mdadm/super1.c

2632 lines
72 KiB
C

/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2001-2009 Neil Brown <neilb@suse.de>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <neilb@suse.de>
*/
#include <stddef.h>
#include "mdadm.h"
/*
* The version-1 superblock :
* All numeric fields are little-endian.
*
* total size: 256 bytes plus 2 per device.
* 1K allows 384 devices.
*/
struct mdp_superblock_1 {
/* constant array information - 128 bytes */
__u32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */
__u32 major_version; /* 1 */
__u32 feature_map; /* 0 for now */
__u32 pad0; /* always set to 0 when writing */
__u8 set_uuid[16]; /* user-space generated. */
char set_name[32]; /* set and interpreted by user-space */
__u64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/
__u32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */
__u32 layout; /* only for raid5 currently */
__u64 size; /* used size of component devices, in 512byte sectors */
__u32 chunksize; /* in 512byte sectors */
__u32 raid_disks;
__u32 bitmap_offset; /* sectors after start of superblock that bitmap starts
* NOTE: signed, so bitmap can be before superblock
* only meaningful of feature_map[0] is set.
*/
/* These are only valid with feature bit '4' */
__u32 new_level; /* new level we are reshaping to */
__u64 reshape_position; /* next address in array-space for reshape */
__u32 delta_disks; /* change in number of raid_disks */
__u32 new_layout; /* new layout */
__u32 new_chunk; /* new chunk size (sectors) */
__u32 new_offset; /* signed number to add to data_offset in new
* layout. 0 == no-change. This can be
* different on each device in the array.
*/
/* constant this-device information - 64 bytes */
__u64 data_offset; /* sector start of data, often 0 */
__u64 data_size; /* sectors in this device that can be used for data */
__u64 super_offset; /* sector start of this superblock */
union {
__u64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */
__u64 journal_tail;/* journal tail of journal device (from data_offset) */
};
__u32 dev_number; /* permanent identifier of this device - not role in raid */
__u32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */
__u8 device_uuid[16]; /* user-space setable, ignored by kernel */
__u8 devflags; /* per-device flags. Only one defined...*/
#define WriteMostly1 1 /* mask for writemostly flag in above */
/* bad block log. If there are any bad blocks the feature flag is set.
* if offset and size are non-zero, that space is reserved and available.
*/
__u8 bblog_shift; /* shift from sectors to block size for badblocklist */
__u16 bblog_size; /* number of sectors reserved for badblocklist */
__u32 bblog_offset; /* sector offset from superblock to bblog, signed */
/* array state information - 64 bytes */
__u64 utime; /* 40 bits second, 24 btes microseconds */
__u64 events; /* incremented when superblock updated */
__u64 resync_offset; /* data before this offset (from data_offset) known to be in sync */
__u32 sb_csum; /* checksum upto dev_roles[max_dev] */
__u32 max_dev; /* size of dev_roles[] array to consider */
__u8 pad3[64-32]; /* set to 0 when writing */
/* device state information. Indexed by dev_number.
* 2 bytes per device
* Note there are no per-device state flags. State information is rolled
* into the 'roles' value. If a device is spare or faulty, then it doesn't
* have a meaningful role.
*/
__u16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */
};
#define MAX_SB_SIZE 4096
/* bitmap super size is 256, but we round up to a sector for alignment */
#define BM_SUPER_SIZE 512
#define MAX_DEVS ((int)(MAX_SB_SIZE - sizeof(struct mdp_superblock_1)) / 2)
#define SUPER1_SIZE (MAX_SB_SIZE + BM_SUPER_SIZE \
+ sizeof(struct misc_dev_info))
struct misc_dev_info {
__u64 device_size;
};
/* feature_map bits */
#define MD_FEATURE_BITMAP_OFFSET 1
#define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and
* must be honoured
*/
#define MD_FEATURE_RESHAPE_ACTIVE 4
#define MD_FEATURE_BAD_BLOCKS 8 /* badblock list is not empty */
#define MD_FEATURE_REPLACEMENT 16 /* This device is replacing an
* active device with same 'role'.
* 'recovery_offset' is also set.
*/
#define MD_FEATURE_RESHAPE_BACKWARDS 32 /* Reshape doesn't change number
* of devices, but is going
* backwards anyway.
*/
#define MD_FEATURE_NEW_OFFSET 64 /* new_offset must be honoured */
#define MD_FEATURE_BITMAP_VERSIONED 256 /* bitmap version number checked properly */
#define MD_FEATURE_JOURNAL 512 /* support write journal */
#define MD_FEATURE_ALL (MD_FEATURE_BITMAP_OFFSET \
|MD_FEATURE_RECOVERY_OFFSET \
|MD_FEATURE_RESHAPE_ACTIVE \
|MD_FEATURE_BAD_BLOCKS \
|MD_FEATURE_REPLACEMENT \
|MD_FEATURE_RESHAPE_BACKWARDS \
|MD_FEATURE_NEW_OFFSET \
|MD_FEATURE_BITMAP_VERSIONED \
|MD_FEATURE_JOURNAL \
)
static int role_from_sb(struct mdp_superblock_1 *sb)
{
unsigned int d;
int role;
d = __le32_to_cpu(sb->dev_number);
if (d < __le32_to_cpu(sb->max_dev))
role = __le16_to_cpu(sb->dev_roles[d]);
else
role = MD_DISK_ROLE_SPARE;
return role;
}
/* return how many bytes are needed for bitmap, for cluster-md each node
* should have it's own bitmap */
static unsigned int calc_bitmap_size(bitmap_super_t *bms, unsigned int boundary)
{
unsigned long long bits, bytes;
bits = __le64_to_cpu(bms->sync_size) / (__le32_to_cpu(bms->chunksize)>>9);
bytes = (bits+7) >> 3;
bytes += sizeof(bitmap_super_t);
bytes = ROUND_UP(bytes, boundary);
return bytes;
}
static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
{
unsigned int disk_csum, csum;
unsigned long long newcsum;
int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2;
unsigned int *isuper = (unsigned int*)sb;
/* make sure I can count... */
if (offsetof(struct mdp_superblock_1,data_offset) != 128 ||
offsetof(struct mdp_superblock_1, utime) != 192 ||
sizeof(struct mdp_superblock_1) != 256) {
fprintf(stderr, "WARNING - superblock isn't sized correctly\n");
}
disk_csum = sb->sb_csum;
sb->sb_csum = 0;
newcsum = 0;
for (; size>=4; size -= 4 ) {
newcsum += __le32_to_cpu(*isuper);
isuper++;
}
if (size == 2)
newcsum += __le16_to_cpu(*(unsigned short*) isuper);
csum = (newcsum & 0xffffffff) + (newcsum >> 32);
sb->sb_csum = disk_csum;
return __cpu_to_le32(csum);
}
/*
* Information related to file descriptor used for aligned reads/writes.
* Cache the block size.
*/
struct align_fd {
int fd;
int blk_sz;
};
static void init_afd(struct align_fd *afd, int fd)
{
afd->fd = fd;
if (ioctl(afd->fd, BLKSSZGET, &afd->blk_sz) != 0)
afd->blk_sz = 512;
}
static char abuf[4096+4096];
static int aread(struct align_fd *afd, void *buf, int len)
{
/* aligned read.
* On devices with a 4K sector size, we need to read
* the full sector and copy relevant bits into
* the buffer
*/
int bsize, iosize;
char *b;
int n;
bsize = afd->blk_sz;
if (!bsize || bsize > 4096 || len > 4096) {
if (!bsize)
fprintf(stderr, "WARNING - aread() called with invalid block size\n");
return -1;
}
b = ROUND_UP_PTR((char *)abuf, 4096);
for (iosize = 0; iosize < len; iosize += bsize)
;
n = read(afd->fd, b, iosize);
if (n <= 0)
return n;
lseek(afd->fd, len - n, 1);
if (n > len)
n = len;
memcpy(buf, b, n);
return n;
}
static int awrite(struct align_fd *afd, void *buf, int len)
{
/* aligned write.
* On devices with a 4K sector size, we need to write
* the full sector. We pre-read if the sector is larger
* than the write.
* The address must be sector-aligned.
