,
* Also checksum phys, virt....
*
* Then write everything out, finally the anchor is written.
*/
get_dev_size(fd, NULL, &size);
size /= 512;
ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
ddf->anchor.seq = __cpu_to_be32(1);
memcpy(&ddf->primary, &ddf->anchor, 512);
memcpy(&ddf->secondary, &ddf->anchor, 512);
ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
ddf->primary.openflag = 0;
ddf->primary.type = DDF_HEADER_PRIMARY;
ddf->secondary.openflag = 0;
ddf->secondary.type = DDF_HEADER_SECONDARY;
ddf->primary.crc = calc_crc(&ddf->primary, 512);
ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
sector = size - 16*1024*2;
lseek64(fd, sector<<9, 0);
if (write(fd, &ddf->primary, 512) < 0)
continue;
ddf->controller.crc = calc_crc(&ddf->controller, 512);
if (write(fd, &ddf->controller, 512) < 0)
continue;
ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
if (write(fd, ddf->phys, ddf->pdsize) < 0)
continue;
ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
if (write(fd, ddf->virt, ddf->vdsize) < 0)
continue;
/* Now write lots of config records. */
n_config = ddf->max_part;
conf_size = ddf->conf_rec_len * 512;
for (i = 0 ; i <= n_config ; i++) {
struct vcl *c = d->vlist[i];
if (i == n_config)
c = (struct vcl*)d->spare;
if (c) {
c->conf.crc = calc_crc(&c->conf, conf_size);
if (write(fd, &c->conf, conf_size) < 0)
break;
} else {
char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
if (null_conf[0] != 0xff)
memset(null_conf, 0xff, sizeof(null_conf));
unsigned int togo = conf_size;
while (togo > sizeof(null_conf)-512) {
if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
break;
togo -= sizeof(null_conf)-512;
}
if (write(fd, null_aligned, togo) < 0)
break;
}
}
if (i <= n_config)
continue;
d->disk.crc = calc_crc(&d->disk, 512);
if (write(fd, &d->disk, 512) < 0)
continue;
/* Maybe do the same for secondary */
lseek64(fd, (size-1)*512, SEEK_SET);
if (write(fd, &ddf->anchor, 512) < 0)
continue;
successes++;
}
return attempts != successes;
}
static int write_init_super_ddf(struct supertype *st)
{
struct ddf_super *ddf = st->sb;
struct vcl *currentconf = ddf->currentconf;
/* we are done with currentconf reset it to point st at the container */
ddf->currentconf = NULL;
if (st->update_tail) {
/* queue the virtual_disk and vd_config as metadata updates */
struct virtual_disk *vd;
struct vd_config *vc;
int len;
if (!currentconf) {
int len = (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry));
/* adding a disk to the container. */
if (!ddf->add_list)
return 0;
append_metadata_update(st, ddf->add_list->mdupdate, len);
ddf->add_list->mdupdate = NULL;
return 0;
}
/* Newly created VD */
/* First the virtual disk. We have a slightly fake header */
len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
vd = malloc(len);
*vd = *ddf->virt;
vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
append_metadata_update(st, vd, len);
/* Then the vd_config */
len = ddf->conf_rec_len * 512;
vc = malloc(len);
memcpy(vc, &currentconf->conf, len);
append_metadata_update(st, vc, len);
/* FIXME I need to close the fds! */
return 0;
} else {
struct dl *d;
for (d = ddf->dlist; d; d=d->next)
while (Kill(d->devname, NULL, 0, 1, 1) == 0);
return __write_init_super_ddf(st);
}
}
#endif
static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
{
/* We must reserve the last 32Meg */
if (devsize <= 32*1024*2)
return 0;
return devsize - 32*1024*2;
}
#ifndef MDASSEMBLE
static int reserve_space(struct supertype *st, int raiddisks,
unsigned long long size, int chunk,
unsigned long long *freesize)
{
/* Find 'raiddisks' spare extents at least 'size' big (but
* only caring about multiples of 'chunk') and remember
* them.
* If the cannot be found, fail.
*/
struct dl *dl;
struct ddf_super *ddf = st->sb;
int cnt = 0;
for (dl = ddf->dlist; dl ; dl=dl->next) {
dl->raiddisk = -1;
dl->esize = 0;
}
/* Now find largest extent on each device */
for (dl = ddf->dlist ; dl ; dl=dl->next) {
struct extent *e = get_extents(ddf, dl);
unsigned long long pos = 0;
int i = 0;
int found = 0;
unsigned long long minsize = size;
if (size == 0)
minsize = chunk;
if (!e)
continue;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= minsize) {
found = 1;
minsize = esize;
}
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
if (found) {
cnt++;
dl->esize = minsize;
}
free(e);
}
if (cnt < raiddisks) {
fprintf(stderr, Name ": not enough devices with space to create array.\n");
return 0; /* No enough free spaces large enough */
}
if (size == 0) {
/* choose the largest size of which there are at least 'raiddisk' */
for (dl = ddf->dlist ; dl ; dl=dl->next) {
struct dl *dl2;
if (dl->esize <= size)
continue;
/* This is bigger than 'size', see if there are enough */
cnt = 0;
for (dl2 = dl; dl2 ; dl2=dl2->next)
if (dl2->esize >= dl->esize)
cnt++;
if (cnt >= raiddisks)
size = dl->esize;
}
if (chunk) {
size = size / chunk;
size *= chunk;
}
*freesize = size;
if (size < 32) {
fprintf(stderr, Name ": not enough spare devices to create array.\n");
return 0;
}
}
/* We have a 'size' of which there are enough spaces.