*/
int bsize, iosize;
char *b;
int n;
bsize = afd->blk_sz;
if (!bsize || bsize > 4096 || len > 4096) {
if (!bsize)
fprintf(stderr, "WARNING - awrite() called with invalid block size\n");
return -1;
}
b = ROUND_UP_PTR((char *)abuf, 4096);
for (iosize = 0; iosize < len ; iosize += bsize)
;
if (len != iosize) {
n = read(afd->fd, b, iosize);
if (n <= 0)
return n;
lseek(afd->fd, -n, 1);
}
memcpy(b, buf, len);
n = write(afd->fd, b, iosize);
if (n <= 0)
return n;
lseek(afd->fd, len - n, 1);
return len;
}
#ifndef MDASSEMBLE
static void examine_super1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb)+MAX_SB_SIZE);
time_t atime;
unsigned int d;
int role;
int delta_extra = 0;
int i;
char *c;
int l = homehost ? strlen(homehost) : 0;
int layout;
unsigned long long sb_offset;
struct mdinfo info;
printf(" Magic : %08x\n", __le32_to_cpu(sb->magic));
printf(" Version : 1");
sb_offset = __le64_to_cpu(sb->super_offset);
if (sb_offset <= 4)
printf(".1\n");
else if (sb_offset <= 8)
printf(".2\n");
else
printf(".0\n");
printf(" Feature Map : 0x%x\n", __le32_to_cpu(sb->feature_map));
printf(" Array UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n");
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
printf("\n");
if (bms->nodes > 0)
printf(" Cluster Name : %-64s\n", bms->cluster_name);
atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL;
printf(" Creation Time : %.24s\n", ctime(&atime));
c=map_num(pers, __le32_to_cpu(sb->level));
printf(" Raid Level : %s\n", c?c:"-unknown-");
printf(" Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks));
printf("\n");
printf(" Avail Dev Size : %llu%s\n",
(unsigned long long)__le64_to_cpu(sb->data_size),
human_size(__le64_to_cpu(sb->data_size)<<9));
if (__le32_to_cpu(sb->level) > 0) {
int ddsks = 0, ddsks_denom = 1;
switch(__le32_to_cpu(sb->level)) {
case 1: ddsks=1;break;
case 4:
case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break;
case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break;
case 10:
layout = __le32_to_cpu(sb->layout);
ddsks = __le32_to_cpu(sb->raid_disks);
ddsks_denom = (layout&255) * ((layout>>8)&255);
}
if (ddsks) {
long long asize = __le64_to_cpu(sb->size);
asize = (asize << 9) * ddsks / ddsks_denom;
printf(" Array Size : %llu%s\n",
asize >> 10, human_size(asize));
}
if (sb->size != sb->data_size)
printf(" Used Dev Size : %llu%s\n",
(unsigned long long)__le64_to_cpu(sb->size),
human_size(__le64_to_cpu(sb->size)<<9));
}
if (sb->data_offset)
printf(" Data Offset : %llu sectors\n",
(unsigned long long)__le64_to_cpu(sb->data_offset));
if (sb->new_offset &&
(__le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) {
unsigned long long offset = __le64_to_cpu(sb->data_offset);
offset += (signed)(int32_t)__le32_to_cpu(sb->new_offset);
printf(" New Offset : %llu sectors\n", offset);
}
printf(" Super Offset : %llu sectors\n",
(unsigned long long)__le64_to_cpu(sb->super_offset));
if (__le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)
printf("Recovery Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->recovery_offset));
st->ss->getinfo_super(st, &info, NULL);
if (info.space_after != 1 &&
!(__le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
printf(" Unused Space : before=%llu sectors, after=%llu sectors\n",
info.space_before, info.space_after);
printf(" State : %s\n", (__le64_to_cpu(sb->resync_offset)+1)? "active":"clean");
printf(" Device UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->device_uuid[i]);
}
printf("\n");
printf("\n");
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
printf("Internal Bitmap : %ld sectors from superblock\n",
(long)(int32_t)__le32_to_cpu(sb->bitmap_offset));
}
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE)) {
printf(" Reshape pos'n : %llu%s\n", (unsigned long long)__le64_to_cpu(sb->reshape_position)/2,
human_size(__le64_to_cpu(sb->reshape_position)<<9));
if (__le32_to_cpu(sb->delta_disks)) {
printf(" Delta Devices : %d", __le32_to_cpu(sb->delta_disks));
printf(" (%d->%d)\n",
__le32_to_cpu(sb->raid_disks)-__le32_to_cpu(sb->delta_disks),
__le32_to_cpu(sb->raid_disks));
if ((int)__le32_to_cpu(sb->delta_disks) < 0)
delta_extra = -__le32_to_cpu(sb->delta_disks);
}
if (__le32_to_cpu(sb->new_level) != __le32_to_cpu(sb->level)) {
c = map_num(pers, __le32_to_cpu(sb->new_level));
printf(" New Level : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->new_layout) != __le32_to_cpu(sb->layout)) {
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->new_layout));
printf(" New Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 6) {
c = map_num(r6layout, __le32_to_cpu(sb->new_layout));
printf(" New Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
printf(" New Layout :");
print_r10_layout(__le32_to_cpu(sb->new_layout));
printf("\n");
}
}
if (__le32_to_cpu(sb->new_chunk) != __le32_to_cpu(sb->chunksize))
printf(" New Chunksize : %dK\n", __le32_to_cpu(sb->new_chunk)/2);
printf("\n");
}
if (sb->devflags) {
printf(" Flags :");
if (sb->devflags & WriteMostly1)
printf(" write-mostly");
printf("\n");
}
atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL;
printf(" Update Time : %.24s\n", ctime(&atime));
if (sb->bblog_size && sb->bblog_offset) {
printf(" Bad Block Log : %d entries available at offset %ld sectors",
__le16_to_cpu(sb->bblog_size)*512/8,
(long)(int32_t)__le32_to_cpu(sb->bblog_offset));
if (sb->feature_map &
__cpu_to_le32(MD_FEATURE_BAD_BLOCKS))
printf(" - bad blocks present.");
printf("\n");
}
if (calc_sb_1_csum(sb) == sb->sb_csum)
printf(" Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum));
else
printf(" Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum),
__le32_to_cpu(calc_sb_1_csum(sb)));
printf(" Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events));
printf("\n");
if (__le32_to_cpu(sb->level) == 5) {
c = map_num(r5layout, __le32_to_cpu(sb->layout));
printf(" Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 6) {
c = map_num(r6layout, __le32_to_cpu(sb->layout));
printf(" Layout : %s\n", c?c:"-unknown-");
}
if (__le32_to_cpu(sb->level) == 10) {
int lo = __le32_to_cpu(sb->layout);
printf(" Layout :");
print_r10_layout(lo);
printf("\n");
}
switch(__le32_to_cpu(sb->level)) {
case 0:
case 4:
case 5:
case 6:
case 10:
printf(" Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
case -1:
printf(" Rounding : %dK\n", __le32_to_cpu(sb->chunksize)/2);
break;
default: break;
}
printf("\n");
#if 0
/* This turns out to just be confusing */
printf(" Array Slot : %d (", __le32_to_cpu(sb->dev_number));
for (i= __le32_to_cpu(sb->max_dev); i> 0 ; i--)
if (__le16_to_cpu(sb->dev_roles[i-1]) != MD_DISK_ROLE_SPARE)
break;
for (d=0; d < i; d++) {
int role = __le16_to_cpu(sb->dev_roles[d]);
if (d) printf(", ");
if (role == MD_DISK_ROLE_SPARE) printf("empty");
else if(role == MD_DISK_ROLE_FAULTY) printf("failed");
else printf("%d", role);
}
printf(")\n");
#endif
printf(" Device Role : ");
role = role_from_sb(sb);
if (role >= MD_DISK_ROLE_FAULTY)
printf("spare\n");
else if (role == MD_DISK_ROLE_JOURNAL)
printf("Journal\n");
else if (sb->feature_map & __cpu_to_le32(MD_FEATURE_REPLACEMENT))
printf("Replacement device %d\n", role);
else
printf("Active device %d\n", role);
printf(" Array State : ");
for (d=0; d<__le32_to_cpu(sb->raid_disks) + delta_extra; d++) {
int cnt = 0;
unsigned int i;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
unsigned int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == d)
cnt++;
}
if (cnt == 2)
printf("R");
else if (cnt == 1)
printf("A");
else if (cnt == 0)
printf(".");
else
printf("?");
}
#if 0
/* This is confusing too */
faulty = 0;
for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
int role = __le16_to_cpu(sb->dev_roles[i]);
if (role == MD_DISK_ROLE_FAULTY)
faulty++;
}
if (faulty) printf(" %d failed", faulty);
#endif
printf(" ('A' == active, '.' == missing, 'R' == replacing)");
printf("\n");
}
static void brief_examine_super1(struct supertype *st, int verbose)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
unsigned long long sb_offset;
char *nm;
char *c=map_num(pers, __le32_to_cpu(sb->level));
nm = strchr(sb->set_name, ':');
if (nm)
nm++;
else if (sb->set_name[0])
nm = sb->set_name;
else
nm = NULL;
printf("ARRAY ");
if (nm) {
printf("/dev/md/");
print_escape(nm);
putchar(' ');
}
if (verbose && c)
printf(" level=%s", c);
sb_offset = __le64_to_cpu(sb->super_offset);
if (sb_offset <= 4)
printf(" metadata=1.1 ");
else if (sb_offset <= 8)
printf(" metadata=1.2 ");
else
printf(" metadata=1.0 ");
if (verbose)
printf("num-devices=%d ", __le32_to_cpu(sb->raid_disks));
printf("UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
if (sb->set_name[0]) {
printf(" name=");
print_quoted(sb->set_name);
}
printf("\n");
}
static void export_examine_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
int len = 32;
int layout;
printf("MD_LEVEL=%s\n", map_num(pers, __le32_to_cpu(sb->level)));
printf("MD_DEVICES=%d\n", __le32_to_cpu(sb->raid_disks));
for (i=0; i<32; i++)
if (sb->set_name[i] == '\n' ||
sb->set_name[i] == '\0') {
len = i;
break;
}
if (len)
printf("MD_NAME=%.*s\n", len, sb->set_name);
if (__le32_to_cpu(sb->level) > 0) {
int ddsks = 0, ddsks_denom = 1;
switch(__le32_to_cpu(sb->level)) {
case 1: ddsks=1;break;
case 4:
case 5: ddsks = __le32_to_cpu(sb->raid_disks)-1; break;
case 6: ddsks = __le32_to_cpu(sb->raid_disks)-2; break;
case 10:
layout = __le32_to_cpu(sb->layout);
ddsks = __le32_to_cpu(sb->raid_disks);
ddsks_denom = (layout&255) * ((layout>>8)&255);
}
if (ddsks) {
long long asize = __le64_to_cpu(sb->size);
asize = (asize << 9) * ddsks / ddsks_denom;
printf("MD_ARRAY_SIZE=%s\n",human_size_brief(asize,JEDEC));
}
}
printf("MD_UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n");
printf("MD_UPDATE_TIME=%llu\n",
__le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL);
printf("MD_DEV_UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->device_uuid[i]);
}
printf("\n");
printf("MD_EVENTS=%llu\n",
(unsigned long long)__le64_to_cpu(sb->events));
}
static int copy_metadata1(struct supertype *st, int from, int to)
{
/* Read superblock. If it looks good, write it out.
* Then if a bitmap is present, copy that.
* And if a bad-block-list is present, copy that too.
*/
void *buf;
unsigned long long dsize, sb_offset;
const int bufsize = 4*1024;
struct mdp_superblock_1 super, *sb;
if (posix_memalign(&buf, 4096, bufsize) != 0)
return 1;
if (!get_dev_size(from, NULL, &dsize))
goto err;
dsize >>= 9;
if (dsize < 24)
goto err;
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
goto err;
}
if (lseek64(from, sb_offset << 9, 0) < 0LL)
goto err;
if (read(from, buf, bufsize) != bufsize)
goto err;
sb = buf;
super = *sb; // save most of sb for when we reuse buf
if (__le32_to_cpu(super.magic) != MD_SB_MAGIC ||
__le32_to_cpu(super.major_version) != 1 ||
__le64_to_cpu(super.super_offset) != sb_offset ||
calc_sb_1_csum(sb) != super.sb_csum)
goto err;
if (lseek64(to, sb_offset << 9, 0) < 0LL)
goto err;
if (write(to, buf, bufsize) != bufsize)
goto err;
if (super.feature_map & __le32_to_cpu(MD_FEATURE_BITMAP_OFFSET)) {
unsigned long long bitmap_offset = sb_offset;
int bytes = 4096; // just an estimate.
int written = 0;
struct align_fd afrom, ato;
init_afd(&afrom, from);
init_afd(&ato, to);
bitmap_offset += (int32_t)__le32_to_cpu(super.bitmap_offset);
if (lseek64(from, bitmap_offset<<9, 0) < 0)
goto err;
if (lseek64(to, bitmap_offset<<9, 0) < 0)
goto err;
for (written = 0; written < bytes ; ) {
int n = bytes - written;
if (n > 4096)
n = 4096;
if (aread(&afrom, buf, n) != n)
goto err;
if (written == 0) {
/* have the header, can calculate
* correct bitmap bytes */
bitmap_super_t *bms;
bms = (void*)buf;
bytes = calc_bitmap_size(bms, 512);
if (n > bytes)
n = bytes;
}
if (awrite(&ato, buf, n) != n)
goto err;
written += n;
}
}
if (super.bblog_size != 0 &&
__le32_to_cpu(super.bblog_size) <= 100 &&
super.bblog_offset != 0 &&
(super.feature_map & __le32_to_cpu(MD_FEATURE_BAD_BLOCKS))) {
/* There is a bad block log */
unsigned long long bb_offset = sb_offset;
int bytes = __le32_to_cpu(super.bblog_size) * 512;
int written = 0;
struct align_fd afrom, ato;
init_afd(&afrom, from);
init_afd(&ato, to);
bb_offset += (int32_t)__le32_to_cpu(super.bblog_offset);
if (lseek64(from, bb_offset<<9, 0) < 0)
goto err;
if (lseek64(to, bb_offset<<9, 0) < 0)
goto err;
for (written = 0; written < bytes ; ) {
int n = bytes - written;
if (n > 4096)
n = 4096;
if (aread(&afrom, buf, n) != n)
goto err;
if (awrite(&ato, buf, n) != n)
goto err;
written += n;
}
}
free(buf);
return 0;
err:
free(buf);
return 1;
}
static void detail_super1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + MAX_SB_SIZE);
int i;
int l = homehost ? strlen(homehost) : 0;
printf(" Name : %.32s", sb->set_name);
if (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0)
printf(" (local to host %s)", homehost);
if (bms->nodes > 0)
printf("\n Cluster Name : %-64s", bms->cluster_name);
printf("\n UUID : ");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
printf("\n Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events));
}
static void brief_detail_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
if (sb->set_name[0]) {
printf(" name=");
print_quoted(sb->set_name);
}
printf(" UUID=");
for (i=0; i<16; i++) {
if ((i&3)==0 && i != 0) printf(":");
printf("%02x", sb->set_uuid[i]);
}
}
static void export_detail_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
int i;
int len = 32;
for (i=0; i<32; i++)
if (sb->set_name[i] == '\n' ||
sb->set_name[i] == '\0') {
len = i;
break;
}
if (len)
printf("MD_NAME=%.*s\n", len, sb->set_name);
}
static int examine_badblocks_super1(struct supertype *st, int fd, char *devname)
{
struct mdp_superblock_1 *sb = st->sb;
unsigned long long offset;
int size;
__u64 *bbl, *bbp;
int i;
if (!sb->bblog_size || __le32_to_cpu(sb->bblog_size) > 100
|| !sb->bblog_offset){
printf("No bad-blocks list configured on %s\n", devname);
return 0;
}
if ((sb->feature_map & __cpu_to_le32(MD_FEATURE_BAD_BLOCKS))
== 0) {
printf("Bad-blocks list is empty in %s\n", devname);
return 0;
}
size = __le32_to_cpu(sb->bblog_size)* 512;
if (posix_memalign((void**)&bbl, 4096, size) != 0) {
pr_err("could not allocate badblocks list\n");
return 0;
}
offset = __le64_to_cpu(sb->super_offset) +
(int)__le32_to_cpu(sb->bblog_offset);
offset <<= 9;
if (lseek64(fd, offset, 0) < 0) {
pr_err("Cannot seek to bad-blocks list\n");
return 1;
}
if (read(fd, bbl, size) != size) {
pr_err("Cannot read bad-blocks list\n");
return 1;
}
/* 64bits per entry. 10 bits is block-count, 54 bits is block
* offset. Blocks are sectors unless bblog->shift makes them bigger
*/
bbp = (__u64*)bbl;
printf("Bad-blocks on %s:\n", devname);
for (i = 0; i < size/8; i++, bbp++) {
__u64 bb = __le64_to_cpu(*bbp);
int count = bb & 0x3ff;
unsigned long long sector = bb >> 10;
if (bb + 1 == 0)
break;
sector <<= sb->bblog_shift;
count <<= sb->bblog_shift;
printf("%20llu for %d sectors\n", sector, count);
}
return 0;
}
#endif
static int match_home1(struct supertype *st, char *homehost)
{
struct mdp_superblock_1 *sb = st->sb;
int l = homehost ? strlen(homehost) : 0;
return (l > 0 && l < 32 &&
sb->set_name[l] == ':' &&
strncmp(sb->set_name, homehost, l) == 0);
}
static void uuid_from_super1(struct supertype *st, int uuid[4])
{
struct mdp_superblock_1 *super = st->sb;
char *cuuid = (char*)uuid;
int i;
for (i=0; i<16; i++)
cuuid[i] = super->set_uuid[i];
}
static void getinfo_super1(struct supertype *st, struct mdinfo *info, char *map)
{
struct mdp_superblock_1 *sb = st->sb;
struct bitmap_super_s *bsb = (void*)(((char*)sb)+MAX_SB_SIZE);
struct misc_dev_info *misc = (void*)(((char*)sb)+MAX_SB_SIZE+BM_SUPER_SIZE);
int working = 0;
unsigned int i;
unsigned int role;
unsigned int map_disks = info->array.raid_disks;
unsigned long long super_offset;
unsigned long long data_size;
memset(info, 0, sizeof(*info));
info->array.major_version = 1;
info->array.minor_version = st->minor_version;
info->array.patch_version = 0;
info->array.raid_disks = __le32_to_cpu(sb->raid_disks);
info->array.level = __le32_to_cpu(sb->level);
info->array.layout = __le32_to_cpu(sb->layout);
info->array.md_minor = -1;
info->array.ctime = __le64_to_cpu(sb->ctime);
info->array.utime = __le64_to_cpu(sb->utime);
info->array.chunk_size = __le32_to_cpu(sb->chunksize)*512;
info->array.state =
(__le64_to_cpu(sb->resync_offset) == MaxSector)
? 1 : 0;
if (__le32_to_cpu(bsb->nodes) > 1)
info->array.state |= (1 << MD_SB_CLUSTERED);
info->data_offset = __le64_to_cpu(sb->data_offset);
info->component_size = __le64_to_cpu(sb->size);
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_BITMAP_OFFSET))
info->bitmap_offset = (int32_t)__le32_to_cpu(sb->bitmap_offset);
info->disk.major = 0;
info->disk.minor = 0;
info->disk.number = __le32_to_cpu(sb->dev_number);
if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) ||
__le32_to_cpu(sb->dev_number) >= MAX_DEVS)
role = MD_DISK_ROLE_FAULTY;
else
role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]);
super_offset = __le64_to_cpu(sb->super_offset);
if (info->array.level <= 0)
data_size = __le64_to_cpu(sb->data_size);
else
data_size = __le64_to_cpu(sb->size);
if (info->data_offset < super_offset) {
unsigned long long end;
info->space_before = info->data_offset;
end = super_offset;
if (sb->bblog_offset && sb->bblog_size) {
unsigned long long bboffset = super_offset;
bboffset += (int32_t)__le32_to_cpu(sb->bblog_offset);
if (bboffset < end)
end = bboffset;
}
if (super_offset + info->bitmap_offset < end)
end = super_offset + info->bitmap_offset;
if (info->data_offset + data_size < end)
info->space_after = end - data_size - info->data_offset;
else
info->space_after = 0;
} else {
unsigned long long earliest;
earliest = super_offset + (32+4)*2; /* match kernel */
if (info->bitmap_offset > 0) {
unsigned long long bmend = info->bitmap_offset;
unsigned long long size = __le64_to_cpu(bsb->sync_size);
size /= __le32_to_cpu(bsb->chunksize) >> 9;
size = (size + 7) >> 3;
size += sizeof(bitmap_super_t);
size = ROUND_UP(size, 4096);
size /= 512;
bmend += size;
if (bmend > earliest)
bmend = earliest;
}
if (sb->bblog_offset && sb->bblog_size) {
unsigned long long bbend = super_offset;
bbend += (int32_t)__le32_to_cpu(sb->bblog_offset);
bbend += __le32_to_cpu(sb->bblog_size);
if (bbend > earliest)
earliest = bbend;
}
if (earliest < info->data_offset)
info->space_before = info->data_offset - earliest;
else
info->space_before = 0;
info->space_after = misc->device_size - data_size - info->data_offset;
}
if (info->space_before == 0 && info->space_after == 0) {
/* It will look like we don't support data_offset changes,
* be we do - it's just that there is no room.