* We simply do a first-fit */
cnt = 0;
for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
if (dl->esize < size)
continue;
dl->raiddisk = cnt;
cnt++;
}
return 1;
}
static int
validate_geometry_ddf_container(struct supertype *st,
int level, int layout, int raiddisks,
int chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose);
static int validate_geometry_ddf_bvd(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose);
static int validate_geometry_ddf(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose)
{
int fd;
struct mdinfo *sra;
int cfd;
/* ddf potentially supports lots of things, but it depends on
* what devices are offered (and maybe kernel version?)
* If given unused devices, we will make a container.
* If given devices in a container, we will make a BVD.
* If given BVDs, we make an SVD, changing all the GUIDs in the process.
*/
if (chunk && *chunk == UnSet)
*chunk = DEFAULT_CHUNK;
if (level == LEVEL_CONTAINER) {
/* Must be a fresh device to add to a container */
return validate_geometry_ddf_container(st, level, layout,
raiddisks, chunk?*chunk:0,
size, dev, freesize,
verbose);
}
if (!dev) {
/* Initial sanity check. Exclude illegal levels. */
int i;
for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
if (ddf_level_num[i].num2 == level)
break;
if (ddf_level_num[i].num1 == MAXINT) {
if (verbose)
fprintf(stderr, Name ": DDF does not support level %d arrays\n",
level);
return 0;
}
/* Should check layout? etc */
if (st->sb && freesize) {
/* --create was given a container to create in.
* So we need to check that there are enough
* free spaces and return the amount of space.
* We may as well remember which drives were
* chosen so that add_to_super/getinfo_super
* can return them.
*/
return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
}
return 1;
}
if (st->sb) {
/* A container has already been opened, so we are
* creating in there. Maybe a BVD, maybe an SVD.
* Should make a distinction one day.
*/
return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
chunk, size, dev, freesize,
verbose);
}
/* This is the first device for the array.
* If it is a container, we read it in and do automagic allocations,
* no other devices should be given.
* Otherwise it must be a member device of a container, and we
* do manual allocation.
* Later we should check for a BVD and make an SVD.
*/
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd >= 0) {
sra = sysfs_read(fd, 0, GET_VERSION);
close(fd);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "ddf") == 0) {
/* load super */
/* find space for 'n' devices. */
/* remember the devices */
/* Somehow return the fact that we have enough */
}
if (verbose)
fprintf(stderr,
Name ": ddf: Cannot create this array "
"on device %s - a container is required.\n",
dev);
return 0;
}
if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
if (verbose)
fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
/* Well, it is in use by someone, maybe a 'ddf' container. */
cfd = open_container(fd);
if (cfd < 0) {
close(fd);
if (verbose)
fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
dev, strerror(EBUSY));
return 0;
}
sra = sysfs_read(cfd, 0, GET_VERSION);
close(fd);
if (sra && sra->array.major_version == -1 &&
strcmp(sra->text_version, "ddf") == 0) {
/* This is a member of a ddf container. Load the container
* and try to create a bvd
*/
struct ddf_super *ddf;
if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
st->sb = ddf;
st->container_dev = fd2devnum(cfd);
close(cfd);
return validate_geometry_ddf_bvd(st, level, layout,
raiddisks, chunk, size,
dev, freesize,
verbose);
}
close(cfd);
} else /* device may belong to a different container */
return 0;
return 1;
}
static int
validate_geometry_ddf_container(struct supertype *st,
int level, int layout, int raiddisks,
int chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose)
{
int fd;
unsigned long long ldsize;
if (level != LEVEL_CONTAINER)
return 0;
if (!dev)
return 1;
fd = open(dev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
dev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, dev, &ldsize)) {
close(fd);
return 0;
}
close(fd);
*freesize = avail_size_ddf(st, ldsize >> 9);
if (*freesize == 0)
return 0;
return 1;
}
static int validate_geometry_ddf_bvd(struct supertype *st,
int level, int layout, int raiddisks,
int *chunk, unsigned long long size,
char *dev, unsigned long long *freesize,
int verbose)
{
struct stat stb;
struct ddf_super *ddf = st->sb;
struct dl *dl;
unsigned long long pos = 0;
unsigned long long maxsize;
struct extent *e;
int i;
/* ddf/bvd supports lots of things, but not containers */
if (level == LEVEL_CONTAINER) {
if (verbose)
fprintf(stderr, Name ": DDF cannot create a container within an container\n");
return 0;
}
/* We must have the container info already read in. */
if (!ddf)
return 0;
if (!dev) {
/* General test: make sure there is space for
* 'raiddisks' device extents of size 'size'.