* A change that reduced the number of devices should
* still be allowed, so set the otherwise useless value of '1'
*/
info->space_after = 1;
}
info->disk.raid_disk = -1;
switch(role) {
case MD_DISK_ROLE_SPARE:
info->disk.state = 0; /* spare: not active, not sync, not faulty */
break;
case MD_DISK_ROLE_FAULTY:
info->disk.state = 1; /* faulty */
break;
case MD_DISK_ROLE_JOURNAL:
info->disk.state = (1 << MD_DISK_JOURNAL);
info->disk.raid_disk = role;
info->space_after = (misc->device_size - info->data_offset) % 8; /* journal uses all 4kB blocks*/
break;
default:
info->disk.state = 6; /* active and in sync */
info->disk.raid_disk = role;
}
if (sb->devflags & WriteMostly1)
info->disk.state |= (1 << MD_DISK_WRITEMOSTLY);
info->events = __le64_to_cpu(sb->events);
sprintf(info->text_version, "1.%d", st->minor_version);
info->safe_mode_delay = 200;
memcpy(info->uuid, sb->set_uuid, 16);
strncpy(info->name, sb->set_name, 32);
info->name[32] = 0;
if ((__le32_to_cpu(sb->feature_map)&MD_FEATURE_REPLACEMENT)) {
info->disk.state &= ~(1 << MD_DISK_SYNC);
info->disk.state |= 1 << MD_DISK_REPLACEMENT;
}
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RECOVERY_OFFSET))
info->recovery_start = __le32_to_cpu(sb->recovery_offset);
else
info->recovery_start = MaxSector;
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE)) {
info->reshape_active = 1;
if ((sb->feature_map & __le32_to_cpu(MD_FEATURE_NEW_OFFSET)) &&
sb->new_offset != 0)
info->reshape_active |= RESHAPE_NO_BACKUP;
info->reshape_progress = __le64_to_cpu(sb->reshape_position);
info->new_level = __le32_to_cpu(sb->new_level);
info->delta_disks = __le32_to_cpu(sb->delta_disks);
info->new_layout = __le32_to_cpu(sb->new_layout);
info->new_chunk = __le32_to_cpu(sb->new_chunk)<<9;
if (info->delta_disks < 0)
info->array.raid_disks -= info->delta_disks;
} else
info->reshape_active = 0;
info->recovery_blocked = info->reshape_active;
if (map)
for (i=0; i<map_disks; i++)
map[i] = 0;
for (i = 0; i < __le32_to_cpu(sb->max_dev); i++) {
role = __le16_to_cpu(sb->dev_roles[i]);
if (/*role == MD_DISK_ROLE_SPARE || */role < (unsigned) info->array.raid_disks) {
working++;
if (map && role < map_disks)
map[role] = 1;
}
}
info->array.working_disks = working;
if (sb->feature_map & __le32_to_cpu(MD_FEATURE_JOURNAL))
info->journal_device_required = 1;
info->journal_clean = 0;
}
static struct mdinfo *container_content1(struct supertype *st, char *subarray)
{
struct mdinfo *info;
if (subarray)
return NULL;
info = xmalloc(sizeof(*info));
getinfo_super1(st, info, NULL);
return info;
}
static int update_super1(struct supertype *st, struct mdinfo *info,
char *update,
char *devname, int verbose,
int uuid_set, char *homehost)
{
/* NOTE: for 'assemble' and 'force' we need to return non-zero
* if any change was made. For others, the return value is
* ignored.
*/
int rv = 0;
int lockid;
struct mdp_superblock_1 *sb = st->sb;
if (is_clustered(st)) {
rv = cluster_get_dlmlock(st, &lockid);
if (rv) {
pr_err("Cannot get dlmlock in %s return %d\n", __func__, rv);
cluster_release_dlmlock(st, lockid);
return rv;
}
}
if (strcmp(update, "homehost") == 0 &&
homehost) {
/* Note that 'homehost' is special as it is really
* a "name" update.
*/
char *c;
update = "name";
c = strchr(sb->set_name, ':');
if (c)
strncpy(info->name, c+1, 31 - (c-sb->set_name));
else
strncpy(info->name, sb->set_name, 32);
info->name[32] = 0;
}
if (strcmp(update, "force-one")==0) {
/* Not enough devices for a working array,
* so bring this one up-to-date
*/
if (sb->events != __cpu_to_le64(info->events))
rv = 1;
sb->events = __cpu_to_le64(info->events);
} else if (strcmp(update, "force-array")==0) {
/* Degraded array and 'force' requests to
* maybe need to mark it 'clean'.
*/
switch(__le32_to_cpu(sb->level)) {
case 5: case 4: case 6:
/* need to force clean */
if (sb->resync_offset != MaxSector)
rv = 1;
sb->resync_offset = MaxSector;
}
} else if (strcmp(update, "assemble")==0) {
int d = info->disk.number;
int want;
if (info->disk.state & (1<<MD_DISK_ACTIVE))
want = info->disk.raid_disk;
else if (info->disk.state & (1<<MD_DISK_JOURNAL))
want = MD_DISK_ROLE_JOURNAL;
else
want = MD_DISK_ROLE_SPARE;
if (sb->dev_roles[d] != __cpu_to_le16(want)) {
sb->dev_roles[d] = __cpu_to_le16(want);
rv = 1;
}
if (info->reshape_active &&
sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) &&
info->delta_disks >= 0 &&
info->reshape_progress < __le64_to_cpu(sb->reshape_position)) {
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
rv = 1;
}
if (info->reshape_active &&
sb->feature_map & __le32_to_cpu(MD_FEATURE_RESHAPE_ACTIVE) &&
info->delta_disks < 0 &&
info->reshape_progress > __le64_to_cpu(sb->reshape_position)) {
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
rv = 1;
}
} else if (strcmp(update, "linear-grow-new") == 0) {
unsigned int i;
int rfd, fd;
unsigned int max = __le32_to_cpu(sb->max_dev);
for (i=0 ; i < max ; i++)
if (__le16_to_cpu(sb->dev_roles[i]) >= MD_DISK_ROLE_FAULTY)
break;
sb->dev_number = __cpu_to_le32(i);
info->disk.number = i;
if (max >= __le32_to_cpu(sb->max_dev))
sb->max_dev = __cpu_to_le32(max+1);
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->device_uuid, r, 16);
}
if (rfd >= 0)
close(rfd);
sb->dev_roles[i] =
__cpu_to_le16(info->disk.raid_disk);
fd = open(devname, O_RDONLY);
if (fd >= 0) {
unsigned long long ds;
get_dev_size(fd, devname, &ds);
close(fd);
ds >>= 9;
if (__le64_to_cpu(sb->super_offset) <
__le64_to_cpu(sb->data_offset)) {
sb->data_size = __cpu_to_le64(
ds - __le64_to_cpu(sb->data_offset));
} else {
ds -= 8*2;
ds &= ~(unsigned long long)(4*2-1);
sb->super_offset = __cpu_to_le64(ds);
sb->data_size = __cpu_to_le64(
ds - __le64_to_cpu(sb->data_offset));
}
}
} else if (strcmp(update, "linear-grow-update") == 0) {
sb->raid_disks = __cpu_to_le32(info->array.raid_disks);
sb->dev_roles[info->disk.number] =
__cpu_to_le16(info->disk.raid_disk);
} else if (strcmp(update, "resync") == 0) {
/* make sure resync happens */
sb->resync_offset = 0ULL;
} else if (strcmp(update, "uuid") == 0) {
copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid);
if (__le32_to_cpu(sb->feature_map)&MD_FEATURE_BITMAP_OFFSET) {
struct bitmap_super_s *bm;
bm = (struct bitmap_super_s*)(st->sb+MAX_SB_SIZE);
memcpy(bm->uuid, sb->set_uuid, 16);
}
} else if (strcmp(update, "no-bitmap") == 0) {
sb->feature_map &= ~__cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
} else if (strcmp(update, "bbl") == 0) {
/* only possible if there is room after the bitmap, or if
* there is no bitmap
*/
unsigned long long sb_offset = __le64_to_cpu(sb->super_offset);
unsigned long long data_offset = __le64_to_cpu(sb->data_offset);
long bitmap_offset = (long)(int32_t)__le32_to_cpu(sb->bitmap_offset);
long bm_sectors = 0;
long space;
#ifndef MDASSEMBLE
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
struct bitmap_super_s *bsb;
bsb = (struct bitmap_super_s *)(((char*)sb)+MAX_SB_SIZE);
bm_sectors = bitmap_sectors(bsb);
}
#endif
if (sb_offset < data_offset) {
/* 1.1 or 1.2. Put bbl after bitmap leaving at least 32K
*/
long bb_offset;
bb_offset = sb_offset + 8;
if (bm_sectors && bitmap_offset > 0)
bb_offset = bitmap_offset + bm_sectors;
while (bb_offset < (long)sb_offset + 8 + 32*2
&& bb_offset + 8+8 <= (long)data_offset)
/* too close to bitmap, and room to grow */
bb_offset += 8;
if (bb_offset + 8 <= (long)data_offset) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32(bb_offset);
}
} else {
/* 1.0 - Put bbl just before super block */
if (bm_sectors && bitmap_offset < 0)
space = -bitmap_offset - bm_sectors;
else
space = sb_offset - data_offset -
__le64_to_cpu(sb->data_size);
if (space >= 8) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32((unsigned)-8);
}
}
} else if (strcmp(update, "no-bbl") == 0) {
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BAD_BLOCKS))
pr_err("Cannot remove active bbl from %s\n",devname);
else {
sb->bblog_size = 0;
sb->bblog_shift = 0;
sb->bblog_offset = 0;
}
} else if (strcmp(update, "name") == 0) {
if (info->name[0] == 0)
sprintf(info->name, "%d", info->array.md_minor);
memset(sb->set_name, 0, sizeof(sb->set_name));
if (homehost &&
strchr(info->name, ':') == NULL &&
strlen(homehost)+1+strlen(info->name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, info->name);
} else
strcpy(sb->set_name, info->name);
} else if (strcmp(update, "devicesize") == 0 &&
__le64_to_cpu(sb->super_offset) <
__le64_to_cpu(sb->data_offset)) {
/* set data_size to device size less data_offset */
struct misc_dev_info *misc = (struct misc_dev_info*)
(st->sb + MAX_SB_SIZE + BM_SUPER_SIZE);
sb->data_size = __cpu_to_le64(
misc->device_size - __le64_to_cpu(sb->data_offset));
} else if (strcmp(update, "revert-reshape") == 0) {
rv = -2;
if (!(sb->feature_map & __cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE)))
pr_err("No active reshape to revert on %s\n",
devname);
else {
__u32 temp;
unsigned long long reshape_sectors;
long reshape_chunk;
rv = 0;
/* reshape_position is a little messy.