*/
unsigned long long minsize = size;
int dcnt = 0;
if (minsize == 0)
minsize = 8;
for (dl = ddf->dlist; dl ; dl = dl->next)
{
int found = 0;
pos = 0;
i = 0;
e = get_extents(ddf, dl);
if (!e) continue;
do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= minsize)
found = 1;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
if (found)
dcnt++;
free(e);
}
if (dcnt < raiddisks) {
if (verbose)
fprintf(stderr,
Name ": ddf: Not enough devices with "
"space for this array (%d < %d)\n",
dcnt, raiddisks);
return 0;
}
return 1;
}
/* This device must be a member of the set */
if (stat(dev, &stb) < 0)
return 0;
if ((S_IFMT & stb.st_mode) != S_IFBLK)
return 0;
for (dl = ddf->dlist ; dl ; dl = dl->next) {
if (dl->major == (int)major(stb.st_rdev) &&
dl->minor == (int)minor(stb.st_rdev))
break;
}
if (!dl) {
if (verbose)
fprintf(stderr, Name ": ddf: %s is not in the "
"same DDF set\n",
dev);
return 0;
}
e = get_extents(ddf, dl);
maxsize = 0;
i = 0;
if (e) do {
unsigned long long esize;
esize = e[i].start - pos;
if (esize >= maxsize)
maxsize = esize;
pos = e[i].start + e[i].size;
i++;
} while (e[i-1].size);
*freesize = maxsize;
// FIXME here I am
return 1;
}
static int load_super_ddf_all(struct supertype *st, int fd,
void **sbp, char *devname)
{
struct mdinfo *sra;
struct ddf_super *super;
struct mdinfo *sd, *best = NULL;
int bestseq = 0;
int seq;
char nm[20];
int dfd;
sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
if (!sra)
return 1;
if (sra->array.major_version != -1 ||
sra->array.minor_version != -2 ||
strcmp(sra->text_version, "ddf") != 0)
return 1;
if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
return 1;
memset(super, 0, sizeof(*super));
/* first, try each device, and choose the best ddf */
for (sd = sra->devs ; sd ; sd = sd->next) {
int rv;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (dfd < 0)
return 2;
rv = load_ddf_headers(dfd, super, NULL);
close(dfd);
if (rv == 0) {
seq = __be32_to_cpu(super->active->seq);
if (super->active->openflag)
seq--;
if (!best || seq > bestseq) {
bestseq = seq;
best = sd;
}
}
}
if (!best)
return 1;
/* OK, load this ddf */
sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
dfd = dev_open(nm, O_RDONLY);
if (dfd < 0)
return 1;
load_ddf_headers(dfd, super, NULL);
load_ddf_global(dfd, super, NULL);
close(dfd);
/* Now we need the device-local bits */
for (sd = sra->devs ; sd ; sd = sd->next) {
int rv;
sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
dfd = dev_open(nm, O_RDWR);
if (dfd < 0)
return 2;
rv = load_ddf_headers(dfd, super, NULL);
if (rv == 0)
rv = load_ddf_local(dfd, super, NULL, 1);
if (rv)
return 1;
}
*sbp = super;
if (st->ss == NULL) {
st->ss = &super_ddf;
st->minor_version = 0;
st->max_devs = 512;
}
st->container_dev = fd2devnum(fd);
return 0;
}
static int load_container_ddf(struct supertype *st, int fd,
char *devname)
{
return load_super_ddf_all(st, fd, &st->sb, devname);
}
#endif /* MDASSEMBLE */
static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
{
/* Given a container loaded by load_super_ddf_all,
* extract information about all the arrays into
* an mdinfo tree.
*
* For each vcl in conflist: create an mdinfo, fill it in,
* then look for matching devices (phys_refnum) in dlist
* and create appropriate device mdinfo.
*/
struct ddf_super *ddf = st->sb;
struct mdinfo *rest = NULL;
struct vcl *vc;
for (vc = ddf->conflist ; vc ; vc=vc->next)
{
unsigned int i;
unsigned int j;
struct mdinfo *this;
char *ep;
if (subarray &&
(strtoul(subarray, &ep, 10) != vc->vcnum ||
*ep != '\0'))
continue;
this = malloc(sizeof(*this));
memset(this, 0, sizeof(*this));
this->next = rest;
rest = this;
this->array.level = map_num1(ddf_level_num, vc->conf.prl);
this->array.raid_disks =
__be16_to_cpu(vc->conf.prim_elmnt_count);
this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
this->array.raid_disks);
this->array.md_minor = -1;
this->array.major_version = -1;
this->array.minor_version = -2;
this->array.ctime = DECADE +
__be32_to_cpu(*(__u32*)(vc->conf.guid+16));
this->array.utime = DECADE +
__be32_to_cpu(vc->conf.timestamp);
this->array.chunk_size = 512 << vc->conf.chunk_shift;
i = vc->vcnum;
if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
(ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
DDF_init_full) {
this->array.state = 0;
this->resync_start = 0;
} else {
this->array.state = 1;
this->resync_start = MaxSector;
}
memcpy(this->name, ddf->virt->entries[i].name, 16);
this->name[16]=0;
for(j=0; j<16; j++)
if (this->name[j] == ' ')
this->name[j] = 0;
memset(this->uuid, 0, sizeof(this->uuid));
this->component_size = __be64_to_cpu(vc->conf.blocks);
this->array.size = this->component_size / 2;
this->container_member = i;
ddf->currentconf = vc;
uuid_from_super_ddf(st, this->uuid);
ddf->currentconf = NULL;
sprintf(this->text_version, "/%s/%d",
devnum2devname(st->container_dev),
this->container_member);
for (i = 0 ; i < ddf->mppe ; i++) {
struct mdinfo *dev;
struct dl *d;
int stt;
int pd;
if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
continue;
for (pd = __be16_to_cpu(ddf->phys->used_pdes);
pd--;)
if (ddf->phys->entries[pd].refnum
== vc->conf.phys_refnum[i])
break;
if (pd < 0)
continue;
stt = __be16_to_cpu(ddf->phys->entries[pd].state);
if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
!= DDF_Online)
continue;
this->array.working_disks++;
for (d = ddf->dlist; d ; d=d->next)
if (d->disk.refnum == vc->conf.phys_refnum[i])
break;
if (d == NULL)
/* Haven't found that one yet, maybe there are others */
continue;
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->next = this->devs;
this->devs = dev;
dev->disk.number = __be32_to_cpu(d->disk.refnum);
dev->disk.major = d->major;
dev->disk.minor = d->minor;
dev->disk.raid_disk = i;
dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
dev->recovery_start = MaxSector;
dev->events = __be32_to_cpu(ddf->primary.seq);
dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
dev->component_size = __be64_to_cpu(vc->conf.blocks);
if (d->devname)
strcpy(dev->name, d->devname);
}
}
return rest;
}
static int store_super_ddf(struct supertype *st, int fd)
{
struct ddf_super *ddf = st->sb;
unsigned long long dsize;
void *buf;
int rc;
if (!ddf)
return 1;
/* ->dlist and ->conflist will be set for updates, currently not
* supported
*/
if (ddf->dlist || ddf->conflist)
return 1;
if (!get_dev_size(fd, NULL, &dsize))
return 1;
if (posix_memalign(&buf, 512, 512) != 0)
return 1;
memset(buf, 0, 512);
lseek64(fd, dsize-512, 0);
rc = write(fd, buf, 512);
free(buf);
if (rc < 0)
return 1;
return 0;
}
static int compare_super_ddf(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct ddf_super *first = st->sb;
struct ddf_super *second = tst->sb;
if (!first) {
st->sb = tst->sb;
tst->sb = NULL;
return 0;
}
if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
return 2;
/* FIXME should I look at anything else? */
return 0;
}
#ifndef MDASSEMBLE
/*
* A new array 'a' has been started which claims to be instance 'inst'
* within container 'c'.
* We need to confirm that the array matches the metadata in 'c' so
* that we don't corrupt any metadata.
*/
static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
{
dprintf("ddf: open_new %s\n", inst);
a->info.container_member = atoi(inst);
return 0;
}
/*
* The array 'a' is to be marked clean in the metadata.
* If '->resync_start' is not ~(unsigned long long)0, then the array is only
* clean up to the point (in sectors). If that cannot be recorded in the
* metadata, then leave it as dirty.
*
* For DDF, we need to clear the DDF_state_inconsistent bit in the
* !global! virtual_disk.virtual_entry structure.
*/
static int ddf_set_array_state(struct active_array *a, int consistent)
{
struct ddf_super *ddf = a->container->sb;
int inst = a->info.container_member;
int old = ddf->virt->entries[inst].state;
if (consistent == 2) {
/* Should check if a recovery should be started FIXME */
consistent = 1;
if (!is_resync_complete(&a->info))
consistent = 0;
}
if (consistent)
ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
else
ddf->virt->entries[inst].state |= DDF_state_inconsistent;
if (old != ddf->virt->entries[inst].state)
ddf->updates_pending = 1;
old = ddf->virt->entries[inst].init_state;
ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
if (is_resync_complete(&a->info))
ddf->virt->entries[inst].init_state |= DDF_init_full;
else if (a->info.resync_start == 0)
ddf->virt->entries[inst].init_state |= DDF_init_not;
else
ddf->virt->entries[inst].init_state |= DDF_init_quick;
if (old != ddf->virt->entries[inst].init_state)
ddf->updates_pending = 1;
dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
a->info.resync_start);
return consistent;
}
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
/*
* The state of each disk is stored in the global phys_disk structure
* in phys_disk.entries[n].state.
* This makes various combinations awkward.
* - When a device fails in any array, it must be failed in all arrays
* that include a part of this device.
* - When a component is rebuilding, we cannot include it officially in the
* array unless this is the only array that uses the device.