* Its value must be a multiple of the larger
* chunk size, and of the "after" data disks.
* So when reverting we need to change it to
* be a multiple of the new "after" data disks,
* which is the old "before".
* If it isn't already a multiple of 'before',
* the only thing we could do would be
* copy some block around on the disks, which
* is easy to get wrong.
* So we reject a revert-reshape unless the
* alignment is good.
*/
if (__le32_to_cpu(sb->level) >= 4 &&
__le32_to_cpu(sb->level) <= 6) {
reshape_sectors = __le64_to_cpu(sb->reshape_position);
reshape_chunk = __le32_to_cpu(sb->new_chunk);
reshape_chunk *= __le32_to_cpu(sb->raid_disks) - __le32_to_cpu(sb->delta_disks) -
(__le32_to_cpu(sb->level)==6 ? 2 : 1);
if (reshape_sectors % reshape_chunk) {
pr_err("Reshape position is not suitably aligned.\n");
pr_err("Try normal assembly and stop again\n");
return -2;
}
}
sb->raid_disks = __cpu_to_le32(__le32_to_cpu(sb->raid_disks) -
__le32_to_cpu(sb->delta_disks));
if (sb->delta_disks == 0)
sb->feature_map ^= __cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
else
sb->delta_disks = __cpu_to_le32(-__le32_to_cpu(sb->delta_disks));
temp = sb->new_layout;
sb->new_layout = sb->layout;
sb->layout = temp;
temp = sb->new_chunk;
sb->new_chunk = sb->chunksize;
sb->chunksize = temp;
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_NEW_OFFSET)) {
long offset_delta = (int32_t)__le32_to_cpu(sb->new_offset);
sb->data_offset = __cpu_to_le64(__le64_to_cpu(sb->data_offset) + offset_delta);
sb->new_offset = __cpu_to_le32(-offset_delta);
sb->data_size = __cpu_to_le64(__le64_to_cpu(sb->data_size) - offset_delta);
}
}
} else if (strcmp(update, "_reshape_progress")==0)
sb->reshape_position = __cpu_to_le64(info->reshape_progress);
else if (strcmp(update, "writemostly")==0)
sb->devflags |= WriteMostly1;
else if (strcmp(update, "readwrite")==0)
sb->devflags &= ~WriteMostly1;
else
rv = -1;
sb->sb_csum = calc_sb_1_csum(sb);
if (is_clustered(st))
cluster_release_dlmlock(st, lockid);
return rv;
}
static int init_super1(struct supertype *st, mdu_array_info_t *info,
unsigned long long size, char *name, char *homehost,
int *uuid, unsigned long long data_offset)
{
struct mdp_superblock_1 *sb;
int spares;
int rfd;
char defname[10];
int sbsize;
if (posix_memalign((void**)&sb, 4096, SUPER1_SIZE) != 0) {
pr_err("could not allocate superblock\n");
return 0;
}
memset(sb, 0, SUPER1_SIZE);
st->sb = sb;
if (info == NULL) {
/* zeroing superblock */
return 0;
}
spares = info->working_disks - info->active_disks;
if (info->raid_disks + spares > MAX_DEVS) {
pr_err("too many devices requested: %d+%d > %d\n",
info->raid_disks , spares, MAX_DEVS);
return 0;
}
sb->magic = __cpu_to_le32(MD_SB_MAGIC);
sb->major_version = __cpu_to_le32(1);
sb->feature_map = 0;
sb->pad0 = 0;
if (uuid)
copy_uuid(sb->set_uuid, uuid, super1.swapuuid);
else {
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->set_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->set_uuid, r, 16);
}
if (rfd >= 0) close(rfd);
}
if (name == NULL || *name == 0) {
sprintf(defname, "%d", info->md_minor);
name = defname;
}
if (homehost &&
strchr(name, ':')== NULL &&
strlen(homehost)+1+strlen(name) < 32) {
strcpy(sb->set_name, homehost);
strcat(sb->set_name, ":");
strcat(sb->set_name, name);
} else
strcpy(sb->set_name, name);
sb->ctime = __cpu_to_le64((unsigned long long)time(0));
sb->level = __cpu_to_le32(info->level);
sb->layout = __cpu_to_le32(info->layout);
sb->size = __cpu_to_le64(size*2ULL);
sb->chunksize = __cpu_to_le32(info->chunk_size>>9);
sb->raid_disks = __cpu_to_le32(info->raid_disks);
sb->data_offset = __cpu_to_le64(data_offset);
sb->data_size = __cpu_to_le64(0);
sb->super_offset = __cpu_to_le64(0);
sb->recovery_offset = __cpu_to_le64(0);
sb->utime = sb->ctime;
sb->events = __cpu_to_le64(1);
if (info->state & (1<<MD_SB_CLEAN))
sb->resync_offset = MaxSector;
else
sb->resync_offset = 0;
sbsize = sizeof(struct mdp_superblock_1) + 2 * (info->raid_disks + spares);
sbsize = ROUND_UP(sbsize, 512);
sb->max_dev = __cpu_to_le32((sbsize - sizeof(struct mdp_superblock_1)) / 2);
memset(sb->dev_roles, 0xff, MAX_SB_SIZE - sizeof(struct mdp_superblock_1));
return 1;
}
struct devinfo {
int fd;
char *devname;
long long data_offset;
mdu_disk_info_t disk;
struct devinfo *next;
};
#ifndef MDASSEMBLE
/* Add a device to the superblock being created */
static int add_to_super1(struct supertype *st, mdu_disk_info_t *dk,
int fd, char *devname, unsigned long long data_offset)
{
struct mdp_superblock_1 *sb = st->sb;
__u16 *rp = sb->dev_roles + dk->number;
struct devinfo *di, **dip;
int rv, lockid;
if (is_clustered(st)) {
rv = cluster_get_dlmlock(st, &lockid);
if (rv) {
pr_err("Cannot get dlmlock in %s return %d\n", __func__, rv);
cluster_release_dlmlock(st, lockid);
return rv;
}
}
if ((dk->state & 6) == 6) /* active, sync */
*rp = __cpu_to_le16(dk->raid_disk);
else if (dk->state & (1<<MD_DISK_JOURNAL))
*rp = MD_DISK_ROLE_JOURNAL;
else if ((dk->state & ~2) == 0) /* active or idle -> spare */
*rp = MD_DISK_ROLE_SPARE;
else
*rp = MD_DISK_ROLE_FAULTY;
if (dk->number >= (int)__le32_to_cpu(sb->max_dev) &&
__le32_to_cpu(sb->max_dev) < MAX_DEVS)
sb->max_dev = __cpu_to_le32(dk->number+1);
sb->dev_number = __cpu_to_le32(dk->number);
sb->devflags = 0; /* don't copy another disks flags */
sb->sb_csum = calc_sb_1_csum(sb);
dip = (struct devinfo **)&st->info;
while (*dip)
dip = &(*dip)->next;
di = xmalloc(sizeof(struct devinfo));
di->fd = fd;
di->devname = devname;
di->disk = *dk;
di->data_offset = data_offset;
di->next = NULL;
*dip = di;
if (is_clustered(st))
cluster_release_dlmlock(st, lockid);
return 0;
}
#endif
static void locate_bitmap1(struct supertype *st, int fd);
static int store_super1(struct supertype *st, int fd)
{
struct mdp_superblock_1 *sb = st->sb;
unsigned long long sb_offset;
struct align_fd afd;
int sbsize;
unsigned long long dsize;
int rv, lockid;
if (is_clustered(st)) {
rv = cluster_get_dlmlock(st, &lockid);
if (rv) {
pr_err("Cannot get dlmlock in %s return %d\n", __func__, rv);
cluster_release_dlmlock(st, lockid);
return rv;
}
}
if (!get_dev_size(fd, NULL, &dsize))
return 1;
dsize >>= 9;
if (dsize < 24)
return 2;
init_afd(&afd, fd);
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
if (sb_offset != __le64_to_cpu(sb->super_offset) &&
0 != __le64_to_cpu(sb->super_offset)
) {
pr_err("internal error - sb_offset is wrong\n");
abort();
}
if (lseek64(fd, sb_offset << 9, 0)< 0LL)
return 3;
sbsize = ROUND_UP(sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev), 512);
if (awrite(&afd, sb, sbsize) != sbsize)
return 4;
if (sb->feature_map & __cpu_to_le32(MD_FEATURE_BITMAP_OFFSET)) {
struct bitmap_super_s *bm = (struct bitmap_super_s*)
(((char*)sb)+MAX_SB_SIZE);
if (__le32_to_cpu(bm->magic) == BITMAP_MAGIC) {
locate_bitmap1(st, fd);
if (awrite(&afd, bm, sizeof(*bm)) != sizeof(*bm))
return 5;
}
}
fsync(fd);
if (is_clustered(st))
cluster_release_dlmlock(st, lockid);
return 0;
}
static int load_super1(struct supertype *st, int fd, char *devname);
static unsigned long choose_bm_space(unsigned long devsize)
{
/* if the device is bigger than 8Gig, save 64k for bitmap usage,
* if bigger than 200Gig, save 128k
* NOTE: result must be multiple of 4K else bad things happen
* on 4K-sector devices.