*
* So: when transitioning:
* Online -> failed, just set failed flag. monitor will propagate
* spare -> online, the device might need to be added to the array.
* spare -> failed, just set failed. Don't worry if in array or not.
*/
static void ddf_set_disk(struct active_array *a, int n, int state)
{
struct ddf_super *ddf = a->container->sb;
unsigned int inst = a->info.container_member;
struct vd_config *vc = find_vdcr(ddf, inst);
int pd = find_phys(ddf, vc->phys_refnum[n]);
int i, st, working;
struct mdinfo *mdi;
struct dl *dl;
if (vc == NULL) {
dprintf("ddf: cannot find instance %d!!\n", inst);
return;
}
/* Find the matching slot in 'info'. */
for (mdi = a->info.devs; mdi; mdi = mdi->next)
if (mdi->disk.raid_disk == n)
break;
if (!mdi)
return;
/* and find the 'dl' entry corresponding to that. */
for (dl = ddf->dlist; dl; dl = dl->next)
if (mdi->state_fd >= 0 &&
mdi->disk.major == dl->major &&
mdi->disk.minor == dl->minor)
break;
if (!dl)
return;
if (pd < 0 || pd != dl->pdnum) {
/* disk doesn't currently exist or has changed.
* If it is now in_sync, insert it. */
if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
struct vcl *vcl;
pd = dl->pdnum;
vc->phys_refnum[n] = dl->disk.refnum;
vcl = container_of(vc, struct vcl, conf);
vcl->lba_offset[n] = mdi->data_offset;
ddf->phys->entries[pd].type &=
~__cpu_to_be16(DDF_Global_Spare);
ddf->phys->entries[pd].type |=
__cpu_to_be16(DDF_Active_in_VD);
ddf->updates_pending = 1;
}
} else {
int old = ddf->phys->entries[pd].state;
if (state & DS_FAULTY)
ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
if (state & DS_INSYNC) {
ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
}
if (old != ddf->phys->entries[pd].state)
ddf->updates_pending = 1;
}
dprintf("ddf: set_disk %d to %x\n", n, state);
/* Now we need to check the state of the array and update
* virtual_disk.entries[n].state.
* It needs to be one of "optimal", "degraded", "failed".
* I don't understand 'deleted' or 'missing'.
*/
working = 0;
for (i=0; i < a->info.array.raid_disks; i++) {
pd = find_phys(ddf, vc->phys_refnum[i]);
if (pd < 0)
continue;
st = __be16_to_cpu(ddf->phys->entries[pd].state);
if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
== DDF_Online)
working++;
}
state = DDF_state_degraded;
if (working == a->info.array.raid_disks)
state = DDF_state_optimal;
else switch(vc->prl) {
case DDF_RAID0:
case DDF_CONCAT:
case DDF_JBOD:
state = DDF_state_failed;
break;
case DDF_RAID1:
if (working == 0)
state = DDF_state_failed;
else if (working == 2 && state == DDF_state_degraded)
state = DDF_state_part_optimal;
break;
case DDF_RAID4:
case DDF_RAID5:
if (working < a->info.array.raid_disks-1)
state = DDF_state_failed;
break;
case DDF_RAID6:
if (working < a->info.array.raid_disks-2)
state = DDF_state_failed;
else if (working == a->info.array.raid_disks-1)
state = DDF_state_part_optimal;
break;
}
if (ddf->virt->entries[inst].state !=
((ddf->virt->entries[inst].state & ~DDF_state_mask)
| state)) {
ddf->virt->entries[inst].state =
(ddf->virt->entries[inst].state & ~DDF_state_mask)
| state;
ddf->updates_pending = 1;
}
}
static void ddf_sync_metadata(struct supertype *st)
{
/*
* Write all data to all devices.
* Later, we might be able to track whether only local changes
* have been made, or whether any global data has been changed,
* but ddf is sufficiently weird that it probably always
* changes global data ....
*/
struct ddf_super *ddf = st->sb;
if (!ddf->updates_pending)
return;
ddf->updates_pending = 0;
__write_init_super_ddf(st);
dprintf("ddf: sync_metadata\n");
}
static void ddf_process_update(struct supertype *st,
struct metadata_update *update)
{
/* Apply this update to the metadata.
* The first 4 bytes are a DDF_*_MAGIC which guides
* our actions.
* Possible update are:
* DDF_PHYS_RECORDS_MAGIC
* Add a new physical device or remove an old one.
* Changes to this record only happen implicitly.
* used_pdes is the device number.
* DDF_VIRT_RECORDS_MAGIC
* Add a new VD. Possibly also change the 'access' bits.
* populated_vdes is the entry number.
* DDF_VD_CONF_MAGIC
* New or updated VD. the VIRT_RECORD must already
* exist. For an update, phys_refnum and lba_offset
* (at least) are updated, and the VD_CONF must
* be written to precisely those devices listed with
* a phys_refnum.
* DDF_SPARE_ASSIGN_MAGIC
* replacement Spare Assignment Record... but for which device?
*
* So, e.g.:
* - to create a new array, we send a VIRT_RECORD and
* a VD_CONF. Then assemble and start the array.