*/
if (devsize < 64*2) return 0;
if (devsize - 64*2 >= 200*1024*1024*2)
return 128*2;
if (devsize - 4*2 > 8*1024*1024*2)
return 64*2;
return 4*2;
}
static void free_super1(struct supertype *st);
#define META_BLOCK_SIZE 4096
__u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
static int write_empty_r5l_meta_block(struct supertype *st, int fd)
{
struct r5l_meta_block *mb;
struct mdp_superblock_1 *sb = st->sb;
struct align_fd afd;
__u32 crc;
init_afd(&afd, fd);
if (posix_memalign((void**)&mb, 4096, META_BLOCK_SIZE) != 0) {
pr_err("Could not allocate memory for the meta block.\n");
return 1;
}
memset(mb, 0, META_BLOCK_SIZE);
mb->magic = __cpu_to_le32(R5LOG_MAGIC);
mb->version = R5LOG_VERSION;
mb->meta_size = __cpu_to_le32(sizeof(struct r5l_meta_block));
mb->seq = __cpu_to_le64(random32());
mb->position = __cpu_to_le64(0);
crc = crc32c_le(0xffffffff, sb->set_uuid, sizeof(sb->set_uuid));
crc = crc32c_le(crc, (void *)mb, META_BLOCK_SIZE);
mb->checksum = crc;
if (lseek64(fd, (sb->data_offset) * 512, 0) < 0LL) {
pr_err("cannot seek to offset of the meta block\n");
goto fail_to_write;
}
if (awrite(&afd, mb, META_BLOCK_SIZE) != META_BLOCK_SIZE) {
pr_err("failed to store write the meta block \n");
goto fail_to_write;
}
fsync(fd);
free(mb);
return 0;
fail_to_write:
free(mb);
return 1;
}
#ifndef MDASSEMBLE
static int write_init_super1(struct supertype *st)
{
struct mdp_superblock_1 *sb = st->sb;
struct supertype *refst;
int rfd;
int rv = 0;
unsigned long long bm_space;
struct devinfo *di;
unsigned long long dsize, array_size;
unsigned long long sb_offset;
unsigned long long data_offset;
for (di = st->info; di; di = di->next) {
if (di->disk.state & (1 << MD_DISK_JOURNAL))
sb->feature_map |= MD_FEATURE_JOURNAL;
}
for (di = st->info; di; di = di->next) {
if (di->disk.state & (1 << MD_DISK_FAULTY))
continue;
if (di->fd < 0)
continue;
while (Kill(di->devname, NULL, 0, -1, 1) == 0)
;
sb->dev_number = __cpu_to_le32(di->disk.number);
if (di->disk.state & (1<<MD_DISK_WRITEMOSTLY))
sb->devflags |= WriteMostly1;
else
sb->devflags &= ~WriteMostly1;
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->device_uuid, r, 16);
}
if (rfd >= 0)
close(rfd);
sb->events = 0;
refst = dup_super(st);
if (load_super1(refst, di->fd, NULL)==0) {
struct mdp_superblock_1 *refsb = refst->sb;
memcpy(sb->device_uuid, refsb->device_uuid, 16);
if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) {
/* same array, so preserve events and
* dev_number */
sb->events = refsb->events;
/* bugs in 2.6.17 and earlier mean the
* dev_number chosen in Manage must be preserved
*/
if (get_linux_version() >= 2006018)
sb->dev_number = refsb->dev_number;
}
free_super1(refst);
}
free(refst);
if (!get_dev_size(di->fd, NULL, &dsize)) {
rv = 1;
goto error_out;
}
dsize >>= 9;
if (dsize < 24) {
close(di->fd);
rv = 2;
goto error_out;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
* data_offset has already been set.
*/
array_size = __le64_to_cpu(sb->size);
/* work out how much space we left for a bitmap,
* Add 8 sectors for bad block log */
bm_space = choose_bm_space(array_size) + 8;
data_offset = di->data_offset;
if (data_offset == INVALID_SECTORS)
data_offset = st->data_offset;
switch(st->minor_version) {
case 0:
if (data_offset == INVALID_SECTORS)
data_offset = 0;
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
sb->data_offset = __cpu_to_le64(data_offset);
sb->super_offset = __cpu_to_le64(sb_offset);
if (sb_offset < array_size + bm_space)
bm_space = sb_offset - array_size;
sb->data_size = __cpu_to_le64(sb_offset - bm_space);
if (bm_space >= 8) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32((unsigned)-8);
}
break;
case 1:
sb->super_offset = __cpu_to_le64(0);
if (data_offset == INVALID_SECTORS)
data_offset = 16;
sb->data_offset = __cpu_to_le64(data_offset);
sb->data_size = __cpu_to_le64(dsize - data_offset);
if (data_offset >= 8 + 32*2 + 8) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32(8 + 32*2);
} else if (data_offset >= 16) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32(data_offset-8);
}
break;
case 2:
sb_offset = 4*2;
sb->super_offset = __cpu_to_le64(sb_offset);
if (data_offset == INVALID_SECTORS)
data_offset = 24;
sb->data_offset = __cpu_to_le64(data_offset);
sb->data_size = __cpu_to_le64(dsize - data_offset);
if (data_offset >= 16 + 32*2 + 8) {
sb->bblog_size = __cpu_to_le16(8);
sb->bblog_offset = __cpu_to_le32(8 + 32*2);
} else if (data_offset >= 16+16) {
sb->bblog_size = __cpu_to_le16(8);
/* '8' sectors for the bblog, and another '8'
* because we want offset from superblock, not
* start of device.
*/
sb->bblog_offset = __cpu_to_le32(data_offset-8-8);
}
break;
default:
pr_err("Failed to write invalid metadata format 1.%i to %s\n",
st->minor_version, di->devname);
rv = -EINVAL;
goto out;
}
/* Disable badblock log on clusters, or when explicitly requested */
if (st->nodes > 0 || conf_get_create_info()->bblist == 0) {
sb->bblog_size = 0;
sb->bblog_offset = 0;
}
sb->sb_csum = calc_sb_1_csum(sb);
rv = store_super1(st, di->fd);
if (rv == 0 && (di->disk.state & (1 << MD_DISK_JOURNAL))) {
rv = write_empty_r5l_meta_block(st, di->fd);
if (rv)
goto error_out;
}
if (rv == 0 && (__le32_to_cpu(sb->feature_map) & 1))
rv = st->ss->write_bitmap(st, di->fd, NoUpdate);
close(di->fd);
di->fd = -1;
if (rv)
goto error_out;
}
error_out:
if (rv)
pr_err("Failed to write metadata to %s\n",
di->devname);
out:
return rv;
}
#endif
static int compare_super1(struct supertype *st, struct supertype *tst)
{
/*
* return:
* 0 same, or first was empty, and second was copied
* 1 second had wrong number
* 2 wrong uuid
* 3 wrong other info
*/
struct mdp_superblock_1 *first = st->sb;
struct mdp_superblock_1 *second = tst->sb;
if (second->magic != __cpu_to_le32(MD_SB_MAGIC))
return 1;
if (second->major_version != __cpu_to_le32(1))
return 1;
if (!first) {
if (posix_memalign((void**)&first, 4096, SUPER1_SIZE) != 0) {
pr_err("could not allocate superblock\n");
return 1;
}
memcpy(first, second, SUPER1_SIZE);
st->sb = first;
return 0;
}
if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0)
return 2;
if (first->ctime != second->ctime ||
first->level != second->level ||
first->layout != second->layout ||
first->size != second->size ||
first->chunksize != second->chunksize ||
first->raid_disks != second->raid_disks)
return 3;
return 0;
}
static int load_super1(struct supertype *st, int fd, char *devname)
{
unsigned long long dsize;
unsigned long long sb_offset;
struct mdp_superblock_1 *super;
int uuid[4];
struct bitmap_super_s *bsb;
struct misc_dev_info *misc;
struct align_fd afd;
free_super1(st);
init_afd(&afd, fd);
if (st->ss == NULL || st->minor_version == -1) {
int bestvers = -1;
struct supertype tst;
__u64 bestctime = 0;
/* guess... choose latest ctime */
memset(&tst, 0, sizeof(tst));
tst.ss = &super1;
for (tst.minor_version = 0; tst.minor_version <= 2 ; tst.minor_version++) {
switch(load_super1(&tst, fd, devname)) {
case 0: super = tst.sb;
if (bestvers == -1 ||
bestctime < __le64_to_cpu(super->ctime)) {
bestvers = tst.minor_version;
bestctime = __le64_to_cpu(super->ctime);
}
free(super);
tst.sb = NULL;
break;
case 1: return 1; /*bad device */
case 2: break; /* bad, try next */
}
}
if (bestvers != -1) {
int rv;
tst.minor_version = bestvers;
tst.ss = &super1;
tst.max_devs = MAX_DEVS;
rv = load_super1(&tst, fd, devname);
if (rv == 0)
*st = tst;
return rv;
}
return 2;
}
if (!get_dev_size(fd, devname, &dsize))
return 1;
dsize >>= 9;
if (dsize < 24) {
if (devname)
pr_err("%s is too small for md: size is %llu sectors.\n",
devname, dsize);
return 1;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
switch(st->minor_version) {
case 0:
sb_offset = dsize;
sb_offset -= 8*2;
sb_offset &= ~(4*2-1);
break;
case 1:
sb_offset = 0;
break;
case 2:
sb_offset = 4*2;
break;
default:
return -EINVAL;
}
if (lseek64(fd, sb_offset << 9, 0)< 0LL) {
if (devname)
pr_err("Cannot seek to superblock on %s: %s\n",
devname, strerror(errno));
return 1;
}
if (posix_memalign((void**)&super, 4096, SUPER1_SIZE) != 0) {
pr_err("could not allocate superblock\n");
return 1;
}
if (aread(&afd, super, MAX_SB_SIZE) != MAX_SB_SIZE) {
if (devname)
pr_err("Cannot read superblock on %s\n",
devname);
free(super);
return 1;
}
if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) {
if (devname)
pr_err("No super block found on %s (Expected magic %08x, got %08x)\n",
devname, MD_SB_MAGIC, __le32_to_cpu(super->magic));
free(super);
return 2;
}
if (__le32_to_cpu(super->major_version) != 1) {
if (devname)
pr_err("Cannot interpret superblock on %s - version is %d\n",
devname, __le32_to_cpu(super->major_version));
free(super);
return 2;
}
if (__le64_to_cpu(super->super_offset) != sb_offset) {
if (devname)
pr_err("No superblock found on %s (super_offset is wrong)\n",
devname);
free(super);
return 2;
}
st->sb = super;
bsb = (struct bitmap_super_s *)(((char*)super)+MAX_SB_SIZE);
misc = (struct misc_dev_info*) (((char*)super)+MAX_SB_SIZE+BM_SUPER_SIZE);
misc->device_size = dsize;
if (st->data_offset == INVALID_SECTORS)
st->data_offset = __le64_to_cpu(super->data_offset);
/* Now check on the bitmap superblock */
if ((__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) == 0)
return 0;
/* Read the bitmap superblock and make sure it looks
* valid. If it doesn't clear the bit. An --assemble --force
* should get that written out.
*/
locate_bitmap1(st, fd);
if (aread(&afd, bsb, 512) != 512)
goto no_bitmap;
uuid_from_super1(st, uuid);
if (__le32_to_cpu(bsb->magic) != BITMAP_MAGIC ||
memcmp(bsb->uuid, uuid, 16) != 0)
goto no_bitmap;
return 0;
no_bitmap:
super->feature_map = __cpu_to_le32(__le32_to_cpu(super->feature_map)
& ~MD_FEATURE_BITMAP_OFFSET);
return 0;
}
static struct supertype *match_metadata_desc1(char *arg)
{
struct supertype *st = xcalloc(1, sizeof(*st));
st->container_devnm[0] = 0;
st->ss = &super1;
st->max_devs = MAX_DEVS;
st->sb = NULL;
st->data_offset = INVALID_SECTORS;
/* leading zeros can be safely ignored. --detail generates them. */
while (*arg == '0')
arg++;
if (strcmp(arg, "1.0") == 0 ||
strcmp(arg, "1.00") == 0) {
st->minor_version = 0;
return st;
}
if (strcmp(arg, "1.1") == 0 ||
strcmp(arg, "1.01") == 0
) {
st->minor_version = 1;
return st;
}
if (strcmp(arg, "1.2") == 0 ||
#ifndef DEFAULT_OLD_METADATA /* ifdef in super0.c */
strcmp(arg, "default") == 0 ||
#endif /* DEFAULT_OLD_METADATA */
strcmp(arg, "1.02") == 0) {
st->minor_version = 2;
return st;
}
if (strcmp(arg, "1") == 0 ||
strcmp(arg, "default") == 0) {
st->minor_version = -1;
return st;
}
free(st);
return NULL;
}
/* find available size on device with this devsize, using
* superblock type st, and reserving 'reserve' sectors for
* a possible bitmap
*/
static __u64 avail_size1(struct supertype *st, __u64 devsize,
unsigned long long data_offset)
{
struct mdp_superblock_1 *super = st->sb;
int bmspace = 0;
int bbspace = 0;
if (devsize < 24)
return 0;
#ifndef MDASSEMBLE
if (__le32_to_cpu(super->feature_map)&MD_FEATURE_BITMAP_OFFSET) {
/* hot-add. allow for actual size of bitmap */
struct bitmap_super_s *bsb;
bsb = (struct bitmap_super_s *)(((char*)super)+MAX_SB_SIZE);
bmspace = bitmap_sectors(bsb);
}
#endif
/* Allow space for bad block log */
if (super->bblog_size)
bbspace = __le16_to_cpu(super->bblog_size);
if (st->minor_version < 0)
/* not specified, so time to set default */
st->minor_version = 2;
if (data_offset == INVALID_SECTORS)
data_offset = st->data_offset;
if (data_offset != INVALID_SECTORS)
switch(st->minor_version) {
case 0:
return devsize - data_offset - 8*2 - bbspace;
case 1:
case 2:
return devsize - data_offset;
default:
return 0;
}
devsize -= bmspace;
switch(st->minor_version) {
case 0:
/* at end */
return ((devsize - 8*2 - bbspace ) & ~(4*2-1));
case 1:
/* at start, 4K for superblock and possible bitmap */
return devsize - 4*2 - bbspace;
case 2:
/* 4k from start, 4K for superblock and possible bitmap */
return devsize - (4+4)*2 - bbspace;
}
return 0;
}
static int
add_internal_bitmap1(struct supertype *st,
int *chunkp, int delay, int write_behind,
unsigned long long size,
int may_change, int major)
{
/*
* If not may_change, then this is a 'Grow' without sysfs support for
* bitmaps, and the bitmap must fit after the superblock at 1K offset.
* If may_change, then this is create or a Grow with sysfs syupport,
* and we can put the bitmap wherever we like.
*
* size is in sectors, chunk is in bytes !!!
*/
unsigned long long bits;
unsigned long long max_bits;
unsigned long long min_chunk;
long offset;
long bbl_offset, bbl_size;
unsigned long long chunk = *chunkp;
int room = 0;
int creating = 0;
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + MAX_SB_SIZE);
int uuid[4];
if (__le64_to_cpu(sb->data_size) == 0)
/* Must be creating the array, else data_size would be non-zero */
creating = 1;
switch(st->minor_version) {
case 0:
/* either 3K after the superblock (when hot-add),
* or some amount of space before.
*/
if (creating) {
/* We are creating array, so we *know* how much room has
* been left.
*/
offset = 0;
bbl_size = 8;
room = choose_bm_space(__le64_to_cpu(sb->size)) + bbl_size;
} else {
room = __le64_to_cpu(sb->super_offset)
- __le64_to_cpu(sb->data_offset)
- __le64_to_cpu(sb->data_size);
bbl_size = __le16_to_cpu(sb->bblog_size);
if (bbl_size < 8)
bbl_size = 8;
bbl_offset = (__s32)__le32_to_cpu(sb->bblog_offset);
if (bbl_size < -bbl_offset)
bbl_size = -bbl_offset;
if (!may_change || (room < 3*2 &&
__le32_to_cpu(sb->max_dev) <= 384)) {
room = 3*2;
offset = 1*2;
bbl_size = 0;
} else {
offset = 0; /* means movable offset */
}
}
break;
case 1:
case 2: /* between superblock and data */
if (creating) {
offset = 4*2;
bbl_size = 8;
room = choose_bm_space(__le64_to_cpu(sb->size)) + bbl_size;
} else {
room = __le64_to_cpu(sb->data_offset)
- __le64_to_cpu(sb->super_offset);
bbl_size = __le16_to_cpu(sb->bblog_size);
if (bbl_size)
room = __le32_to_cpu(sb->bblog_offset) + bbl_size;
else
bbl_size = 8;
if (!may_change) {
room -= 2; /* Leave 1K for superblock */
offset = 2;
bbl_size = 0;
} else {
room -= 4*2; /* leave 4K for superblock */
offset = 4*2;
}
}
break;
default:
return 0;
}
room -= bbl_size;
if (chunk == UnSet && room > 128*2)
/* Limit to 128K of bitmap when chunk size not requested */
room = 128*2;
if (room <= 1)
/* No room for a bitmap */
return 0;
max_bits = (room * 512 - sizeof(bitmap_super_t)) * 8;
min_chunk = 4096; /* sub-page chunks don't work yet.. */
bits = (size*512)/min_chunk +1;
while (bits > max_bits) {
min_chunk *= 2;
bits = (bits+1)/2;
}
if (chunk == UnSet) {
/* For practical purpose, 64Meg is a good
* default chunk size for internal bitmaps.