* - to activate a spare we send a VD_CONF to add the phys_refnum
* and offset. This will also mark the spare as active with
* a spare-assignment record.
*/
struct ddf_super *ddf = st->sb;
__u32 *magic = (__u32*)update->buf;
struct phys_disk *pd;
struct virtual_disk *vd;
struct vd_config *vc;
struct vcl *vcl;
struct dl *dl;
unsigned int mppe;
unsigned int ent;
unsigned int pdnum, pd2;
dprintf("Process update %x\n", *magic);
switch (*magic) {
case DDF_PHYS_RECORDS_MAGIC:
if (update->len != (sizeof(struct phys_disk) +
sizeof(struct phys_disk_entry)))
return;
pd = (struct phys_disk*)update->buf;
ent = __be16_to_cpu(pd->used_pdes);
if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
return;
if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
struct dl **dlp;
/* removing this disk. */
ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
struct dl *dl = *dlp;
if (dl->pdnum == (signed)ent) {
close(dl->fd);
dl->fd = -1;
/* FIXME this doesn't free
* dl->devname */
update->space = dl;
*dlp = dl->next;
break;
}
}
ddf->updates_pending = 1;
return;
}
if (!all_ff(ddf->phys->entries[ent].guid))
return;
ddf->phys->entries[ent] = pd->entries[0];
ddf->phys->used_pdes = __cpu_to_be16(1 +
__be16_to_cpu(ddf->phys->used_pdes));
ddf->updates_pending = 1;
if (ddf->add_list) {
struct active_array *a;
struct dl *al = ddf->add_list;
ddf->add_list = al->next;
al->next = ddf->dlist;
ddf->dlist = al;
/* As a device has been added, we should check
* for any degraded devices that might make
* use of this spare */
for (a = st->arrays ; a; a=a->next)
a->check_degraded = 1;
}
break;
case DDF_VIRT_RECORDS_MAGIC:
if (update->len != (sizeof(struct virtual_disk) +
sizeof(struct virtual_entry)))
return;
vd = (struct virtual_disk*)update->buf;
ent = __be16_to_cpu(vd->populated_vdes);
if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
return;
if (!all_ff(ddf->virt->entries[ent].guid))
return;
ddf->virt->entries[ent] = vd->entries[0];
ddf->virt->populated_vdes = __cpu_to_be16(1 +
__be16_to_cpu(ddf->virt->populated_vdes));
ddf->updates_pending = 1;
break;
case DDF_VD_CONF_MAGIC:
dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
if ((unsigned)update->len != ddf->conf_rec_len * 512)
return;
vc = (struct vd_config*)update->buf;
for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
break;
dprintf("vcl = %p\n", vcl);
if (vcl) {
/* An update, just copy the phys_refnum and lba_offset
* fields
*/
memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
mppe * (sizeof(__u32) + sizeof(__u64)));
} else {
/* A new VD_CONF */
if (!update->space)
return;
vcl = update->space;
update->space = NULL;
vcl->next = ddf->conflist;
memcpy(&vcl->conf, vc, update->len);
vcl->lba_offset = (__u64*)
&vcl->conf.phys_refnum[mppe];
for (ent = 0;
ent < __be16_to_cpu(ddf->virt->populated_vdes);
ent++)
if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
DDF_GUID_LEN) == 0) {
vcl->vcnum = ent;
break;
}
ddf->conflist = vcl;
}
/* Set DDF_Transition on all Failed devices - to help
* us detect those that are no longer in use
*/
for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
if (ddf->phys->entries[pdnum].state
& __be16_to_cpu(DDF_Failed))
ddf->phys->entries[pdnum].state
|= __be16_to_cpu(DDF_Transition);
/* Now make sure vlist is correct for each dl. */
for (dl = ddf->dlist; dl; dl = dl->next) {
unsigned int dn;
unsigned int vn = 0;
int in_degraded = 0;
for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
for (dn=0; dn < ddf->mppe ; dn++)
if (vcl->conf.phys_refnum[dn] ==
dl->disk.refnum) {
int vstate;
dprintf("dev %d has %p at %d\n",
dl->pdnum, vcl, vn);
/* Clear the Transition flag */
if (ddf->phys->entries[dl->pdnum].state
& __be16_to_cpu(DDF_Failed))
ddf->phys->entries[dl->pdnum].state &=
~__be16_to_cpu(DDF_Transition);
dl->vlist[vn++] = vcl;
vstate = ddf->virt->entries[vcl->vcnum].state
& DDF_state_mask;
if (vstate == DDF_state_degraded ||
vstate == DDF_state_part_optimal)
in_degraded = 1;
break;
}
while (vn < ddf->max_part)
dl->vlist[vn++] = NULL;
if (dl->vlist[0]) {
ddf->phys->entries[dl->pdnum].type &=
~__cpu_to_be16(DDF_Global_Spare);
if (!(ddf->phys->entries[dl->pdnum].type &
__cpu_to_be16(DDF_Active_in_VD))) {
ddf->phys->entries[dl->pdnum].type |=
__cpu_to_be16(DDF_Active_in_VD);
if (in_degraded)
ddf->phys->entries[dl->pdnum].state |=
__cpu_to_be16(DDF_Rebuilding);
}
}
if (dl->spare) {
ddf->phys->entries[dl->pdnum].type &=
~__cpu_to_be16(DDF_Global_Spare);
ddf->phys->entries[dl->pdnum].type |=
__cpu_to_be16(DDF_Spare);
}
if (!dl->vlist[0] && !dl->spare) {
ddf->phys->entries[dl->pdnum].type |=
__cpu_to_be16(DDF_Global_Spare);
ddf->phys->entries[dl->pdnum].type &=
~__cpu_to_be16(DDF_Spare |
DDF_Active_in_VD);
}
}
/* Now remove any 'Failed' devices that are not part
* of any VD. They will have the Transition flag set.