*/
chunk = min_chunk;
if (chunk < 64*1024*1024)
chunk = 64*1024*1024;
} else if (chunk < min_chunk)
return 0; /* chunk size too small */
if (chunk == 0) /* rounding problem */
return 0;
if (offset == 0) {
/* start bitmap on a 4K boundary with enough space for
* the bitmap
*/
bits = (size*512) / chunk + 1;
room = ((bits+7)/8 + sizeof(bitmap_super_t) +4095)/4096;
room *= 8; /* convert 4K blocks to sectors */
offset = -room - bbl_size;
}
sb->bitmap_offset = (int32_t)__cpu_to_le32(offset);
sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map)
| MD_FEATURE_BITMAP_OFFSET);
memset(bms, 0, sizeof(*bms));
bms->magic = __cpu_to_le32(BITMAP_MAGIC);
bms->version = __cpu_to_le32(major);
uuid_from_super1(st, uuid);
memcpy(bms->uuid, uuid, 16);
bms->chunksize = __cpu_to_le32(chunk);
bms->daemon_sleep = __cpu_to_le32(delay);
bms->sync_size = __cpu_to_le64(size);
bms->write_behind = __cpu_to_le32(write_behind);
bms->nodes = __cpu_to_le32(st->nodes);
if (st->nodes)
sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map)
| MD_FEATURE_BITMAP_VERSIONED);
if (st->cluster_name)
strncpy((char *)bms->cluster_name,
st->cluster_name, strlen(st->cluster_name));
*chunkp = chunk;
return 1;
}
static void locate_bitmap1(struct supertype *st, int fd)
{
unsigned long long offset;
struct mdp_superblock_1 *sb;
int mustfree = 0;
if (!st->sb) {
if (st->ss->load_super(st, fd, NULL))
return; /* no error I hope... */
mustfree = 1;
}
sb = st->sb;
offset = __le64_to_cpu(sb->super_offset);
offset += (int32_t) __le32_to_cpu(sb->bitmap_offset);
if (mustfree)
free(sb);
lseek64(fd, offset<<9, 0);
}
static int write_bitmap1(struct supertype *st, int fd, enum bitmap_update update)
{
struct mdp_superblock_1 *sb = st->sb;
bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb)+MAX_SB_SIZE);
int rv = 0;
void *buf;
int towrite, n;
struct align_fd afd;
unsigned int i = 0;
unsigned long long total_bm_space, bm_space_per_node;
switch (update) {
case NameUpdate:
/* update cluster name */
if (st->cluster_name) {
memset((char *)bms->cluster_name, 0, sizeof(bms->cluster_name));
strncpy((char *)bms->cluster_name, st->cluster_name, 64);
}
break;
case NodeNumUpdate:
/* cluster md only supports superblock 1.2 now */
if (st->minor_version != 2) {
pr_err("Warning: cluster md only works with superblock 1.2\n");
return -EINVAL;
}
/* Each node has an independent bitmap, it is necessary to calculate the
* space is enough or not, first get how many bytes for the total bitmap */
bm_space_per_node = calc_bitmap_size(bms, 4096);
total_bm_space = 512 * (__le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset));
total_bm_space = total_bm_space - 4096; /* leave another 4k for superblock */
if (bm_space_per_node * st->nodes > total_bm_space) {
pr_err("Warning: The max num of nodes can't exceed %llu\n",
total_bm_space / bm_space_per_node);
return -ENOMEM;
}
bms->nodes = __cpu_to_le32(st->nodes);
break;
case NoUpdate:
default:
break;
}
init_afd(&afd, fd);
locate_bitmap1(st, fd);
if (posix_memalign(&buf, 4096, 4096))
return -ENOMEM;
do {
/* Only the bitmap[0] should resync
* whole device on initial assembly
*/
if (i)
memset(buf, 0x00, 4096);
else
memset(buf, 0xff, 4096);
memcpy(buf, (char *)bms, sizeof(bitmap_super_t));
towrite = calc_bitmap_size(bms, 4096);
while (towrite > 0) {
n = towrite;
if (n > 4096)
n = 4096;
n = awrite(&afd, buf, n);
if (n > 0)
towrite -= n;
else
break;
if (i)
memset(buf, 0x00, 4096);
else
memset(buf, 0xff, 4096);
}
fsync(fd);
if (towrite) {
rv = -2;
break;
}
} while (++i < __le32_to_cpu(bms->nodes));
free(buf);
return rv;
}
static void free_super1(struct supertype *st)
{
int rv, lockid;
if (is_clustered(st)) {
rv = cluster_get_dlmlock(st, &lockid);
if (rv) {
pr_err("Cannot get dlmlock in %s return %d\n", __func__, rv);
cluster_release_dlmlock(st, lockid);
return;
}
}
if (st->sb)
free(st->sb);
while (st->info) {
struct devinfo *di = st->info;
st->info = di->next;
if (di->fd >= 0)
close(di->fd);
free(di);
}
st->sb = NULL;
if (is_clustered(st))
cluster_release_dlmlock(st, lockid);
}
#ifndef MDASSEMBLE
static int validate_geometry1(struct supertype *st, int level,
int layout, int raiddisks,
int *chunk, unsigned long long size,
unsigned long long data_offset,
char *subdev, unsigned long long *freesize,
int verbose)
{
unsigned long long ldsize, devsize;
int bmspace;
unsigned long long headroom;
int fd;
if (level == LEVEL_CONTAINER) {
if (verbose)
pr_err("1.x metadata does not support containers\n");
return 0;
}
if (*chunk == UnSet)
*chunk = DEFAULT_CHUNK;
if (!subdev)
return 1;
if (st->minor_version < 0)
/* not specified, so time to set default */
st->minor_version = 2;
fd = open(subdev, O_RDONLY|O_EXCL, 0);
if (fd < 0) {
if (verbose)
pr_err("super1.x cannot open %s: %s\n",
subdev, strerror(errno));
return 0;
}
if (!get_dev_size(fd, subdev, &ldsize)) {
close(fd);
return 0;
}
close(fd);
devsize = ldsize >> 9;
if (devsize < 24) {
*freesize = 0;
return 0;
}
/* creating: allow suitable space for bitmap */
bmspace = choose_bm_space(devsize);
if (data_offset == INVALID_SECTORS)
data_offset = st->data_offset;
if (data_offset == INVALID_SECTORS)
switch (st->minor_version) {
case 0:
data_offset = 0;
break;
case 1:
case 2:
/* Choose data offset appropriate for this device
* and use as default for whole array.
* The data_offset must allow for bitmap space
* and base metadata, should allow for some headroom
* for reshape, and should be rounded to multiple
* of 1M.
* Headroom is limited to 128M, but aim for about 0.1%
*/
headroom = 128*1024*2;
while ((headroom << 10) > devsize &&
(*chunk == 0 ||
headroom / 2 >= ((unsigned)(*chunk)*2)*2))
headroom >>= 1;
data_offset = 12*2 + bmspace + headroom;
#define ONE_MEG (2*1024)
if (data_offset > ONE_MEG)
data_offset = (data_offset / ONE_MEG) * ONE_MEG;
break;
}
if (st->data_offset == INVALID_SECTORS)
st->data_offset = data_offset;
switch(st->minor_version) {
case 0: /* metadata at end. Round down and subtract space to reserve */
devsize = (devsize & ~(4ULL*2-1));
/* space for metadata, bblog, bitmap */
devsize -= 8*2 + 8 + bmspace;
break;
case 1:
case 2:
devsize -= data_offset;
break;
}
*freesize = devsize;
return 1;
}
#endif /* MDASSEMBLE */
void *super1_make_v0(struct supertype *st, struct mdinfo *info, mdp_super_t *sb0)
{
/* Create a v1.0 superblock based on 'info'*/
void *ret;
struct mdp_superblock_1 *sb;
int i;
int rfd;
unsigned long long offset;
if (posix_memalign(&ret, 4096, 1024) != 0)
return NULL;
sb = ret;
memset(ret, 0, 1024);
sb->magic = __cpu_to_le32(MD_SB_MAGIC);
sb->major_version = __cpu_to_le32(1);
copy_uuid(sb->set_uuid, info->uuid, super1.swapuuid);
sprintf(sb->set_name, "%d", sb0->md_minor);
sb->ctime = __cpu_to_le32(info->array.ctime+1);
sb->level = __cpu_to_le32(info->array.level);
sb->layout = __cpu_to_le32(info->array.layout);
sb->size = __cpu_to_le64(info->component_size);
sb->chunksize = __cpu_to_le32(info->array.chunk_size/512);
sb->raid_disks = __cpu_to_le32(info->array.raid_disks);
if (info->array.level > 0)
sb->data_size = sb->size;
else
sb->data_size = st->ss->avail_size(st, st->devsize/512, 0);
sb->resync_offset = MaxSector;
sb->max_dev = __cpu_to_le32(MD_SB_DISKS);
sb->dev_number = __cpu_to_le32(info->disk.number);
sb->utime = __cpu_to_le64(info->array.utime);
offset = st->devsize/512 - 8*2;
offset &= ~(4*2-1);
sb->super_offset = __cpu_to_le64(offset);
//*(__u64*)(st->other + 128 + 8 + 8) = __cpu_to_le64(offset);
if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
read(rfd, sb->device_uuid, 16) != 16) {
__u32 r[4] = {random(), random(), random(), random()};
memcpy(sb->device_uuid, r, 16);
}
if (rfd >= 0)
close(rfd);
for (i = 0; i < MD_SB_DISKS; i++) {
int state = sb0->disks[i].state;
sb->dev_roles[i] = MD_DISK_ROLE_SPARE;
if ((state & (1<<MD_DISK_SYNC)) &&
!(state & (1<<MD_DISK_FAULTY)))
sb->dev_roles[i] = __cpu_to_le16(sb0->disks[i].raid_disk);
}
sb->sb_csum = calc_sb_1_csum(sb);
return ret;
}
struct superswitch super1 = {
#ifndef MDASSEMBLE
.examine_super = examine_super1,
.brief_examine_super = brief_examine_super1,
.export_examine_super = export_examine_super1,
.detail_super = detail_super1,
.brief_detail_super = brief_detail_super1,
.export_detail_super = export_detail_super1,
.write_init_super = write_init_super1,
.validate_geometry = validate_geometry1,
.add_to_super = add_to_super1,
.examine_badblocks = examine_badblocks_super1,
.copy_metadata = copy_metadata1,
#endif
.match_home = match_home1,
.uuid_from_super = uuid_from_super1,
.getinfo_super = getinfo_super1,
.container_content = container_content1,
.update_super = update_super1,
.init_super = init_super1,
.store_super = store_super1,
.compare_super = compare_super1,
.load_super = load_super1,
.match_metadata_desc = match_metadata_desc1,
.avail_size = avail_size1,
.add_internal_bitmap = add_internal_bitmap1,
.locate_bitmap = locate_bitmap1,
.write_bitmap = write_bitmap1,
.free_super = free_super1,
#if __BYTE_ORDER == BIG_ENDIAN
.swapuuid = 0,
#else
.swapuuid = 1,
#endif
.name = "1.x",
};