* Once done, we need to update all dl->pdnum numbers.
*/
pd2 = 0;
for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
if ((ddf->phys->entries[pdnum].state
& __be16_to_cpu(DDF_Failed))
&& (ddf->phys->entries[pdnum].state
& __be16_to_cpu(DDF_Transition)))
/* skip this one */;
else if (pdnum == pd2)
pd2++;
else {
ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
for (dl = ddf->dlist; dl; dl = dl->next)
if (dl->pdnum == (int)pdnum)
dl->pdnum = pd2;
pd2++;
}
ddf->phys->used_pdes = __cpu_to_be16(pd2);
while (pd2 < pdnum) {
memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
pd2++;
}
ddf->updates_pending = 1;
break;
case DDF_SPARE_ASSIGN_MAGIC:
default: break;
}
}
static void ddf_prepare_update(struct supertype *st,
struct metadata_update *update)
{
/* This update arrived at managemon.
* We are about to pass it to monitor.
* If a malloc is needed, do it here.
*/
struct ddf_super *ddf = st->sb;
__u32 *magic = (__u32*)update->buf;
if (*magic == DDF_VD_CONF_MAGIC)
if (posix_memalign(&update->space, 512,
offsetof(struct vcl, conf)
+ ddf->conf_rec_len * 512) != 0)
update->space = NULL;
}
/*
* Check if the array 'a' is degraded but not failed.
* If it is, find as many spares as are available and needed and
* arrange for their inclusion.
* We only choose devices which are not already in the array,
* and prefer those with a spare-assignment to this array.
* otherwise we choose global spares - assuming always that
* there is enough room.
* For each spare that we assign, we return an 'mdinfo' which
* describes the position for the device in the array.
* We also add to 'updates' a DDF_VD_CONF_MAGIC update with
* the new phys_refnum and lba_offset values.
*
* Only worry about BVDs at the moment.
*/
static struct mdinfo *ddf_activate_spare(struct active_array *a,
struct metadata_update **updates)
{
int working = 0;
struct mdinfo *d;
struct ddf_super *ddf = a->container->sb;
int global_ok = 0;
struct mdinfo *rv = NULL;
struct mdinfo *di;
struct metadata_update *mu;
struct dl *dl;
int i;
struct vd_config *vc;
__u64 *lba;
for (d = a->info.devs ; d ; d = d->next) {
if ((d->curr_state & DS_FAULTY) &&
d->state_fd >= 0)
/* wait for Removal to happen */
return NULL;
if (d->state_fd >= 0)
working ++;
}
dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
a->info.array.level);
if (working == a->info.array.raid_disks)
return NULL; /* array not degraded */
switch (a->info.array.level) {
case 1:
if (working == 0)
return NULL; /* failed */
break;
case 4:
case 5:
if (working < a->info.array.raid_disks - 1)
return NULL; /* failed */
break;
case 6:
if (working < a->info.array.raid_disks - 2)
return NULL; /* failed */
break;
default: /* concat or stripe */
return NULL; /* failed */
}
/* For each slot, if it is not working, find a spare */
dl = ddf->dlist;
for (i = 0; i < a->info.array.raid_disks; i++) {
for (d = a->info.devs ; d ; d = d->next)
if (d->disk.raid_disk == i)
break;
dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
if (d && (d->state_fd >= 0))
continue;
/* OK, this device needs recovery. Find a spare */
again:
for ( ; dl ; dl = dl->next) {
unsigned long long esize;
unsigned long long pos;
struct mdinfo *d2;
int is_global = 0;
int is_dedicated = 0;
struct extent *ex;
unsigned int j;
/* If in this array, skip */
for (d2 = a->info.devs ; d2 ; d2 = d2->next)
if (d2->state_fd >= 0 &&
d2->disk.major == dl->major &&
d2->disk.minor == dl->minor) {
dprintf("%x:%x already in array\n", dl->major, dl->minor);
break;
}
if (d2)
continue;
if (ddf->phys->entries[dl->pdnum].type &
__cpu_to_be16(DDF_Spare)) {
/* Check spare assign record */
if (dl->spare) {
if (dl->spare->type & DDF_spare_dedicated) {
/* check spare_ents for guid */
for (j = 0 ;
j < __be16_to_cpu(dl->spare->populated);
j++) {
if (memcmp(dl->spare->spare_ents[j].guid,
ddf->virt->entries[a->info.container_member].guid,
DDF_GUID_LEN) == 0)
is_dedicated = 1;
}
} else
is_global = 1;
}
} else if (ddf->phys->entries[dl->pdnum].type &
__cpu_to_be16(DDF_Global_Spare)) {
is_global = 1;
}
if ( ! (is_dedicated ||
(is_global && global_ok))) {
dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
is_dedicated, is_global);
continue;
}
/* We are allowed to use this device - is there space?
* We need a->info.component_size sectors */
ex = get_extents(ddf, dl);
if (!ex) {
dprintf("cannot get extents\n");
continue;
}
j = 0; pos = 0;
esize = 0;
do {
esize = ex[j].start - pos;
if (esize >= a->info.component_size)
break;
pos = ex[j].start + ex[j].size;
j++;
} while (ex[j-1].size);
free(ex);
if (esize < a->info.component_size) {
dprintf("%x:%x has no room: %llu %llu\n",
dl->major, dl->minor,
esize, a->info.component_size);
/* No room */
continue;
}
/* Cool, we have a device with some space at pos */
di = malloc(sizeof(*di));
if (!di)
continue;
memset(di, 0, sizeof(*di));
di->disk.number = i;
di->disk.raid_disk = i;
di->disk.major = dl->major;
di->disk.minor = dl->minor;
di->disk.state = 0;
di->recovery_start = 0;
di->data_offset = pos;
di->component_size = a->info.component_size;
di->container_member = dl->pdnum;
di->next = rv;
rv = di;
dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
i, pos);
break;
}
if (!dl && ! global_ok) {
/* not enough dedicated spares, try global */
global_ok = 1;
dl = ddf->dlist;
goto again;
}
}
if (!rv)
/* No spares found */
return rv;
/* Now 'rv' has a list of devices to return.
* Create a metadata_update record to update the
* phys_refnum and lba_offset values
*/
mu = malloc(sizeof(*mu));
if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
free(mu);
mu = NULL;
}
if (!mu) {
while (rv) {
struct mdinfo *n = rv->next;
free(rv);
rv = n;
}
return NULL;
}
mu->buf = malloc(ddf->conf_rec_len * 512);
mu->len = ddf->conf_rec_len * 512;
mu->space = NULL;
mu->space_list = NULL;
mu->next = *updates;
vc = find_vdcr(ddf, a->info.container_member);
memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
vc = (struct vd_config*)mu->buf;
lba = (__u64*)&vc->phys_refnum[ddf->mppe];
for (di = rv ; di ; di = di->next) {
vc->phys_refnum[di->disk.raid_disk] =
ddf->phys->entries[dl->pdnum].refnum;
lba[di->disk.raid_disk] = di->data_offset;
}
*updates = mu;
return rv;
}
#endif /* MDASSEMBLE */
static int ddf_level_to_layout(int level)
{
switch(level) {
case 0:
case 1:
return 0;
case 5:
return ALGORITHM_LEFT_SYMMETRIC;
case 6:
return ALGORITHM_ROTATING_N_CONTINUE;
case 10:
return 0x102;
default:
return UnSet;
}
}
static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
{
if (level && *level == UnSet)
*level = LEVEL_CONTAINER;
if (level && layout && *layout == UnSet)
*layout = ddf_level_to_layout(*level);
}
struct superswitch super_ddf = {
#ifndef MDASSEMBLE
.examine_super = examine_super_ddf,
.brief_examine_super = brief_examine_super_ddf,
.brief_examine_subarrays = brief_examine_subarrays_ddf,
.export_examine_super = export_examine_super_ddf,
.detail_super = detail_super_ddf,
.brief_detail_super = brief_detail_super_ddf,
.validate_geometry = validate_geometry_ddf,
.write_init_super = write_init_super_ddf,
.add_to_super = add_to_super_ddf,
.remove_from_super = remove_from_super_ddf,
.load_container = load_container_ddf,
#endif
.match_home = match_home_ddf,
.uuid_from_super= uuid_from_super_ddf,
.getinfo_super = getinfo_super_ddf,
.update_super = update_super_ddf,
.avail_size = avail_size_ddf,
.compare_super = compare_super_ddf,
.load_super = load_super_ddf,
.init_super = init_super_ddf,
.store_super = store_super_ddf,
.free_super = free_super_ddf,
.match_metadata_desc = match_metadata_desc_ddf,
.container_content = container_content_ddf,
.default_geometry = default_geometry_ddf,
.external = 1,
#ifndef MDASSEMBLE
/* for mdmon */
.open_new = ddf_open_new,
.set_array_state= ddf_set_array_state,
.set_disk = ddf_set_disk,
.sync_metadata = ddf_sync_metadata,
.process_update = ddf_process_update,
.prepare_update = ddf_prepare_update,
.activate_spare = ddf_activate_spare,
#endif
.name = "ddf",
};